Memory Systems
and Memory-Centric Computing Systems

Lecture 3b: Processing-in-Memory 1

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
14 June 2019
TU Wien Fast Course 2019

SAFARI ETHZzurich cCarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Sub-Agenda: In-Memory Computation

= Major Trends Affecting Main Memory
= The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications
= Processing in Memory: Two Directions
o Minimally Changing Memory Chips
o Exploiting 3D-Stacked Memory
= How to Enable Adoption of Processing in Memory

= Conclusion

Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

Observation and Opportunity

High latency and high energy caused by data movement
o Long, energy-hungry interconnects

o Energy-hungry electrical interfaces

o Movement of large amounts of data

Opportunity: Minimize data movement by performing
computation directly (near) where the data resides

o Processing in memory (PIM)

o In-memory computation/processing
o Near-data processing (NDP)
a

General concept applicable to any data storage & movement
unit (caches, SSDs, main memory, network, controllers)

SAFARI

Four Key Issues in Future Platforms

= Fundamentally Secure/Reliable/Safe Architectures

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures
= Fundamentally Low-Latency Architectures

= Architectures for Genomics, Medicine, Health

SAFARI

Maslow’s (Human) Hierarchy of Needs, Revisited

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” actualization:

h- - ’
Book, 1954-1970. ochlim:gncms

including creative
activities
Esteem needs:
prestige and feeling of accomplishment Psychological

needs
Belongingness and love needs:
infimate relationships, friends

Safety needs:
security, safety Basic

needs

Everlasting energy

SA FA R' Source: https://www.simplypsychology.org/maslow.html 0

Do We Want This?

SAFARI Source: V. Milutinovic

Or This?

SA FA Rl Source: V. Milutinovic 8

Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable

SAFARI

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 10

The Problem

Processing of data
IS performed
far away from the data

SAFARI

11

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit

-
-
==
-
-
a=""
-
-
-
-

-y
-
-
-
-
an
-
"’-
-
-
-
-
-
-
-
2"

Memory System Storage System

12
Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4)

Computing E a Communication E a Memory/Storage
Unit Unit Unit

k C——

L

-

-
-
o
e
-
-
-
am
-
o
-

e

Memory System Storage System

14

Yet ...

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45 -
40 A
35 -
30
25 -
20 -
15
10

5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Pertormance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark ¥ Chris Wilkerson I Yale N. Patt §

§ECE Department TMicroprocessor Research TDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com

16

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
2 Back-end bound

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

17

The Performance Perspective (Today)

All of Google’s Data Center Workloads (2015):

ads - T ! ——————f - ——— .
bigtable |- t——) - —1 .
disk - - 18} i
flight-search | L g - - .
gmail |- R B g .
gmail-fe |- o I R -
indexinglf -—{—® 3 — .
indexing2 - B l
searchl}| s — i
search2 &+ - — —1 .
search3} W _
video |- , 1 - = ! [- - |]
0 10 20 30 40 50 o0 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
18

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
19

Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\

KIOWRIA] pPaIeys

/ﬁﬂm‘ﬂls /

Shared Shared
s | Memory Memory
Control Control

Shared Memory

Most of the system is dedicated to storing and moving data

The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
B c:-chip link

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM

22

Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

———

g I I - - - .y,

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

SAFARI 23

Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela® Allan Knies®> Parthasarathy Ranganathan® Onur Mutlu™!

SAFARI 24

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM

25

We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

26

Goal: Processing Inside Memory

Processor

Core

Results

Many questions ... How do we design the:

Q

o O O 0O

compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software and languages?
algorithms?

)
Interconnect

1 Database

Graphs

I Media

Problem

Program/Language
System Software

SW/HW Interface

Micro-architecture

Logic

Electrons

Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 28

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 29

Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI 31

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

Bulk Data .
Copy

Bulk Data
Initialization

SAFARI

Bulk Data Copy and Initialization

rating System Performance
Herrod,

The Impact of Architectural Trends on Ope

Mendel Rosenblum, Edouard Bugnion, Stephen Alan
Ceamett Witchel, and Anoop Gupta

Li Zhao'. Ravi
i » Ravilyer® Srihari .
Department of Computer § thari Makineni*, Laxmi Bhyyan
r -" r []
clence and Engineering, Unj yan" and Don Newell*
» University of Californ;
/ -alifornia

Email: {zh
: ao, , versi
bhuyan } @cs. ucr.edy Riverside, CA 92521

*Communicati I o
‘E unications Technology [gh Intal
V nto

r Improving Bulk Memory Copying
Performance
)]

Architecture Support fo and Initialization v

Li Zhao, Ravishankar Iyer

Xiaowei Jiang, Yan Solihin
Dept. of Electrical and Computer Engineering Intel Labs
North Carolina State University Intel Corporation
Raleigh, USA Hillsboro, USA

SAFARI

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

00000

00000
00000

Zero initialization

Many more

d L

VM Cloning page Migration
Deduplication

SAFARI 34

Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)

35

Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u)] =2 90ns, 0.04u)

36

RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

CEEP TPV VPPV PP PP TPV PP PP TP Tl Row Buffer (4 Kbytes)

I8 bits

[11.6X latency reduction, 74X energy reduction]

RowClone: Intra-Subarray

Vop/2 ¥ i

src o<——I e
dst 0<—I e

Amplify the
difference
Data gets ; ;

copied

Sense Amplifier ‘ N
(Row Buffer) i i

RowClone: Intra-Subarray (1)

Row Buffer

1. Activate src row (copy data from src to row buffer)

\.

[2. Activate dst row (disconnect src from row buffer,

connect dst — copy data from row buffer to dst)

\

RowClone: Inter-Bank

A

Memory Channel

\4

-

\ N ™
I | Bank
C_\D\ J U Y,
o —t—t
6f N [N

|
N\ J U Y,

J

B Shared

internal bus

-

Overlap the latency of the read and the write

. 1.9X latency reduction, 3.2X energy reduction)

\

Generalized RowClone 0.01% area cost

Inter Subarray Copy
(Use Inter-Bank Copy Twice) —~ \
TA(— \\\
E k ' K
11 O 53 W e
b B iy [| ! :
a E I I l,
g U
Q
E v \ U J

Inter Bank Copy Intra Subarray

(Pipelined Copy (2 ACTSs)
Internal RD/WR)

RowClone: Fast Row Initialization

v
Fix a row at Zero

(0.5% loss in capacity)

42

RowClone: Bulk Initialization

Initialization with arbitrary data
o Initialize one row
o Copy the data to other rows

