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Required Review Papers 
(So Far)
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Required Review Paper I  
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf


Required Review Paper II
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems (TCAD) Special Issue on Top Picks in 
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf


Required Review Paper III
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Required Review Paper IV

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Required Review Paper V
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


Required Review Paper VI
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 

Computer Architecture (ISCA), Portland, OR, June 2012. 

Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


End of Required Review Papers
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Optional Review Papers
(So Far)
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Optional Review Paper I
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Optional Review Paper II
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Optional Review Paper III
n Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


Optional Review Paper IV
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n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer


Optional Review Paper V
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/
https://people.inf.ethz.ch/omutlu/pub/ipek_isca08_talk.pptx


Optional Review Paper VI
n Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX 
SECURITY), pages 257-274, Boston, MA, August 2007. Slides 
(ppt)
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http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


Optional Review Paper VII

n Onur Mutlu and Thomas Moscibroda, 
"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]

17

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt


Optional Review Paper VIII

18https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Optional Review Paper IX
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator

19

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


Optional Review Paper X
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


Optional Review Paper XI
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n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM 
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer 
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

n First experimental analysis of (mobile) LPDDR4 chips

n Analyzes the complex tradeoff space of retention time profiling

n Idea: enable fast and robust profiling at higher refresh intervals & temperatures

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf


Optional Review Paper XII

22

n Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True 
Random Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance 
Computer Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19


Other Optional Reviews: Many
n There are too many to list…

q What I provided is just a sampling…

n Many other important references are in lecture slides.

n I would recommend rigorously reading as many as possible. 

n Recall that “Chance favors the prepared mind.”
q Critical rigorous analysis of key papers is great preparation

n You can use my website as a resource for papers & artifacts 
q https://people.inf.ethz.ch/omutlu/projects.htm

23

https://people.inf.ethz.ch/omutlu/projects.htm


End of Optional Review Papers
(So Far)
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement

25



Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

26



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

27



Several Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming

28



PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block
q e.g., __pim_add(&w.next_rank, value) à pim.add r1, (r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance

30



Simple PIM Operations as ISA Extensions (II)

31

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture



Simple PIM Operations as ISA Extensions (III)

32

Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)



Always Executing in Memory? Not A Good Idea

33

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

p
2

p
-G

n
u

t
e

ll
a
3

1

s
o

c
-S

la
s
h

d
o

t
0

8
1

1

w
e

b
-

S
t
a
n

fo
r
d

a
m

a
z
o

n
-

2
0

0
8

fr
w

ik
i-

2
0

1
3

w
ik

i-

T
a
lk

c
it

-

P
a

t
e

n
t
s

s
o

c
-L

iv
e

Jo
u

r
n

a
l1

lj
o

u
r
n

a
l-

2
0

0
8

S
p

e
e

d
u

p

More Vertices

Increased
Memory Bandwidth 

Consumption 
Caching very effective

Reduced Memory Bandwidth 
Consumption due to

In-Memory Computation



PEI: PIM-Enabled Instructions (Example)

34

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}
pfence();

pim.add r1, (r2)

pfence



PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and 

virtual memory
q Simplified locality monitoring: data locality of PEIs can be 

identified simply by the cache control logic



Example (Abstract) PEI uArchitecture
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PEI: Initial Evaluation Results
n Initial evaluations with 10 emerging data-intensive workloads

q Large-scale graph processing
q In-memory data analytics
q Machine learning and data mining
q Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality

n Pin-based cycle-level x86-64 simulation

n Performance Improvement and Energy Reduction: 
n 47% average speedup with large input data sets
n 32% speedup with small input data sets
n 25% avg. energy reduction in a single node with large input data sets

37



Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest 
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality



PEI Performance Delta: Large Data Sets

39
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PEI Performance: Large Data Sets
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PEI Performance Delta: Small Data Sets
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PEI Performance: Small Data Sets
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PEI Performance Delta: Medium Data Sets

43

-10%

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Medium Inputs, Baseline: Host-Only)



PEI Energy Consumption
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PEI: Advantages & Disadvantages

n Advantages
+ Simple and low cost approach to PIM
+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

n Disadvantages
- Does not take full advantage of PIM potential

- Single cache block restriction is limiting

45



Simpler PIM: PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping 
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

