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Why the Long Memory Latency?

n Reason 1: Design of DRAM Micro-architecture
q Goal: Maximize capacity/area, not minimize latency

n Reason 2: “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …
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Why Is There 
Spatial Latency Variation 

Within a Chip?
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Inherently fast

inherently slow

What Is Design-Induced Variation?
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DIVA Online Profiling
inherently slow

Profile only slow regions to determine min. latency
àDynamic & low cost latency optimization
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inherently slow

DIVA Online Profiling
slow cells  

design-induced
variation

process
variation

localized errorrandom error

online profilingerror-correcting 
code

Combine error-correcting codes & online profiling
à Reliably reduce DRAM latency

sense amplifier

w
ordline

driver

Design-Induced-Variation-Aware



7

DIVA-DRAM Reduces Latency
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DIVA-DRAM: Advantages & Disadvantages

n Advantages
++ Automatically finds the lowest reliable operating latency 

at system runtime (lower production-time testing cost)
+ Reduces latency more than prior methods (w/ ECC)
+ Reduces latency at high temperatures as well

n Disadvantages
- Requires knowledge of inherently-slow regions
- Requires ECC (Error Correcting Codes)
- Imposes overhead during runtime profiling
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Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


Understanding & Exploiting the 
Voltage-Latency-Reliability 

Relationship
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High DRAM Power Consumption

• Problem: High DRAM (memory) power in today’s 
systems
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>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)



Low-Voltage Memory

• Existing DRAM designs to help reduce DRAM power 
by lowering supply voltage conservatively
– !"#$% ∝ '"()*+$,

• DDR3L (low-voltage) reduces voltage from 1.5V to 
1.35V (-10%)

• LPDDR4 (low-power) employs low-power I/O 
interface with 1.2V (lower bandwidth)
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Can we reduce DRAM power and energy by
further reducing supply voltage?



Goals
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1 Understand and characterize the various 
characteristics of DRAM under reduced voltage

2 Develop a mechanism that reduces DRAM energy by 
lowering voltage while keeping performance loss 
within a target



Key Questions

• How does reducing voltage affect 
reliability (errors)?

• How does reducing voltage affect 
DRAM latency?

• How do we design a new DRAM energy 
reduction mechanism?
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Supply Voltage Control on DRAM
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Supply Voltage

Adjust the supply voltage to every chip on the same module

DRAM Module



Custom Testing Platform

SoftMC [Hassan+, HPCA’17]: FPGA testing platform to 
1) Adjust supply voltage to DRAM modules
2) Schedule DRAM commands to DRAM modules

Existing systems: DRAM commands not exposed to users
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Voltage
controller

DRAM
module FPGA

https://github.com/CMU-SAFARI/DRAM-Voltage-Study



Tested DRAM Modules

• 124 DDR3L (low-voltage) DRAM chips
– 31 SO-DIMMs
– 1.35V (DDR3 uses 1.5V)
– Density: 4Gb per chip
– Three major vendors/manufacturers
– Manufacturing dates: 2014-2016

• Iteratively read every bit in each 4Gb chip under a wide 
range of supply voltage levels: 1.35V to 1.0V (-26%)
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Reliability Worsens with Lower Voltage
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Source of Errors
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Reliable low-voltage operation requires higher latency



DIMMs Operating at Higher Latency
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Measured minimum latency that does not cause errors in DRAM modules

Lower bound of latency as our latency adjustment granularity is 2.5ns 
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Spatial Locality of Errors
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A module under 1.175V (12% voltage reduction)

Errors concentrate in certain regions



Summary of Key Experimental Observations

• Voltage-induced errors increase as 
voltage reduces further below Vmin

• Errors exhibit spatial locality

• Increasing the latency of DRAM operations 
mitigates voltage-induced errors
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DRAM Voltage Adjustment to Reduce Energy

• Goal: Exploit the trade-off between voltage and latency 
to reduce energy consumption

• Approach: Reduce DRAM voltage reliably
– Performance loss due to increased latency at lower voltage
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Voltron Overview
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How do we predict performance loss due to 
increased latency under low DRAM voltage?

