
Prof. Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
17 June 2019

TU Wien Fast Course 2019

Memory Systems
and Memory-Centric Computing Systems

Lecture 4b: Simulating Memory

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Simulating Memory

2

Evaluating New Ideas
for New (Memory) Architectures

Potential Evaluation Methods
n How do we assess an idea will improve a target metric X?

n A variety of evaluation methods are available:

q Theoretical proof

q Analytical modeling/estimation

q Simulation (at varying degrees of abstraction and accuracy)

q Prototyping with a real system (e.g., FPGAs)

q Real implementation
4

The Difficulty in Architectural Evaluation
n The answer is usually workload dependent

q E.g., think caching
q E.g., think pipelining
q E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

n Workloads change

n System has many design choices and parameters
q Architect needs to decide many ideas and many parameters

for a design
q Not easy to evaluate all possible combinations!

n System parameters may change
5

Simulation: The Field of Dreams

Dreaming and Reality
n An architect is in part a dreamer, a creator

n Simulation is a key tool of the architect

n Simulation enables
q The exploration of many dreams
q A reality check of the dreams
q Deciding which dream is better

n Simulation also enables
q The ability to fool yourself with false dreams

7

Why High-Level Simulation?
n Problem: RTL simulation is intractable for design space

exploration à too time consuming to design and evaluate

q Especially over a large number of workloads

q Especially if you want to predict the performance of a good

chunk of a workload on a particular design

q Especially if you want to consider many design choices

n Cache size, associativity, block size, algorithms

n Memory control and scheduling algorithms

n In-order vs. out-of-order execution

n Reservation station sizes, ld/st queue size, register file size, …

n …

n Goal: Explore design choices quickly to see their impact on

the workloads we are designing the platform for

8

Different Goals in Simulation
n Explore the design space quickly and see what you want to

q potentially implement in a next-generation platform
q propose as the next big idea to advance the state of the art
q the goal is mainly to see relative effects of design decisions

n Match the behavior of an existing system so that you can
q debug and verify it at cycle-level accuracy
q propose small tweaks to the design that can make a difference in

performance or energy
q the goal is very high accuracy

n Other goals in-between:
q Refine the explored design space without going into a full

detailed, cycle-accurate design
q Gain confidence in your design decisions made by higher-level

design space exploration
9

Tradeoffs in Simulation
n Three metrics to evaluate a simulator

q Speed
q Flexibility
q Accuracy

n Speed: How fast the simulator runs (xIPS, xCPS, slowdown)
n Flexibility: How quickly one can modify the simulator to

evaluate different algorithms and design choices?
n Accuracy: How accurate the performance (energy) numbers

the simulator generates are vs. a real design (Simulation
error)

n The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

10

Trading Off Speed, Flexibility, Accuracy
n Speed & flexibility affect:

q How quickly you can make design tradeoffs

n Accuracy affects:
q How good your design tradeoffs may end up being
q How fast you can build your simulator (simulator design time)

n Flexibility also affects:
q How much human effort you need to spend modifying the

simulator

n You can trade off between the three to achieve design
exploration and decision goals

11

High-Level Simulation
n Key Idea: Raise the abstraction level of modeling to give up

some accuracy to enable speed & flexibility (and quick
simulator design)

n Advantage
+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

n Disadvantage
-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
12

Simulation as Progressive Refinement
n High-level models (Abstract, C)
n …
n Medium-level models (Less abstract)
n …
n Low-level models (RTL with everything modeled)
n …
n Real design

n As you refine (go down the above list)
q Abstraction level reduces
q Accuracy (hopefully) increases (not necessarily, if not careful)
q Flexibility reduces; Speed likely reduces except for real design
q You can loop back and fix higher-level models

13

Making The Best of Architecture
n A good architect is comfortable at all levels of refinement

q Including the extremes

n A good architect knows when to use what type of
simulation
q And, more generally, what type of evaluation method

n Recall: A variety of evaluation methods are available:
q Theoretical proof
q Analytical modeling
q Simulation (at varying degrees of abstraction and accuracy)
q Prototyping with a real system (e.g., FPGAs)
q Real implementation