Zero initialization (most common)

o Reserve a row in each subarray (always zero)
o Copy data from reserved row (FPM mode)

o 6.0X lower latency, 41.5X lower DRAM energy
Q

0.2% loss in capacity

SAFARI

43

RowClone: Latency & Energy Benefits

Latency Reduction

Energy Reduction

14+ 11.6x 8o - (44X
13 5.0x 60 41.5x
8 | 40
o 20
‘2‘ ! 3.2 1.5x I
O 1% . ’ -
- - ~N
Very low cost: 0.01% increase in die area
_ J

Copy

‘ Zen)‘

| Copy | Zero |

SAFARI

44

Copy and Initialization in Workloads

H Read

MW Zero H Copy W Write

[

0.8 -

0.6 -

0.4 -

0.2 -

Fraction of Memory Traffic

bootup compile forkbench mcached mysql shell

SAFARI +

RowClone: Application Performance

80 — —
m |PC Improvement m Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell

46

End-to-End System Design

Application

Operating System

Microarchitecture

DRAM (RowClone)

How to communicate
occurrences of bulk
copy/initialization across
layers?

How to ensure cache
coherence?

How to maximize latency and
energy savings?

How to handle data reuse?

47

RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
W Inter-Bank M Inter-Subarray

1.2

=
|

A

74x

o
(00]
l

o
>
|

Normalized Savings
o
(@)

o
N
l

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

48

More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

Memory

Memory Controller

mini-CPU
E GPU GPU =
CPU CPU delis ¢ | (throughput) (throughput) | :
core core : core core :
video
core
: GPU GPU :
CPU CPU . _ : | (throughput) | |(throughput) | :
imaging core :
core core e core
LLC
|

Specialized
compute-capability
in memory

Memory similar to a “conventiona

Memory Bus

III

accelerator

In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

51

In-DRAM AND/OR: Triple Row Activation

A ; l P %Vppt6

I el Final State
B v AB + BC + AC

c

| %5,

dis

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

52

In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B> C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C

SAFARI >3

D W DN =

More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI >4

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

d-wordline .
dual-contact)E R %
cell (DCC) | Al i 2 -
n-wordline :__I__LI_ | Id ed.
wense | = | Feed the
amplifier
plifier —7\ 7 negated value

in the sense amplifier
into a special row

bitline

Figure 5: A dual-contact
cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >

In-DRAM NOT Operation

Vbbb

VoD VDD
Initial State After Charge Sharing Activated d-wordline Activated n-wordline

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >

Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 HMC 2.0 Ambit Il Ambit-3D
@ 0T S S
@p)] 1024 O
8-‘ 512 I PR R I I
O iq) 256 —_ eiiiieieeneees] R T e
:/ 8 128 el 1 BB ... eieieieee.] BBl B
a N 64 —_eieneeeeeeel | ... | BH...............] | BB...............] | BN..-...........
20 324 | PR] R | R
-2° 4] | R R | R R
= S | B B | Rl |
o N HE e BN e BN W N
= NN BR BN BN BHE BN BN BE o
| | | | |
not and/or nand/nor XOI/XNor mean

Figure 9: Throughput of bitwise operations on various systems.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >7

Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy =~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (l) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (J) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >8

Ambit vs. DDR3: Performance and Energy

Performance Improvement B Energy Reduction
70

60
50 32X 35X

40
30
20
10 |
0

and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 59

Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SA FAR' [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60

SAFARI

Performance: Bitmap Index on Ambit

~ 110 _ T e T,
GE) g 100 < Baseline I Ambit ool o,
c < o04b—— e b
= S, 80 e [L L
- GL) TO —f-eeememmemim L] L
9 = 60_ ..
.5: O 50 et Y A I PO R A I AR
8 _GC) 318_ ..
e e e [. ‘e 6.6X
LI>J< : %8 _ 54X 6.3X - 5.7X 6.2X | |9
O —....| [|..7: e [AR N PR R EEEEROPRRTY B .

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 62

Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW Count (r) _ D 1m . 2m D 4m . 8m

Speedup offered by Ambit

16 24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 63

More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI 64

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India ?NVIDIA Research Z3Intel *ETH Ziirich °Carnegie Mellon University

SAFARI 65

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Challenge: Intelligent Memory Device

Does memory

have to be
dumb?

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Agenda

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI

68

Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI 70

DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]

Low-Power LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAMS3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

SAFARI 71

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 72

Graph Processing

= Large graphs are everywhere (circa 2015)

oo R J

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users Instagram Photos

= Scalable large-scale graph processing is challenging

Speedup

73

Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

)

}
1. Frequent random memory accesses

/\
<——-’——\- ________
~
I
Vv " &w
w.rank] ._I-/// !
<-——-I"— i /
w.next_rank | | . T T e e
b 7 weight * Kk
w.edges W — _~ \W~e|9 t V.EaD <
_\7 -
« = “

2. Little amount of computation

SAFARI 74

Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface
Noncacheable, Physically Addressed)

g

1
1
1
1
1
\
\
\
\
\
\

(1)

(1)

(1)

(1]

Crossbar Network

+

+

+t

+

In-Order Core

LP PF Buffer

MTP

Message Queue

J3]|0J43U0D NVYA

g

B

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Communications via

Remote Function Calls

Message Queue

Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI

77

Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;

Vault #1

\\\
-~

Vault #2

—

——p

= ——
——

78

Communications In Tesseract (I11)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y > &w
4——-”/// ‘\
put \\\
N put
. » W
put |

SAFARI 7

Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

,

NI

&func, &w, value

NI

_>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI

80

Prefetching

LP PF Buffer

MTP

Evaluated Systems

DDR3-000 HMC-Oo0 Tesseract

1
J |
1
| |
| |
h

1
| |
1
| |
| |

32
Tesseract
Cores

15O 5 A

128 128
In-Order <«*| In-Order
2GHz 2GHz

' ¢

128 128
In-Order | In-Order
2GHz 2GHz

| A A &

y
| |
| |
| |

y

| |
1

J |
1

| |
1

| |

N
()
=]
N
I
o
2
N
o
()
2
N
N
()
2
N

102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

. >13X Performance Improvement

" On five graph processing algorithms 13.8x

11.6x

12
10 9.0x

Speedup

~ o o

+56% 125%

, mm BN e

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

N

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

_|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) [[] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3X

\ 4

, I

HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)

SAFARI 85

Tesseract Graph Processing System Energy

B Memory Layers [Logic Layers [Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract: Advantages & Disadvantages

Advantages

+ Specialized graph processing accelerator using PIM

+ Large system performance and energy benefits

+ Takes advantage of 3D stacking for an important workload
+ More general than just graph processing

Disadvantages
- Changes a lot in the system
- New programming model

- Specialized Tesseract cores for graph processing
- Cost

- Scalability limited by off-chip links or graph partitioning
SAFARI 87

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University

SAFARI 88

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

o | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 89

3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim?