Voltron

User specifies the 
performance loss target

Select the minimum DRAM voltage 
without violating the target



Linear Model to Predict Performance
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Voltron

User specifies the 
performance loss target

Select the minimum DRAM voltage 
without violating the target

Linear regression model
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Regression Model to Predict Performance

• Application’s characteristics for the model:
– Memory intensity: Frequency of last-level cache misses
– Memory stall time: Amount of time memory requests stall 

commit inside CPU

• Handling multiple applications:
– Predict a performance loss for each application
– Select the minimum voltage that satisfies the performance 

target for all applications
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Comparison to Prior Work

• Prior work: Dynamically scale frequency and voltage of the entire 
DRAM based on bandwidth demand [David+, ICAC’11]

– Problem: Lowering voltage on the peripheral circuitry 
decreases channel frequency (memory data throughput)

• Voltron: Reduce voltage to only DRAM array without changing 
the voltage to peripheral circuitry
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Exploiting Spatial Locality of Errors

Key idea: Increase the latency only for DRAM banks that 
observe errors under low voltage

– Benefit: Higher performance
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Voltron Evaluation Methodology

• Cycle-level simulator: Ramulator [CAL’15]

– McPAT and DRAMPower for energy measurement

• 4-core system with DDR3L memory

• Benchmarks: SPEC2006, YCSB

• Comparison to prior work: MemDVFS [David+, ICAC’11]

– Dynamic DRAM frequency and voltage scaling
– Scaling based on the memory bandwidth consumption
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https://github.com/CMU-SAFARI/ramulator

https://github.com/CMU-SAFARI/ramulator


Energy Savings with Bounded Performance
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Voltron: Advantages & Disadvantages

n Advantages
+ Can trade-off between voltage and latency to improve 

energy or performance
+ Can exploit the high voltage margin present in DRAM

n Disadvantages
- Requires finding the reliable operating voltage for each 

chip à higher testing cost
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Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


And, What If …

n … we can sacrifice reliability of some data to access it with 
even lower latency?
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Reducing Memory Latency to 
Support Security Primitives

34



Using Memory for Security

n Generating True Random Numbers (using DRAM)
q Kim et al., HPCA 2019

n Evaluating Physically Unclonable Functions (using DRAM)
q Kim et al., HPCA 2018

n Quickly Destroying In-Memory Data (using DRAM)
q Orosa et al., arxiv 2019
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D-RaNGe:	Using	Commodity	DRAM	Devices	
to	Generate	True	Random	Numbers	

with	Low	Latency	and	High	Throughput

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Lois	Orosa Onur Mutlu

HPCA 2019
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D-RaNGe Executive	Summary
• Motivation:	High-throughput	true	random	numbers	enable	system	
security	and	various	randomized	algorithms.	
• Many	systems	(e.g.,	IoT,	mobile,	embedded)	do	not	have	dedicated	True	

Random	Number	Generator	(TRNG) hardware	but	have	DRAM	devices
• Problem:	Current	DRAM-based	TRNGs	either	
1. do	not sample	a	fundamentally	non-deterministic	entropy	source													
2. are	too	slow	for	continuous	high-throughput	operation	

• Goal:	A	novel	and	effective	TRNG	that	uses	existing commodity	DRAM	
to	provide	random	values	with	1)	high-throughput, 2)	low	latency	and	
3)	no	adverse	effect	on	concurrently	running	applications

• D-RaNGe: Reduce	DRAM	access	latency	below reliable	values	and	
exploit	DRAM	cells’	failure	probabilities	to	generate	random	values	

• Evaluation:
1. Experimentally	characterize	282	real	LPDDR4	DRAM	devices	
2. D-RaNGe (717.4	Mb/s)	has	significantly	higher	throughput	(211x)
3. D-RaNGe (100ns) has	significantly	lower	latency	(180x)
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DRAM	Latency	Characterization	of	
282	LPDDR4	DRAM	Devices

• Latency	failures	come	from	accessing	DRAM	with	
reduced timing	parameters.