14

Ramulator: A Fast and Extensible
DRAM Simulator

[IEEE Comp Arch Letters’15]

15

Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed

16

Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards

17

Case Study: Comparison of DRAM Standards

18

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator

19

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Optional Assignment
n Review the Ramulator paper

q Email me your review (omutlu@gmail.com)

n Download and run Ramulator
q Compare DDR3, DDR4, SALP, HBM for the libquantum

benchmark (provided in Ramulator repository)
q Email me your report (omutlu@gmail.com)

n This will help you get into memory systems research

20

mailto:omutlu@gmail.com
mailto:omutlu@gmail.com

An Example Study with Ramulator (I)
n Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali,

and Onur Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental
Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Phoenix, AZ, USA,
June 2019.
[Preliminary arXiv Version]

21

http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf

An Example Study with Ramulator (II)
n We identify important families of workloads, as well as prevalent

types of DRAM chips, and rigorously analyze the combined
DRAM–workload behavior.

n We perform a comprehensive experimental study of the
interaction between nine different DRAM types and 115 modern
applications and multiprogrammed workloads.

n We draw 12 key observations from our characterization, enabled
in part by our development of new metrics that take into account
contention between memory requests due to hardware design.

22

An Example Study with Ramulator (II)
n Notably, we find that (1) newer DRAM technologies such as

DDR4 and HMC often do not outperform older technologies
such as DDR3, due to higher access latencies and, in the case
of HMC, poor exploitation of locality;

n (2) there is no single memory type that can cater to all of the
SoC accelerators (e.g., GDDR5 significantly outperforms
other memories for multimedia, while HMC significantly
outperforms other memories for networking);

n (3) there is still a strong need to lower DRAM latency, but
unfortunately the current design trend of commodity DRAM is
toward higher latencies to obtain other benefits

23

Ramulator for PIM
n Gagandeep Singh, Stefano Corda, Geraldo Francisco de Oliveira,

Juan Gomez-Luna, Giovanni Mariani, Sander Stujik, Onur Mutlu,
and Henk Corporaal,
"NAPEL: Near-Memory Computing Application
Performance Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC),
Las Vegas, NV, USA, June 2019.
[Source Code for Ramulator-PIM]

24

https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://github.com/CMU-SAFARI/ramulator-pim

Some More Suggested Readings

25

Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf

26

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-3d-stacked-memory_taco16.pdf

Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM

Refresh,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-

refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing

Refreshes with Accesses,” HPCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the

Mitigation of DRAM Retention Failures via Profiling at

Aggressive Conditions,” ISCA 2017.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-

profiling-lpddr4_isca17.pdf

27

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf

Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

28

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Some Key Readings on Memory Control 1
q Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance

and Fairness of Shared DRAM Systems,” ISCA 2008.
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

q Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” MICRO 2010.
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

q Subramanian et al., “BLISS: Balancing Performance, Fairness and
Complexity in Memory Access Scheduling,” TPDS 2016.
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

q Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf

29

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf

Some Key Readings on Memory Control 2
q Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning

Approach,” ISCA 2008.

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

q Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-

Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS

2010.

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

q Subramanian et al., “The Application Slowdown Model: Quantifying and

Controlling the Impact of Inter-Application Interference at Shared Caches

and Main Memory,” MICRO 2015.

https://people.inf.ethz.ch/omutlu/pub/application-slowdown-

model_micro15.pdf

q Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic

by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

30

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
https://people.inf.ethz.ch/omutlu/pub/application-slowdown-model_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

More Readings
n To come as we cover the future topics

n Search for “DRAM” or “Memory” in:
q https://people.inf.ethz.ch/omutlu/projects.htm

31

https://people.inf.ethz.ch/omutlu/projects.htm

Prof. Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
17 June 2019

TU Wien Fast Course 2019

Memory Systems
and Memory-Centric Computing Systems

Lecture 4b: Simulating Memory

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