Rachata Ausavarungnirun' Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela® Allan Knies® Parthasarathy Ranganathan® Onur Mutlu”!

SAFARI 20

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon Google

PSnmsuncg

\?;
A 0

WER® SEOUL
ghy Lo ETH:..

77 UNIVERSITY

\d,&««r

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI 92

Popular Google Consumer Workloads

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 93

Energy Cost of Data Movement

|5t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI 94

Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI 5

Workload Analysis

Do)

.?

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework

@ O Voulube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video Codec

SAFARI 96

Workload Analysis

Chrome TensorFlow
Google’s web browser Google’s machine learning

framework

()

y |

© O VouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 97

How Chrome Renders a Web Page

A
|

HTML
Parser

HTML

Render Rasteriza- Composi-

Tree tion ting

SAFARI 14

Loading and Layouting Painting
Parsing

assembles all layers

into a final screen image

|
|
|
|
|
| .
HTML HTML | | 3
Parser : : SS
| Render Lavout | Rasteriza- Composi-
| Tree Y | tion ting
css €SS 1y o0 N
Parser 1/ R I N
| ! ,/ I AN
| ,’ 7 ' A3
N G %e

paints those objects

calculates the
visual elements and

and generates the bitmaps

position of each object

Browser Analysis

* To satisfy user experience, the browser must
provide:
— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:
) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI

16

SAFARI

Tab Switching

26

What Happens During Tab Switching?

 Chrome employs a multi-process architecture
— Each tab is a separate process

| Chrome Process c :

\————-I —————

(_L ~_L_ -L_
| 9%

I—_

\

=7

\——-

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:
— Context switch
— Load the new page

SAFARI 27

Memory Consumption

* Primary concerns during tab switching:

— How fast a new tab loads and becomes interactive
— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

SAFARI 28

Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol8.1% of the total system energy

2 19.6 GB of data moves between
CPU and ZRAM

SAFARI

29

Can We Use PIM to Mitigate the Cost?

 CPU-Only time CPU +PIM

IWmnmy uw
Swap out N pages - Swap out N pages

-

data movement | No Off"Ch'P data

: mov'ement
Ouher s [

compression

v

PIM core and PIM accelerator are feasible to

implement in-memory compression/decompression

SAFARI 30

Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic

SAFARI 31

Workload Analysis

®

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 107

)

TensorFlow Mob

Prediction
9

Inferenc

(¢

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI 34

Packing

Matrix Packed Matrix
l Packing l

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI 36

Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI 36

Based on our analysis, we conclude that:

* Both functions are good candidates for PIM execution
* It is feasible to implement them in PIM logic

Evaluation Methodology

* System Configuration (gem5 Simulator)

— SoC: 4 O00 cores, 8-wide issue, 64 kB L1cache,
2MB L2 cache

— PIM Core: | core per vault, | -wide issue, 4-wide SIMD,
32kB L1 cache

— 3D-Stacked Memory: 2GB cube, |16 vaults per cube
* Internal Bandwidth: 256 GB/S
¢ Off-Chip Channel Bandwidth: 32 GB/s

— Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler
* We study each target in isolation and emulate each

separately and run them in our simulator
SAFARI 40

Normalized Energy

CPU-Only mPIM-Core OPIM-Acc

5 NN N R
6 NN N N
“HLITHLT
L R N
o 0.6 (I N - X § §
2 I TN NN N7
= & NN W
N N
z | NP N[N NN
Texture Cold ki -Pi

77.7% and 82.6% of energy reduction for texture tiling
and packing comes from eliminating data movement

1 core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%

SAFARI 41

Normalized Runtime

Normalized Runtime

CPU-Only m PIM-Core O PIM-Acc

—
o

TR N N

N N N
0.8 - § \ N
s N Nm-
TN N
0.4 - § § %E
\\'\
0.2 - § § ‘x\:
0.0 A & & : \

Texture Color Comp- Decomp- | Sub-Pixel Deblocking Motion |TensorFlow

Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback Tensor!=low
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

114

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018
SAFARI CarnegieMellon Google

MBS SEOUL
) o ETH. i
inse@eN. UNIVERSITY

s
N>

\‘L&««r

More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela® Allan Knies®> Parthasarathy Ranganathan® Onur Mutlu™!

SAFARI 16

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<. Logic layer

Logic layer
SM
1

Crossbar switch
| I

Vault| |Vault
Ctrl Ctrl

Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemirt Onur Mutlu>¢ Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI 19

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 120

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Executive Summary

* Our Goal: Accelerating pointer chasing inside
main memory

* Challenges: Parallelism challenge and Address
translation challenge

* Our Solution: In-Memory Polnter Chasing
Accelerator (IMPICA)

* Address-access decoupling: enabling parallelism in the
accelerator with low cost

* IMPICA page table: low cost page table in logic layer

* Key Results:

* 12X - 1.9X speedup for pointer chasing operations, +16%
database throughput

* 6% - 41% reduction in energy consumption
121

Linked Data Structures

* Linked data structures are widely used
in many important applications

Key Value
Data Storane 11

Linked data structures are
connected by pointers

-
§:ﬂ g

Key 1—

Key2>_

NV

L 3|4 5|6 |7
.||. | .lf. | .I\.[.l —
o I R — ~

941 9 d3 dy dg dg d

B-Tree Hash Table

122

The Problem: Pointer Chasing

* Traversing linked data structures
requires chasing pointers

CPU

Serialized and irregular access pattern
6X cycles per instruction in real workloads

123

Our Goal

Accelerating pointer chasing
inside main memory

_—
—
—
—
—
-
p—
==
e
p—
p—
—
— -

Logic layer 124

Parallelism Challenge

! ’Time

M
CPU core {COmpI emory IComp]

access
CPU core Lcompl Memory ICOinp}

access

In-Memory Comp Memory Comp Comp emory ompl
Accelerator access access :

slower for two operatlons

125

Parallelism Challenge and Opportunity

* A simple in-memory accelerator can
still be slower than multiple CPU cores

CPU core CPU core CPU core

T

Accelerator

* Opportunity: a pointer-chasing
accelerator spends a long time
waiting for memory

{Compl Memory access (10-15X of Comp) ICompJ

126

Our Solution:
Address-Access Decoupling

> Time

dCCessS

CPU core {COmpI Memory ICOmp}

CPU core (CnmnT Memorv Y >

Address-access decoupling enables ;
Addr rallellsm in both englnes W|th low co

Memory
Access access

Engine Memory
access

127

IMPICA Core Architecture
DRAM

|
DRAM Layers

Logic Layer

Memory
Lrtieis Controller

Cache
Access Queue t

Request Queue |
}_.> Address ‘ > Access
Engine «— «— Engine
Traversal
|l Response Queue
Traversal| o
Tq" 5 |CPU

Address Translation Challenge

The page ¢able walk requires
multiple memory accesses

0. ‘Q

--
A d

* L4
* *

Virtual Address
] #PML4 | #PDPT

emory side

' S
Duplicating it is costly and create

compatibility

PML4 PDPT PGD PGT

-
-“‘
.