• Key	Observations:
1. A	cell’s	latency	failure probability	is	determined	

by	random	process	variation

2. Some	cells	fail	randomly



39

DRAM	Accesses	and	Failures
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D-RaNGe Key	Idea
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

Fails	randomly	
with	reduced	tRCD
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D-RaNGe Key	Idea
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

Fails	randomly	
with	reduced	tRCD

We	refer	to	cells	that	fail	randomly
when	accessed	with	a	reduced	tRCD

as	RNG	cells
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Our	D-RaNGe Evaluation
•We	generate	random	values	by	repeatedly	
accessing	RNG	cells and	aggregating	the	data	
read	
• The	random	data	satisfies	the	NIST	statistical	
test	suite	for	randomness	
• The	D-RaNGE generates	random	numbers	
- Throughput:	717.4	Mb/s	
- Latency:	64	bits	in	<1us
- Power:	4.4	nJ/bit



D-RaNGe:	Using	Commodity	DRAM	Devices	
to	Generate	True	Random	Numbers	

with	Low	Latency	and	High	Throughput

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Lois	Orosa Onur Mutlu

HPCA 2019



More on D-RaNGe
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n Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True 
Random Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance 
Computer Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19


The	DRAM	Latency	PUF:	
Quickly	Evaluating	Physical	Unclonable Functions	
by	Exploiting	the	Latency-Reliability	Tradeoff	

in	Modern	Commodity	DRAM	Devices

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Onur Mutlu
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DL-PUF:	Executive	Summary
• Motivation:	

• We	can	authenticate	a	system	via	unique	signatures if	we	can	
evaluate	a	Physical	Unclonable Function	(PUF)	on	it

• Signatures	(PUF	response)	reflect	inherent	properties	of	a	device
• DRAM	is	a	promising	substrate	for	PUFs	because	it	is	widely used

• Problem:	Current	DRAM	PUFs	are	1)	very	slow,	2)	require	a	DRAM	
reboot,	or	3)	require	additional	custom	hardware

• Goal:	To	develop	a	novel	and	effective	PUF	for	existing commodity	
DRAM	devices	with	low-latency	evaluation	time and	low	system	
interference across	all	operating	temperatures

• DRAM	Latency	PUF: Reduce	DRAM	access	latency	below reliable	
values	and	exploit	the	resulting	error	patterns	as	unique	identifiers

• Evaluation:
1. Experimentally	characterize	223	real	LPDDR4	DRAM	devices	
2.				DRAM	latency	PUF	(88.2	ms)	achieves	a	speedup	of	102x/860x

at	70°C/55°C	over	prior	DRAM	PUF	evaluation	mechanisms
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Motivation
We	want	a	way	to	ensure	that	a	system’s	
components	are	not	compromised
• Physical	Unclonable Function	(PUF): a	function	we	evaluate
on	a	device	to	generate a	signature unique to	the	device	
• We	refer	to	the	unique	signature	as	a	PUF	response
• Often	used	in	a	Challenge-Response	Protocol (CRP)

DeviceTrusted	Device
Input:

ChallengeX

Output:
PUF	ResponseX

Evaluating
PUF							. . . 

Checking
PUF	response							. . . 

Authenticated
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Motivation
1. We	want	a	runtime-accessible PUF
- Should	be	evaluated	quicklywith	minimal impact	
on	concurrent	applications
- Can	protect	against	attacks	that	swap	system	
components	with	malicious	parts

2. DRAM	is	a	promising	substrate for	evaluating	
PUFs	because	it	is	ubiquitous in	modern	systems
- Unfortunately,	current	DRAM	PUFs	are	slow and	get	
exponentially	slower	at	lower	temperatures
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DRAM	Latency	Characterization	of	
223	LPDDR4	DRAM	Devices

•Latency	failures	come	from	accessing	
DRAM	with	reduced timing	parameters.