47

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


Automatic Offloading of Critical Code
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf


Automatic Offloading of Prefetch Mechanisms
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

49

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Efficient Automatic Data Coherence Support

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

50

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Efficient Automatic Data Coherence Support
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
High-Performance

(Data-Centric)
Computing Architectures

53



Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, 

access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



Key Challenge 1: Code Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional
coherence

No coherence
overhead



How to Maintain Coherence? (I)

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Maintain Coherence? (II)
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator
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https://github.com/CMU-SAFARI/ramulator


An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


Simulation Infrastructures for PIM (in SSDs) 
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, 

Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of 
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


New Applications and Use Cases for PIM
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 
Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary
n Genome Read Mapping is a very important problem and is the first 

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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GRIM-Filter in 3D-stacked DRAM

n The layout of bit vectors in a bank enables filtering many bins in parallel
n Customized logic for accumulation and comparison per genome segment

q Low area overhead, simple implementation
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GRIM-Filter Performance
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Time (x1000 
seconds)

1.8x-3.7x performance benefit across real data sets

Benchmarks and their Execution Times



GRIM-Filter False Positive Rate
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False Positive 
Rate (%)

5.6x-6.4x False Positive reduction across real data sets

Benchmarks and their False Positive Rates



Conclusions

n We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of 
required alignments

n Compared to the previous best filter
q We observed 1.8x-3.7x speedup
q We observed 5.6x-6.4x fewer false positives

n GRIM-Filter is a universal filter that can be applied to any 
genome read mapper 
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In-Memory DNA Sequence Analysis
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


Enabling the Paradigm Shift



Computer Architecture Today
n You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly)

n You can invent new paradigms for computation, 
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve 

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined
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Computer Architecture Today
n You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly)

n You can invent new paradigms for computation, 
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve 

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Maslow’s Hierarchy of Needs, A Third Time
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Speed

Speed
Speed
Speed
Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally
High-Performance

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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PIM: Concluding Remarks
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A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon 

precedent”
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Precedent-Based Design?
n “architecture […] based upon principle, and not upon 

precedent”
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Principled Design
n “architecture […] based upon principle, and not upon 

precedent”
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The Overarching Principle
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Another Example: Precedent-Based Design

96Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

97Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

98Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

99Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107



Principle Applied to Another Structure

100
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By �������� Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle
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Overarching Principle for Computing?

102Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks

n It is time to design principled system architectures to solve 
the memory problem

n Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

n Enable computation capability inside and close to memory

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …
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The Future of Processing in Memory is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 

104

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



We Need to Revisit the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology 

q for at least two decades

106https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf
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Jeremie S. Kim, 
Damla Senol Cali, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu

GRIM-Filter:	
Fast	seed	location	filtering	in	DNA	read	mapping

using	processing-in-memory	technologies



n Genome Read Mapping is a very important problem and is the first 
step in genome analysis

n Read Mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an algorithm called GRIM-Filter
q Accelerates read mapping by reducing the number of required 

alignments
q GRIM-Filter can be accelerated using processing-in-memory

n Adds simple logic into 3D-Stacked memory
n Uses high internal memory bandwidth to perform parallel filtering

n GRIM-Filter with processing-in-memory delivers a 3.7x speedup

111

Executive	Summary



1.	Motivation	and	Goal

2.	Background Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory
5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter



Motivation	and	Goal
n Sequencing: determine the [A,C,G,T] series in DNA strand 

n Today’s machines sequence short strands (reads)

q Reads are on the order of 100 – 20k base pairs (bp)

q The human genome is approximately 3 billion bp

n Therefore genomes are cut into reads, which are sequenced 

independently, and then reconstructed 

q Read mapping is the first step in analyzing someone’s genome to 

detect predispositions to diseases, personalize medicine, etc.

n Goal: We want to accelerate end-to-end performance     

of read mapping
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Background:	Read	Mappers
We now have sequenced reads and want a full genome

115

via Read Mapping

We map reads to a known reference genome (>99.9% 
similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in reads
perfectly match in the reference genome

… G   A   C   T   G   T   G   T   C   G   A   …

G   A   C   T   G   T   G   T   C   A   A

✘

We can use a hash table to help quickly map the reads!
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Generating	Hash	Tables	

117

To map any reads, generate a hash table per reference genome.