‘e,

Our Solution: IMPICA Page Table

* Completely decouple the page table of
IMPICA from the page table of the

CPUs
INEROP Rz dabilele

d data structure ‘nto IMPICA regions

Map linke eisa partial-to-anY mapping

IMPICA page tabl

] 7\

Virtual Page Physical Page

Virtual Address Space ~ Physical Address Space

130

IMPICA Page Table: Mechanism

Virtual Address ~ —
Bit [47:4 Flat page table Bit [11:0]

L saves one€ memory access

gion tab;Ie is almosté
he cache

Tiny re
always in t

5 Small Page Table
5‘(2M B) (4KB)

LN o*

Physical Address

Evaluation Methodology

* Simulator: gem5

* System Configuration

 CPU
* 4 Oo0 cores, 2GHz

e Cache:32KB L1, 1MB L2

 IMPICA
* 1 core, 500MHz, 32KB Cache

* Memory Bandwidth
* 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

* Our simulator code is open source
 https://github.com/CMU-SAFARI/IMPICA

132

https://github.com/CMU-SAFARI/IMPICA

Result = Microbenchmark Performance

W Baseline + extra 128KB L2 @ IMPICA

1.9X

2.0
g. 1.5 1.3X 1 9%
B 1o |- S I -
o
v 0.5

0.0

Linked List Hash Table B-Tree

133

Result — Database Performance

1.20
1.10
1.00

Database
Throughput

o
o)
o

1.00
0.95
0.90
0.85
0.80

Database
Latency

+16%

IMPICA

Baseline + extra
128KB L2 1MB L2

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2

134

System Energy Consumption

M Baseline + extra 128KB L2 = IMPICA

—
o

Normalized Energy
S G

Linked Hash B-Tree DBx1000
List Table

135

Area and Power Overhead

CPU (Cortex-A57)

5.85 mm? per core

L2 Cache 5 mm? per MB
Memory Controller 10 mm?
IMPICA (+32KB cache) |0.45 mm?

* Power overhead: average power

increases by 5.6%

136

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 137

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Ottloading ot Pretetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 138

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Several Questions in 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming

SAFARI 159

Memory Systems
and Memory-Centric Computing Systems

Lecture 3b: Processing-in-Memory 1

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
14 June 2019
TU Wien Fast Course 2019

SAFARI ETHZzurich cCarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Backup Slides

PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 143

Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

64 bytes in - PR — et
64 bytes out |

Conventional Architecture

SAFARI 144

Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
—_ H %k .
value = weight * v.rank; oim.add r1, (r2)
for (w: v.successors) {

__pim_add(&w.next_rank, value);

Main Memory

"

Sbytesin [EEEm—————m
O bytesout |

In-Memory Addition

SAFARI 145

Always Executing in Memory? Not A Good Idea

60%

50%
(0)

0% Increased

30% = Memory Bandwidth

20% Consumption

10% Caching very effective l
-)

0% ‘ \ E—

Speedup

[

-10%
-20%

Reduced Memory Bandwidth
Consumption due to

L

| .
2 " -(Fe = '-g S w0 In-Memory Computation
\V —OO'Q‘I— N O - w — (S
= 99 Qe 89 £ S+ L5 50
N Y Q0 S e a o g oA
Q S N © n 2 =

More Vertices

—
SAFARI 146

PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfe nce 8-byte integer increment O O Obytes Obytes AT
pfe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
4 Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI

147

PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
a Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits

o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI

Example (Abstract) PEI uArchitecture

Host Processor

Out-Of-Order

) () K3
Core S Yo &=
(4] (q0] - O
@) @) 4~ (@©
— ~ e
PCU (PEl = = -
Computation Unit)
PMU (PEI[—
Mgmt Umt) Directory
Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture

SAFARI

149

PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

QO In- memory data ana Iytlcs Table 2: Baseline Simulation Configuration
o Machine learning and data mining Component _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
J Th ree In pUt SetS (Sma I ll med Iu ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the I m paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:
= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets

SAFARI 150

Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality

SAFARI

PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

60%

50%

40%

30%

20%

0%
WCC

B PIM-Only @ Locality-Aware

SVM GM

SAFARI 152

Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
B Host-Only ®PIM-Only [Locality-Aware

PEI Performance Delta: Small Data Sets

(Small Inputs, Baseline: Host-Only)
60%

40%

20%

—

0% e - T
| I I - B . r I
-20%
-40%

-60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
B PIM-Only @ Locality-Aware

SAFARI 154

Normalized Amount of Off-chip Transfer

8
7
6
5
4
3
2
1
0

dhlddl.d

B Host-Only ®PIM-Only [Locality-Aware

SC

PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%
40%

30%

~ § 11 i

ATF BFS PR SP WCC HJ HG RP SC SVM GM
-10%

B PIM-Only @ Locality-Aware

SAFARI 156

PEI Energy Consumption

1.5 Host-OnIy
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
MW Cache B HMC Link m DRAM
[Host-side PCU 0 Memory-side PCU O PMU

SAFARI 157

PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI 158

Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Automatic Offloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI tol

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Ottloading ot Pretetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 162

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 163

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI Lod

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 168

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI

Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

SAFARI 170

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI b

Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

3D-stacked memory
(memory stack)

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)
{
e // Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
EEEEEEEERENm const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

SM (Streaming Multiprocessor)

*
*
*
*

?

JIIIIIIIIIIII

<. Logic layer

, ¥

P Logic layer

Main GPU

/ SM
|
Crossbar switch

[I
. Vault| ... [Vault
N Ctrl Ctrl

Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streammg Multiprocessor)

\
<-.!Logic layer
P g y'

SM

Logic layer

Crossbar switch

Vault
Ctrl

Vault
Ctrl

How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code?

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir® ~ Onur Mutlu?¢ Chita R. Das!