•Key	Observations:
1. A	cell’s	latency	failure probability	is	
determined	by	random	process	variation

2. Latency	failure	patterns	are	repeatable	and	
unique	to	a	device
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DRAM	Latency	PUF	Key	Idea
• A	cell’s	latency	failure	probability	is	inherently	related	to	
random	process	variation from	manufacturing
• We	can	provide	repeatable	and	unique	device	
signatures using	latency	error	patterns
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA
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DRAM	Latency	PUF	Key	Idea
• A	cell’s	latency	failure	probability	is	inherently	related	to	
random	process	variation from	manufacturing
• We	can	provide	repeatable	and	unique	device	
signatures using	latency	error	patterns
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

The	key	idea	is	to	compose	a	PUF	response	
using	the	DRAM	cells	that	fail	

with	high	probability	
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The	DRAM	Latency	PUF	Evaluation

•We	generate	PUF	responses	using	latency
errors	in	a	region	of	DRAM

•The	latency	error	patterns	satisfy	PUF	
requirements

•The	DRAM	Latency	PUF	generates	PUF	
responses	in	88.2ms
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8KiB memory segment
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Other	Results	in	the	Paper
•How	the	DRAM	latency	PUF	meets	the	basic	
requirements	for	an	effective	PUF	
• A	detailed	analysis	on:

- Devices	of	the	three	major	DRAMmanufacturers
- The	evaluation	time of	a	PUF

• Further	discussion	on:
- Optimizing retention	PUFs
- System	interference of	DRAM	retention	and	latency	PUFs
- Algorithm	to	quickly	and	reliably	evaluate	DRAM	latency	PUF
- Design	considerations	for	a	DRAM	latency	PUF
- The	DRAM	Latency	PUF	overhead	analysis



The	DRAM	Latency	PUF:	
Quickly	Evaluating	Physical	Unclonable Functions	
by	Exploiting	the	Latency-Reliability	Tradeoff	

in	Modern	Commodity	DRAM	Devices

Jeremie S.	Kim Minesh Patel		
Hasan	Hassan			Onur Mutlu

QR Code for the paper
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

HPCA 2018



DRAM Latency PUFs
n Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable 
Functions by Exploiting the Latency-Reliability Tradeoff in 
Modern DRAM Devices"
Proceedings of the 24th International Symposium on High-Performance 
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf


Reducing Refresh Latency
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On Reducing Refresh Latency
n Anup Das, Hasan Hassan, and Onur Mutlu,

"VRL-DRAM: Improving DRAM Performance via 
Variable Refresh Latency"
Proceedings of the 55th Design Automation 
Conference (DAC), San Francisco, CA, USA, June 2018.
[Slides (pdf)] [Poster (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18-poster.pdf


Reducing Memory Latency by 
Exploiting Memory Access Patterns
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ChargeCache:	Executive	Summary
• Goal:	Reduce	average	DRAM	access	latency	with	no	
modification	to	the	existing	DRAM	chips

• Observations:	
1) A	highly-charged DRAM	row	can	be	accessed	with	low	latency
2) A	row’s	charge	is	restored	when	the	row	is	accessed
3) A	recently-accessed	row is likely	to	be	accessed again:	

Row	Level	Temporal	Locality	(RLTL)
• Key	Idea:	Track	recently-accessed	DRAM	rows	and	use	lower	
timing	parameters	if	such	rows	are	accessed	again

• ChargeCache:
– Low	cost	&	no	modifications	to	the	DRAM
– Higher	performance	(8.6-10.6% on	average	for	8-core)
– Lower	DRAM	energy	(7.9% on	average)
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Accessing	Highly-charged	Rows
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Observation	1
A	highly-charged DRAM	row	can	be	
accessed	with	low	latency
• tRCD: 44%
• tRAS: 37%

How does a row become 
highly-charged?
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How	Does a Row	Become	Highly-Charged?

DRAM	cells	lose	charge	over	time
Two	ways	of	restoring	a	row’s	charge:
• Refresh	Operation
• Access

timeRefresh

ch
ar
ge

RefreshAccess
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Observation	2
A	row’s	charge	is	restored when	the	row	
is	accessed

How likely is a recently-accessed
row to be accessed again?
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A	recently-accessed DRAM	row is likely	to	be	

accessed again.