A   A   A   A   A 12    35    502    610    721    989

A   A   A   A   C 13    609    788

A   A   A   A   T 36   434

G   G   G   G   G 52    67    334    634    851 

…

k-length sequences 
(k-mers)  

Location list where k-mer occurs 
in the reference genome

@36:  AAAAT

@434:  AAAAT

We can query the table with substrings from reads 
to quickly find a list of possible mapping locations



Aligning...Mismatch

8943715641401203

1564

894 1203

37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping
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Hash Table

Read Sequence (100 bp)

Reference Genome

37 140
894 1203 

1564

We want to filter these out 
so we do not waste time 

trying to align them

Aligning...Match! Aligning...Mismatch

Aligning...MismatchAligning...Mismatch

✘ ✘
✘✘99.9% of locations 

result in a mismatch



Location	Filtering
n Alignment is expensive and requires the use of O(n2) 

dynamic programming algorithm 
q We need to align millions to billions of reads 

n Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly 

n Both methods are used by mappers today, but filtering has 
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]
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Our goal is to accelerate read mapping
by improving the filtering step 
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Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin
3. Integrating	GRIM-Filter	into	a	Mapper
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GRIM-Filter:	Bins

123

n We partition the genome into large sequences (bins). 

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector
AAAAA
AAAAC
AAAAT

…
CCCCC
CCCCT
CCCCG

…
GGGGG

AAAAA
exists in 
bin x

CCCCT
doesn’t 
exist in 
bin x

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) in 
the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall within 

a single bin



GRIM-Filter:	Bitvectors
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… C     G     T     G     A     G     T     C …

Bin x
0
…

…

…

…

…

Bi
n 

x 
Bi

tv
ec

to
r

AAAAA
…

CGTGA
…

TGAGT
…

GAGTC
…

GTGAG
…

C     G     T     G     AG     T     G     A     GT     G     A     G     TG     A     G     T     C

10

0

0

0

1

1

1



GRIM-Filter:	Bitvectors
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Storing all bitvectors
requires 4" ∗ $ bits
in memory, 
where t = number 
of bins.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 

Reference
Genome

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

Le
ng
th
	=
	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter:	Checking	a	Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare

20



Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors
2. Checking	a	Bin
3. Integrating	GRIM-Filter	into	a	Mapper
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Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors
2. Checking	a	Bin
3. Integrating	GRIM-Filter	into	a	Mapper
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Integrating	GRIM-Filter	into	a	Read	Mapper

GRIM-Filter:
Seed Location Checker

0001010     011010... ......

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010     011010... ......

020128 020131 414415... ... ... ...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131
reference 
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3



1.	Motivation	and	Goal
2.	Background: Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory
5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter



Key	Properties	of	GRIM-Filter
1. Simple Operations:

q To check a given bin, find the sum of all bits corresponding to 
each token in the read

q Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM
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Filter

8943715641401203

1564

894 1203

37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping
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Hash Table

Read Sequence (100 bp)

Reference Genome

37 140
894 1203 

1564

Aligning...Match! Aligning...Mismatch

✘✘✘

False 
Negative

✘



3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing-in-Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory

135
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DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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GRIM-Filter	in	3D-Stacked	DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter	in	3D-Stacked	DRAM

n Customized logic for accumulation and comparison 
per genome segment
q Low area overhead, simple implementation
q For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and 

comparators in logic layer
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Methodology
n Performance simulated using an in-house 3D-Stacked DRAM 

simulator

n Evaluate 10 real read data sets (From the 1000 Genomes 
Project)
q Each data set consists of 4 million reads of length 100