'Pennsylvania State University = *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI 175

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

o > = S
°___E HE R
a | L o
S o m O 28|z C%
o > =
BN B B|E|O m 2
....... UEBIAID
===- 8¢I-dV1lH 0
[a)
=
95¢-dV1H =
)ueyasded
G
lipey =
Ll
sjuauodwo)
AL e T T T -L V—cmzmmm&
S
npey =
| o=
G
sjuauodwo)
T ToE77%)ueyoSeq
=
lipey x
©
sjuauodwo)

176

SAFARI

How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI b

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 178

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 179

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithims
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch

SAFARI 180

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim! Weikun Yang'-? Onur Mutlu®
ICarnegie Mellon University ~ ?Peking University

SAFARI tsl

https://github.com/CMU-SAFARI/ramulator

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A o H;at/ t
Flexible and Practical Open- Chamber '
Source Infrastructure for ’\ »
Enabling Experimental DRAM Epy }! i
Studies HPCA 2017. - =Ga,
keS| Host
/"%]E Machme
= Flexible "
¥ iTlemp> ﬂ,
= Easy to Use (C++ API) Controller
= Open-source Heater : T

i

github.com/CMU-SAFARI/SoftMC

SAFARI 182

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures for PIM (in SSDs)

= Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutlu,

"MQOSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"

Proceedings of the 16th USENIX Conference on File and Storage

lechnologies (FAST), Oakland, CA, USA, February 2018.
Slides (pptx) (pdf)]
[Source Code]

MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices

Arash Tavakkol”, Juan Gémez-Luna’, Mohammad Sadrosadati’, Saugata Ghose*, Onur Mutlu*
YETH Ziirich *Carnegie Mellon University

SAFARI 183

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 184

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon Google

PSnmsuncg

\?;
A 0

WER® SEOUL
ghy Lo ETH:..

77 UNIVERSITY

\d,&««r

SAFARI

Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

AN Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon

Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

SAFARI 187

GRIM-Filter in 3D-stacked DRAM

Bank Custom GRIM-Filter Logic

Seed Location Filter Bitmask
Bank s .. DRAM Layers (|

Row 1: AAAAA
Row 2: AAAAC
Row 3: AAAAG

]

Incr. PAccumulato

[Comparato

Bitvector for bin 2

Bitvector for bin 0
Bitvector for bin 1

Bitvector for bin t—1
A
%
o
Per-Bin
Logic Module

Row N—1: TTTTT ' > —

e e Row Data Register

Logic Layer

Figure 7: Left block: GRIM-Filter bitvector layout within a DRAM bank. Center block: 3D-
stacked DRAM with tightly integrated logic layer stacked underneath with TSVs for a high
intra-DRAM data transfer bandwidth. Right block: Custom GRIM-Filter logic placed in the

logic layer.

= The layout of bit vectors in a bank enables filtering many bins in parallel

= Customized logic for accumulation and comparison per genome segment
o Low area overhead, simple implementation

SAFARI 188

GRIM-Filter Performance

Time (x1000
seconds) Benchmarks and their Execution Times
70
351 |:h
T ln Tu [n fn T fn Ll T

Benchmarks

-1

RR2

40730-2

e = 5 Errors

1{|E FastHASH

I GRIM-Filter

1.8x-3.7x performance benefit across real data sets

SAFA

RI

189

GRIM-Filter False Positive Rate

False Positive

Rate (%) Benchmarks and their False Positive Rates
45(—
5 Errors
22.5¢ 41| FastHASH
Bl GRIM-Filter

0
26-1 6-2 7-1 -2 - . ;
£RR240728:02940726-2024072T: 10240727229 40728:23240728:20740729:224072% 3r 240730 2407302

Benchmarks

5.6x-6.4x False Positive reduction across real data sets

SAFARI 190

Conclusions

= We propose an in memory filter algorithm to accelerate end-

to-end genome read mapping by reducing the number of
required alignments

= Compared to the previous best filter
o We observed 1.8x-3.7x speedup
o We observed 5.6x-6.4x fewer false positives

= GRIM-Filter is a universal filter that can be applied to any
genome read mapper

SAFARI 11

In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 192

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 193

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Enabling the Paradigm Shift

Computer Architecture Today

You can revolutionize the way computers are built, if you
understand both the hardware and the software (and
change each accordingly)

You can invent new paradigms for computation,
communication, and storage

Recommended book: Thomas Kuhn, “The Structure of
Scientific Revolutions” (1962)

o Pre-paradigm science: no clear consensus in the field

o Normal science: dominant theory used to explain/improve
things (business as usual); exceptions considered anomalies

o Revolutionary science: underlying assumptions re-examined

195

Computer Architecture Today

You can revolutlonlze the way computers are built, if you
understand bot! oftware (and
change each ac " :

things (1
o Revoluti

anomalies
examined

196

Agenda

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 197

Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self- Self-fulfillment
Maslow, “Motivation and Personality,” actualization: '\ needs
Book, 1954-1970.
Speed
achvihes

needs
Belongi needs:

intim Speed ands |
Speed _—

SA FA Rl Source: https://www.simplypsychology.org/maslow.html 198

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

PIM: Concluding Remarks

A Quote from A Famous Architect

= architecture [...] based upon principle, and not upon
precedent”

204

Precedent-Based Design?

= architecture [...] based upon principle, and not upon
precedent”

Principled Design

= architecture [...] based upon principle, and not upon
precedent”

207

The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.

208

Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

.é

\
!

—
.o

-m

M
)

d“h

U

I |

Another Principled Design

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 211
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/

Another Principled Design

Source: De Galvan - Puente del Alamillo.jpg on Enciclopedia.us.es, GFDL, https://commons.wikimedia.org/w/index.php?curid=15026095

Pr1nc1ple Apphed to Another Structure

https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!3!
214

Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
Q

216

The Future of Processing in Memory 1s Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI 217

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 218

If In Doubt, See Other Doubttul Technologies

A very “doubtful” emerging technology
o for at least two decades

§H'H+ S Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SaucaTta GHOsE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https:/ /arxiv.org/pdf/1706.08642 21

https://arxiv.org/pdf/1706.08642

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 220

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

GRIM-Filter:

Fast seed location filtering in DNA read mapping
using processing-in-memory technologies

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

SAFARI
N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Systems @ ETH zirich

Carnegie Mellon

Executive Summary

Systems @ ETH ziricn

Genome Read Mapping is a very important problem and is the first
step in genome analysis

Read Mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an algorithm called GRIM-Filter

o Accelerates read mapping by reducing the number of required
alignments

o GRIM-Filter can be accelerated using processing-in-memory

Adds simple logic into 3D-Stacked memory
Uses high internal memory bandwidth to perform parallel filtering

GRIM-Filter with processing-in-memory delivers a 3.7x speedup

SAFARI 222

GRIM-Filter Outline

1. Motivation and Goal

2. Background Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Motivation and Goal E;

Systems @ ETH ziricn

Sequencing: determine the [A,C,G,T] series in DNA strand

Today’s machines sequence short strands (reads)
o Reads are on the order of 100 — 20k base pairs (bp)
o The human genome is approximately 3 billion bp

Therefore genomes are cut into reads, which are sequenced
independently, and then reconstructed

o Read mapping is the first step in analyzing someone’s genome to
detect predispositions to diseases, personalize medicine, etc.

Goal: We want to accelerate end-to-end performance
of read mapping

SAFARI 22

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Background: Read Mappers

We now have sequenced reads and want a full genome

We map reads to a known reference genome (>99.9%
similarity across humans) with some minor errors allowed

\/ —_
Because of high similarity, long sequences in reads
perfectly match in the reference genome

GACTGTGTU CAA

Systems @ ETH ziricn

. GACTGTGTCGA ..

We can use a hash table to help quickly map the reads!
SAFARI 226

GRIM-Filter Outline

2. Background: Read Mappers
a.Hash TableBased

a. Hash Table Based

SAFARI

Generating Hash Tables E;,:

To map any reads, generate a hash table per reference genome.

k-length sequences Location list where k-mer occurs
(k-mers) in the reference genome
A A AAA 12 35 502 610 721 989
A A AAC 13 609 788
A AAAT 36 434 Apzrressrmssrnssanasnany > @434:\ AAAAT
N I

G GGG G 52 67 334 634 851 " @36: |AAAAT

We can query the table with substrings from reads
to quickly find a list of possible mapping locations
SAFARI

228

Hash Tables in Read Mapping E;,:

Read Sequence (100 bp)

99.99% of locations
result in a mismatch

Hash Table

We want to filter these out
sOo we do not waste time
trying to align them

SAFARI

Location Filtering

Alignment is expensive and requires the use of O(n?)
dynamic programming algorithm
o We need to align millions to billions of reads

— . : . : . +

" our goal is to accelerate read mapping
by improving the filtering step

- el w 15 Il | Il Wl | vlvll‘l\ll

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [xin+, BMc Genomics 2013]

SAFARI 20

Systems @ ETH ziricn

GRIM-Filter Outline

2. Background: Read Mappers
b. Hash Table Based with Filter

b. Hash Table Based with Filter

SAFARI

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 2

GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Bnx-23 Bin x - 1

Systems @ ETH ziricn

i GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ..

— — —_]
Bin x -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA 17 AAAAA
permutations of a small string (token) in AAAAC | 0 | existsin
the bin AAAAT | 1 | binx
ccoce | 1
0 T_o account for matches tr_\at st_raddle cceer (ol cocct
bins, we employ overlapping bins CCCCG doesn’t
= A read will now always completely fall within . | . | existin
a single bin GGGGG | 1 bin x

SAFARI >

GRIM-Filter: Bitvectors mgs

Systems @ ETH zirich

Bin x

AAAAA | O
CGTGA

TGAGT

Bin x Bitvector
@: 9: B

GAGTC

GTGAG

SAFARI 5

GRIM-Filter: Bitvectors

bin,
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA ¢+

Reference
Genome

Storing all bitvectors
requires 4™ x t bits

by by in memory,
(AAAAA | ARAAA 110 where t = number
AAAAC | 1 AAAAC :
of bins.
AAAAG | O AAAAG |0
AAAAT | O _ :
: : AGAAA | 1
CCCCT | 1 _ :
: : GAAAA | 1 .
tokens £ . _ _ _ . o o For bin size ~200,
GACAG | 1 and n =5,
- ; : - memory footprint
GCATG | 1 GCATG | 1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT | 0

SAFARI 2%

GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA -.- CGAG g Read bitvector for bin_num(x)

o Get tokens ¢

TN Tt > 1
TTTTTRT TS » O
S~o RN 1 e Sum e Compare
~ N S ~
: N N + = Threshold?
" ~ e 1
tokens\ * TN 1 Ni)/ &Es
N .
T A 1 Discard Send to
0 Read Mapper
o Match tokens to bitvector for Sequence
0 Alignment

SAFARI 20

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 2

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 240

Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI 24

Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence .ve(020128)...(020131) 414415 Jaus
GAACTTGCGAG sssGTATT 9 -

’0) S KEEP " KEEP
GRIM-Filter: £+ 0010R0 .. 012010
Filter Bitmask Generator D—’SCARDl
. J X
++10001010 4420110104 QReference Segment Storage
Seed Location Filter Bitmask refarence reference
segment segment
@ 020131 @ 41 4415
O Read Mapper: Edit-Distance Calculation
Sequence Alignment

v

SAFARI OUTPUT: Correct Mappings

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Key Properties of GRIM-Filter n;

Systems @ ETH ziricn

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI o

Hash Tables in Read Mapping

Systems @ ETH ziricn
Read Sequence (100 bp)
—+— X
”@ﬁﬂg... mbUh. False
Negative

--
“““
o te

Hash Table Reference Genome

| Filter
37 140 §
g8o4 1203 §
1564 ;

‘e
‘e

.
.
.
--

SAFARI 245

3D-Stacked Memory

DRAM Layers

=g~

Systems @ ETH ziricn

/]

/1

L

pd |

b

L

//
i

Logic Layer

/

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, offloading
computation to this layer and alleviating the memory bus

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI

246

3D-Stacked Memory

Systems @ ETH ziricn

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

SAFARI 27

3D-Stacked Memory E;
Micron’s HMC

Systems @ ETH ziricn

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

SAFARI 248

GRIM-Filter in 3D-Stacked DRAM I =

Systems @ ETH ziricn
Bank
Row 0: AAAAA || S| ol ~ o
Row 1: AAAAC o= [E Bank - > DRAM Layers
Row 2: AAAAG || 5| 51l 5 ‘g — /
Y= =] O = —
S S . C “- /
(O} oY O o : L
<] =] = g . -
: o|o|s 2 P = Mault
Row R—1: TTTTT - ~ /—:7
_ : P4 :
B LT
Row Buffer Logic Layer ’

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

The layout of bitvectors in a bank enables filtering many
bins in parallel

SAFARI 249

GRIM-Filter in 3D-Stacked DRAM I =

Systems @ ETH ziricn
Per-Vault
Custom GRIM-Filter Logic
Seed Location Filter Bitmask
Bank -+ DRAM Layers . /§-i§ \
/L/ S| |CHS
" S Q%"g g_ g
/ /—7/ <z TSVS L=||5H S . . e
E P QQ_J .E O f
s ::" ,Valllt 8 g
pa — - =
Loéc Tayer S — Row Data Register