n Evaluate two key metrics
q Performance
q False negative rate

§ The fraction of locations that pass the filter but result in a mismatch

§ Compare against a state-of-the-art filter, FastHASH [Xin+, BMC 
Genomics 2013] when using mrFAST, but GRIM-Filter can be 
used with ANY read mapper
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GRIM-Filter	Performance
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2.1x average performance benefit
1.8x-3.7x performance benefit across real data sets
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GRIM-Filter	False	Negative	Rate
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6.0x average reduction in False Negative Rate
5.6x-6.4x False Negative reduction across real data sets
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Other	Results	in	the	Paper	

n Sensitivity of execution time and false negative rates to 
error tolerance of string matching

n Read mapper execution time breakdown

n Sensitivity studies on the filter
q Token Size
q Bin Size
q Error Tolerance
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Conclusion
We propose an in-memory filtering algorithm to accelerate end-to-end 
read mapping by reducing the number of required alignments

Key ideas:
n Introduce a new representation of coarse-grained segments of the 

reference genome 
n Use massively-parallel in-memory operations to identify read 

presence within each coarse-grained segment 

Key contributions and results:
n Customized filtering algorithm for 3D-Stacked DRAM
n Compared to the previous best filter

q We observed 1.8x-3.7x read mapping speedup
q We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper 
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In-Memory DNA Sequence Analysis
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arxiv.org Version (pdf)
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LazyPIM Summary
• Cache Coherence is a major system challenge for PIM

– Conventional cache coherence makes PIM programming easy but loses 
a significant portion of PIM benefits

• Observation:
– Significant amount of sharing between PIM cores and CPU cores in 

many important data-intensive applications
– Efficient handling of coherence is critical to retain PIM benefits

• LazyPIM
– Key idea: use speculation to avoid coherence lookups during PIM core 

execution and compressed signatures to verify correctness after PIM 
core is done

– Improves performance by 19.8% and energy by 18% vs. best previous
– Comes within 4.4% and 9.8% of ideal PIM energy and performance

• We believe LazyPIM can enable new applications that benefit 
from fine-grained sharing between CPU and PIM



PIM Coherence
• A Major System Challenge for PIM: Coherence

4

Data Shared Data

CPU PIM

Cache Cache

PIMCPU

Need a coherence mechanism to 
ensure correctness!

PIM ThreadsCPU Threads



CPU PIM
Off-chip Channel

Coherence Traffic

Cache Cache

CPU PIM

PIM Coherence
• Potential solution: Conventional coherence protocols

– We can treat PIM cores as additional independent cores
– Use conventional coherence protocol to make them coherent with 

the CPUs

5

Generates a large amount of off-chip coherence traffic 

Conventional coherence is impractical: large number of 
coherence messages over off-chip channel

Simplifies PIM programming model  

Eliminates on average 72.4% of Ideal PIM energy improvement



Goal and Key Idea
• Our goal is to develop a cache coherence mechanism 

that:
1) Maintains the logical behavior of conventional cache 
coherence protocols to simplify PIM programming model
2) Retains the large performance and energy benefits of PIM

• Our key idea is 
1) Avoid coherence lookups during PIM core execution
2) Batch lookups in compressed signatures and use them to 
verify correctness after PIM core finishes

6



Background
Prior Approaches to PIM Coherence

7



Prior Approaches to PIM Coherence
• There are many recent proposals on PIM

– Primarily focus on the design of compute unit within the logic layer

• Prior works employ other approaches than conventional 
coherence protocol 
– Marking PIM-data as Non-cacheable

• They no longer need to deal with coherence
– Coarse-grained coherence 

• Tracks coherence at a larger granularity than a single cache line
• Does not transfer permission while PIM is working
• No concurrent access from the CPU and PIM

8



Prior Approaches to PIM Coherence
• Prior works proposed coherence mechanisms assuming:

– Entire application could be offloaded to PIM core à Almost zero 
sharing between PIM and CPU 

– Only limited communication happens between CPU and PIM

12

Observation: These assumptions do not hold for many 
important data-intensive applications that benefit from PIM



Motivation
Applications with Data Sharing
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Application Analysis for PIM
• An application benefits from PIM when we offload its

memory-intensive parts that:
– Generate a lot of data movement
– Have poor cache locality
– Contribute to a large portion of execution time