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

a For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and
comparators in logic layer

Details are in the paper
SAFARI 230

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in a mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 When using mrFAST, but GRIM-Filter can be
used with ANY read mapper

SAFARI 2

GRIM-Filter Performance

Time (x1000 seconds)

Systems @ ETH ziricn
Benchmarks and their Execution Times
[FastHASH filter I GRIM-Filter

70
28] Sequence Alignment
40 - Error Tolerance (e)
30 - L e=0.05
20 -
s
0
«"(5’” «"/b «“//\ qu\ «’3’ «’3’ «"9 «’9 «’5@ «"‘9» &

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design

SAFARI 2

GRIM-Filter False Negative Rate m

Systems @ ETH ziric

Benchmarks and their False Negative Rates
[1 FastHASH filter [GRIM-Filter

Sequence Alignment

Q

©

o044 - =4 - = - = - = -

Q Error Tolerance (¢)
S 03-

E 0-2_ e=0l05
(=)

O 0.1 -

z lmimminmimlimnnnln

Q

()] ¢ A AV W WY o oY & Y S

© @,\'\, »9/\% @/\’» @/\% vQ/\r‘/ @,\'\, @/\q’ vé\% @/\% @/\% v&(b

Ll

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter

SAFARI s

Other Results in the Paper

Sensitivity of execution time and false negative rates to
error tolerance of string matching

Read mapper execution time breakdown

Sensitivity studies on the filter
o Token Size

a Bin Size

o Error Tolerance

SAFARI 2>

GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers

a. Hash Table Based
b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter
4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
SAFARI

Conclusion

We propose an in-memory filtering algorithm to accelerate end-to-end
read mapping by reducing the number of required alignments

Systems @ ETH ziricn

Key ideas:

Introduce a new representation of coarse-grained segments of the
reference genome

Use massively-parallel in-memory operations to identify read
presence within each coarse-grained segment

Key contributions and results:
Customized filtering algorithm for 3D-Stacked DRAM

Compared to the previous best filter

o We observed 1.8x-3.7x read mapping speedup
o We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper

SAFARI 27

GRIM-Filter:

Fast seed location filtering in DNA read mapping
using processing-in-memory technologies

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

SAFARI
N Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Systems @ ETH zirich

Carnegie Mellon

In-Memory DNA Sequence Analysis

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 259

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

LazyPIM

An Efficient Cache Coherence Mechanism for
Processing In Memory

Amirali Boroumand

"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory”,
IEEE CAL 2016. (Preliminary version)

SAFARI Carnegie Mellon

https://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf

LazyPIM Summary

Cache Coherence is a major system challenge for PIM

— Conventional cache coherence makes PIM programming easy but loses
a significant portion of PIM benefits

e Observation:

— Significant amount of sharing between PIM cores and CPU cores in
many important data-intensive applications

— Efficient handling of coherence is critical to retain PIM benefits

LazyPIM

— Key idea: use speculation to avoid coherence lookups during PIM core
execution and compressed signatures to verify correctness after PIM
core is done

— Improves performance by 19.8% and energy by 18% vs. best previous
— Comes within 4.4% and 9.8% of ideal PIM energy and performance

We believe LazyPIM can enable new applications that benefit
from fine-grained sharing between CPU and PIM

SAFARI 40

PIM Coherence

* A Major System Challenge for PIM: Coherence

CPU Threads %% %é PIM Threads
N
CPU

Need a coherence mechanism to Shared Data

ensure correctness!

SAFARI

PIM Coherence

* Potential solution: Conventional coherence protocols
— We can treat PIM cores as additional independent cores
— Use conventional coherence protocol to make them coherent with

Conventional coherence is impractical: large number of
coherence messages over off-chip channel

v Simplifies PIM programming model

% Generates a large amount of off-chip coherence traffic

X Eliminates on average 72.4% of Ideal PIM energy improvement
SAFARI 5

Goal and Key Idea

 Our goal is to develop a cache coherence mechanism
that:

1) Maintains the logical behavior of conventional cache
coherence protocols to simplify PIM programming model

2) Retains the large performance and energy benefits of PIM

* Our key idea is
1) Avoid coherence lookups during PIM core execution

2) Batch lookups in compressed signatures and use them to
verify correctness after PIM core finishes

SAFARI

Background

Prior Approaches to PIM Coherence

SAFARI

Prior Approaches to PIM Coherence

* There are many recent proposals on PIM
— Primarily focus on the design of compute unit within the logic layer

* Prior works employ other approaches than conventional
coherence protocol

— Marking PIM-data as Non-cacheable
* They no longer need to deal with coherence

— Coarse-grained coherence
* Tracks coherence at a larger granularity than a single cache line

* Does not transfer permission while PIM is working
* No concurrent access from the CPU and PIM

SAFARI

Prior Approaches to PIM Coherence

* Prior works proposed coherence mechanisms assuming:

— Entire application could be offloaded to PIM core = Almost zero
sharing between PIM and CPU

— Only limited communication happens between CPU and PIM

Observation: These assumptions do not hold for many

important data-intensive applications that benefit from PIM

SAFARI 12

SAFARI

Motivation
Applications with Data Sharing

13

Application Analysis for PIM

* An application benefits from PIM when we offload its
memory-intensive parts that:
— Generate a lot of data movement

— Have poor cache locality

— Contribute to a large portion of execution time

* Parts of the application that are compute-intensive or cache
friendly should remain on the CPU

— To benefit from larger and sophisticated cores with larger caches

SAFARI 14

Example: Hybrid In-Memory Database
Transactional Threads Analytical Threads
(CPU Friendly) (PIM Friendly)

Hybrid Database Ideal PIM vs. CPU-only:

1.93x Speedup

68% reduction in energy

% Data Sharing
‘ ‘ \ PIM
SAFARI 15

Applications with High Data Sharing

* Our application analysis shows that:
— Some portions of the applications perform better on CPUs

— These portions often access the same region of data as the PIM
cores

 Based on this observation, we can conclude that:

— There are important data-intensive applications that have strong
potential for PIM and show significant data sharing between the
CPU and PIM

16

Let’s see how prior approaches work for
these applications

SAFARI 17

Non-Cacheable

Transactional Analytical Threads
Threads (PIM Friendly)
(CPU Friendly)

X Generates a large number of off-chip accesses

% Significantly hurts CPU threads’ performance

Data Sharing
m

SAFARI

Motivation: Summary

* Conventional cache coherence loses a significant portion of
PIM benefits

* Prior works use other approaches to avoid those costs
— Their assumption: Zero or a limited amount of sharing