• Parts of the application that are compute-intensive or cache
friendly should remain on the CPU
– To benefit from larger and sophisticated cores with larger caches

14



Example: Hybrid In-Memory Database

15

Analytical Threads 
(PIM Friendly)

Transactional Threads
(CPU Friendly)

CPU PIM
Data Sharing

CPU PIM

Hybrid Database

1.93x Speedup
68% reduction in energy

Ideal PIM vs. CPU-only:



Applications with High Data Sharing
• Our application analysis shows that:

– Some portions of the applications perform better on CPUs
– These portions often access the same region of data as the PIM 

cores 

• Based on this observation, we can conclude that:
– There are important data-intensive applications that have strong 

potential for PIM and show significant data sharing between the 
CPU and PIM

16



Let’s see how prior approaches work for 
these applications

17



Non-Cacheable

18

Analytical Threads 
(PIM Friendly)

Transactional 
Threads

(CPU Friendly)

CPU PIM
Data Sharing

CPU PIM

Generates a large number of off-chip accesses
Significantly hurts CPU threads’ performance



Motivation: Summary
• Conventional cache coherence loses a significant portion of 

PIM benefits

• Prior works use other approaches to avoid those costs
– Their assumption: Zero or a limited amount of sharing

• We observe that those assumptions do not hold for a 
number of important data-intensive applications
– Using prior approaches eliminates a significant portion of PIM 

benefits 

• We want to get the best of both worlds
1) Maintain the logical behavior of conventional cache coherence 
2) Retain the large performance and energy benefits of PIM

20



LazyPIM
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Baseline PIM Architecture
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CPU
DRAM

L1 Cache

Core
L1 Cache

Core

L1 Cache

Core
L1 Cache

Core
PIM 

Directory

…

…



Our Proposal

• LazyPIM:
– Lets PIM cores use speculation to avoid coherence lookups 

during execution
– Uses compressed signatures to batch the lookups and verify

correctness after the PIM core completes

23

No coherence 
check/update

Signature

Speculative 
execution

PIMCPU

Verify Correctness



LazyPIM High-level Operation

24

4) Send PIM Signatures

3) PIM portion 
execution

5) Conflict Check

CPU PIM

2) Offload PIM kernel

1) CPU portion 
execution

CPU portion 
Concurrent 
execution

6) Commit or Rollback

PIM 
Signature

CPU 
SignaturePIM 
Signature

No Coherence



How LazyPIM Avoids Pitfalls of Prior Approaches
• Conventional Coherence (Fine-grained)

• Coarse-grained Coherence

• Non-Cacheable

25

Generates a large amount of off-chip coherence traffic for every miss

Unnecessarily flushes a large amount of data

A large number of off-chip accesses hurting CPU threads’ performance

LazyPIM only sends a compressed signature after PIM cores finishes

Causes Thread Serialization
LazyPIM performs only the necessary flushes

LazyPIM enables concurrent execution of the CPUs and PIM cores 

LazyPIM allows CPU threads to use caches



Coarse-Grained Coherence
• Need to get coherence permission for the entire region

– Needs to flush every dirty data within that region to transfer 
permission
Unnecessarily flushes a large amount of
data in pointer-based data structure

• Does not allow concurrent accesses 
– Blocks CPUs accessing

PIM-data during PIM execution
Coarse-grained locks frequently 
cause thread serialization

19

CPU PIM
CPU PIM

Flush dirty data

Access to PIM data

CPU PIM
Time

STALL



How we define conflicts in LazyPIM?
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Conflicts
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CPU 1 PIMCPU 0

Ti
m

e

1) Offload PIM kernel

2) Send PIM signatures

Conflict Detection
CPUs flush A,C

Conflict Detection
No Conflict

3) Roll back PIM
Restart kernel

Rd (A)
Wr (B)
Rd (C)

Rd (A)
Wr (B)
Rd (C)4) Send PIM signatures

5) Commit PIM data

Rd (B)

Wr (B)

Wr (C)

Wr (A)

1) PIM Read and Processor Write: Conflict

2) Processor Read and PIM Write: No Conflict

3) Processor Write and PIM Write: No Conflict



Architecture Support

28



LazyPIM Architecture
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PIM Core

L1 Cache

PIMReadSET

PIMWriteSET

ostCPU
DRAM

CPU

CPUWriteSE
TCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

• How does LazyPIM support speculative execution?

• How does LazyPIM implement signatures?

• How does LazyPIM handle conflicts?



Speculative Execution
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET
PIMWriteSET

PIM Core
L1 Cache

• One-bit flag per cache line to mark all data updates as speculative

Speculative write bits

Tracking speculative updates



Speculative Execution
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET
PIMWriteSET

CPUWriteSETCPUWriteSET

PIMReadSET
PIMWriteSET

• The PIMReadSet and PIMWriteSet are updated 
for every read and write by the PIM core 

• The CPU records all dirty cache lines and writes in 
the PIM data region in the CPUWriteSet

Tracking potential conflicts

Tracking memory accesses



Signature Implementation
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET

PIMWriteSET

CPUWriteSETCPUWriteSET

PIMReadSET

PIMWriteSET

Address

…
1 1 00 0 1 11 0 0 01

hk-1h1h0
…

Bloom filter based signature has two major benefits:
• Allows us to easily perform conflict detection

• Allows for a large number of addresses to be stored within 
a fixed-length register 



Handling Conflicts
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET
PIMWriteSET
PIMReadSet

CPUWriteSet
Conflict 

Detection

PIMReadSetCPUWriteSet

Conflict

AND

If conflict happens:
• The CPU flushes the dirty cache lines that 

match addresses in the PIMReadSet

• PIM core invalidates all speculative cache 
lines

• Signatures are erased and PIM core restarts
execution

If no conflicts:
• Any clean cache lines in the CPU that match an 

address in the PIMWriteSet are invalidated

• PIM core commits speculative updates



Evaluation
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Evaluation Methodology
• Simulator

– Gem5 full system simulator

• System Configuration:
– Processor

• 4-16 Cores, 8 wide issue, 2GHz Frequency
• L1 I/D Cache: 64KB private, 4-way associative, 64B Block
• L2 Cache: 2MB shared, 8-way associative, 64B Blocks
• Cache Coherence Protocol: MESI

– PIM
• 4-16 Cores, 1 wide issue, 2GHz Frequency
• L1 I/D Cache: 64KB private, 4-way associative, 64B Block
• Cache Coherence Protocol: MESI

– 3D-stacked Memory
• One 4GB Cube, 16 Vaults per cube
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Applications
• Ligra

– Lightweight multithreaded graph processing for shared memory system
– We used three Ligra graph applications

• PageRank
• Radii 
• Connected Components

– Input graphs constructed from real-world network datasets:
• arXiV General Relativity (5K nodes, 14K edges)
• peer-to- peer Gnutella25 (22K nodes, 54K edges). 
• Enron email communication network (36K nodes, 183K edges)

• IMDB
– In-house prototype of an in-memory database (IMDB)
– Capable of running both transactional queries and analytical queries on the same

database tables (HTAP workload)
– 32K transactions, 128/256 analytical queries

36
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Energy with 16 threads

• NC suffers greatly from the large number of accesses to DRAM
• Interconnect and DRAM energy increase by 3.1x and 4.5x

CG and FG loses a significant portion of benefits because of 
large number of writebacks and off-chip coherence messages
LazyPIM significantly reduces energy consumption 

and comes within 4.4% of Ideal-PIM



Conclusion
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Conclusion
• Cache Coherence is a major system challenge for PIM

– Conventional cache coherence makes PIM programming easy but loses 
a significant portion of PIM benefits

• Observation:
– Significant amount of sharing between PIM cores and CPU cores in 

many important data-intensive applications
– Efficient handling of coherence is critical to retain PIM benefits

• LazyPIM
– Key idea: use speculation to avoid coherence lookups during PIM core 

execution and compressed signatures to verify correctness after PIM 
core is done

– Improves performance by 19.8% and energy by 18% vs. best previous
– Comes within 4.4% and 9.8% of ideal PIM energy and performance

• We believe LazyPIM can enable new applications that benefit 
from fine-grained sharing between CPU and PIM
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