 We observe that those assumptions do not hold for a
number of important data-intensive applications

— Using prior approaches eliminates a significant portion of PIM
benefits

 We want to get the best of both worlds

1) Maintain the logical behavior of conventional cache coherence
2) Retain the large performance and energy benefits of PIM

SAFARI

20

SAFARI

LazyPIM

21

Baseline PIM Architecture

SAFARI

/CP U /
|
4 \
4 / \\
4 ‘ \\
4 /’ \\\
4 N

y

'[Core)

[Core :

7

\

\

N
[Core)

=)

22

Our Proposal

* LazyPIM.:

— Lets PIM cores use speculation to avoid coherence lookups
during execution

— Uses compressed signatures to batch the lookups and verify
correctness after the PIM core completes

Speculative
execution

No coherence

CPU check/update PIM

S

Verify Correctness
SAFARI y 23

LazyPIM High-level Operation

1) CPU portion
execution

CPU portion
Concurrent
execution

5) Conflict Checkl

SAFARI

PIM

2) Offloaq p

w

3) PIM portion
execution

CPU
No Coherence
< >
4) Send pIM Signatures

6) COmmit o

w

24

How LazyPIM Avoids Pitfalls of Prior Approaches

e Conventional Coherence (Fine-grained)
X Generates a large amount of off-chip coherence traffic for every miss

« LazyPIM only sends a compressed signature after PIM cores finishes

* Coarse-grained Coherence
X Unnecessarily flushes a large amount of data

« LazyPIM performs only the necessary flushes
X Causes Thread Serialization

« LazyPIM enables concurrent execution of the CPUs and PIM cores

°)J“RB?E@&'T#@J?'& off-chip accesses hurting CPU threads’ performance

« LazyPIM allows CPU threads to use caches
SAFARI 25

Coarse-Grained Coherence

* Need to get coherence permission for the entire region

— Needs to flush every dirty data within that region to transfer
permission

¥ Unnecessarily flushes a large amount of
data in pointer-based data structure %g
Flush dirty data

(o) [

e Does not allow concurrent accesses CPU PIM

Time

— Blocks CPUs accessing
PIM-data during PIM execution

¥ Coarse-grained locks frequently
cause thread serialization

SAFARI

How we define conflicts in LazyPIM?

SAFARI

26

Conflicts

g 1) Offload PIM kerne|

N
LS| e] asesemsmen

1) PIM Read and Processor Write: Conflict

2) Processor Read and PIM Write: No Conflict

3) Processor Write and PIM Write: No Conflict

SAFARI 27

SAFARI

Architecture Support

28

LazyPIM Architecture

* How does LazyPIM support speculative execution?

e How does LazyPIM implement signatures?

e How does LazyPIM handle conflicts?

SAFARI

29

Tracking speculative updates

* One-bit flag per cache line to mark all data updates as speculative

PIM Core

Tracking potential conflicts

 The CPU records all dirty cache lines and writes in
the PIM data region in the CPUWriteSet

Tracking memory accesses
 The PIMReadSet and PIMWriteSet are updated

for every read and write by the PIM core

Address

Bloom filter based signature has two major benefits:

* Allows us to easily perform conflict detection

* Allows for a large number of addresses to be stored within
a fixed-length register

Conflict

If conflict happens:

If no conflicts:

* Any clean cache lines in the CPU that match an
address in the PIMWriteSet are invalidated

* PIM core commits speculative updates

SAFARI

Evaluation

34

Evaluation Methodology

e Simulator

— Gemb full system simulator

* System Configuration:

— Processor

e 4-16 Cores, 8 wide issue, 2GHz Frequency

L1 I/D Cache: 64KB private, 4-way associative, 64B Block

L2 Cache: 2MB shared, 8-way associative, 64B Blocks
* Cache Coherence Protocol: MESI

— PIM

e 4-16 Cores, 1 wide issue, 2GHz Frequency

* L11/D Cache: 64KB private, 4-way associative, 64B Block
 Cache Coherence Protocol: MESI

— 3D-stacked Memory
* One 4GB Cube, 16 Vaults per cube

SAFARI

35

Applications
* Ligra

— Lightweight multithreaded graph processing for shared memory system
— We used three Ligra graph applications

* PageRank

* Radii

e Connected Components
— Input graphs constructed from real-world network datasets:

« arXiV General Relativity (5K nodes, 14K edges)

* peer-to- peer Gnutella25 (22K nodes, 54K edges).
* Enron email communication network (36K nodes, 183K edges)

 IMDB

— In-house prototype of an in-memory database (IMDB)

— Capable of running both transactional queries and analytical queries on the same
database tables (HTAP workload)

— 32K transactions, 128/256 analytical queries

SAFARI

36

Speedup with 16 Threads

2.00

mCPU-only EFG @©ECG ONC HbLlazyPiIM Oldeal-PIM

components e e

ar

FG loses a significant portion of
Ideal-PIM’s improvement

LazyPIM consistently retains most of Ideal-PIM’s
benefits, coming within 9.8% of the Ideal-PIM
performance

Energy with 16 threads

* NC suffers greatly from the large number of accesses to DRAM IM
* Interconnect and DRAM energy increase by 3.1x and 4.5x 1.4x

1.25

1.00

"
!
' - oo |
! !
; . . —
. ! ! ; o !
u! u o !
!
! !
] & L ! u]
" " o !

Normalized Energy
I

0.50

0.25

LazyPIM significantly reduces energy consumption
and comes within 4.4% of ldeal-PIM

GMean

arXiV Gnutella Enron IMDB

SAFARI

Conclusion

39

Conclusion

Cache Coherence is a major system challenge for PIM

— Conventional cache coherence makes PIM programming easy but loses
a significant portion of PIM benefits

e Observation:

— Significant amount of sharing between PIM cores and CPU cores in
many important data-intensive applications

— Efficient handling of coherence is critical to retain PIM benefits

LazyPIM

— Key idea: use speculation to avoid coherence lookups during PIM core
execution and compressed signatures to verify correctness after PIM
core is done

— Improves performance by 19.8% and energy by 18% vs. best previous
— Comes within 4.4% and 9.8% of ideal PIM energy and performance

We believe LazyPIM can enable new applications that benefit
from fine-grained sharing between CPU and PIM

SAFARI 40

LazyPIM

An Efficient Cache Coherence Mechanism for
Processing In Memory

Amirali Boroumand

"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory”,
IEEE CAL 2016. (Preliminary version)

SAFARI Carnegie Mellon

https://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
https://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 297

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

End of Backup Slides