• t-RLTL:	Fraction	of	rows	that	are	accessed	
within	time	t after	their	previous	access

8ms – RLTL for single-core workloads8ms – RLTL for eight-core workloads
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Key	Idea

Track	recently-accessed DRAM	rows	
and	use	lower	timing	parameters if	

such	rows	are	accessed	again
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ChargeCache	Overview

Memory	Controller
ChargeCache

A

:B

:D
:C

:E
:F

Requests:	

:A

D A

DRAM

A
D

ChargeCache Miss: Use Default TimingsChargeCache Hit: Use Lower Timings
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Area	and	Power	Overhead
• Modeled	with	CACTI

• Area
–~5KB	for	128-entry	ChargeCache
– 0.24% of	a	4MB	Last	Level	Cache	(LLC)	
area

• Power	Consumption
– 0.15	mW	on	average	(static	+	dynamic)
– 0.23% of	the	4MB	LLC	power	consumption
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Methodology
• Simulator

– DRAM	Simulator	(Ramulator	[Kim+,	CAL’15])
https://github.com/CMU-SAFARI/ramulator

• Workloads
– 22	single-core	workloads

• SPEC	CPU2006,	TPC,	STREAM
– 20	multi-programmed	8-core	workloads

• By	randomly	choosing	from	single-core	workloads
– Execute	at	least	1	billion representative	instructions per	
core	(Pinpoints)

• System	Parameters
– 1/8	core	system	with	4MB	LLC
– Default	tRCD/tRAS of	11/28 cycles
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Eight-core	Performance
NUAT ChargeCache

ChargeCache	+	NUAT LL-DRAM	(Upperbound)
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ChargeCache significantly improves 
multi-core performance
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DRAM	Energy	Savings
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More on ChargeCache
n Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek

Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,

"ChargeCache: Reducing DRAM Latency by Exploiting Row 
Access Locality"
Proceedings of the 22nd International Symposium on High-

Performance Computer Architecture (HPCA), Barcelona, Spain, March 

2016. 

[Slides (pptx) (pdf)] 

[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp


A Very Recent Work
n Yaohua Wang, Arash Tavakkol, Lois Orosa, Saugata Ghose, Nika Mansouri 

Ghiasi, Minesh Patel, Jeremie S. Kim, Hasan Hassan, Mohammad 
Sadrosadati, and Onur Mutlu,
"Reducing DRAM Latency via Charge-Level-Aware Look-Ahead 
Partial Restoration"
Proceedings of the 51st International Symposium on 
Microarchitecture (MICRO), Fukuoka, Japan, October 2018.
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https://people.inf.ethz.ch/omutlu/pub/CAL-DRAM_for-reduced-latency-memory_micro18.pdf
http://www.microarch.org/micro51/


Summary: Low-Latency Memory
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Summary: Tackling Long Memory Latency

n Reason 1: Design of DRAM Micro-architecture
q Goal: Maximize capacity/area, not minimize latency

n Reason 2: “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips (e.g., rows)
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data 
q …
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Challenge and Opportunity for Future

Fundamentally
Low Latency

Computing Architectures
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On DRAM Power Consumption
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Keysight 34134A 
DC Current Probe

DDR3L 
SO-DIMM

JET-5467A 
Riser Board

Virtex 6
FPGA

Power Measurement Platform
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Power Measurement Methodology

§ SoftMC: an FPGA-based memory controller [Hassan+ HPCA ’17]

• Modified to repeatedly loop commands
• Open-source: https://github.com/CMU-SAFARI/SoftMC

§Measure current consumed by a module during a SoftMC
test

§Tested 50 DDR3L DRAM modules (200 DRAM chips)
• Supply voltage: 1.35 V
• Three major vendors: A, B, C
• Manufactured between 2014 and 2016

§For each experimental test that we perform
• 10 runs of  each test per module
• At least 10 current samples per run

Page 85 of 20

https://github.com/CMU-SAFARI/SoftMC


1. Real DRAM Power Varies Widely from IDD Values

§Different vendors have very different margins (i.e., 
guardbands)

§Low variance among different modules from same vendor
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Current consumed by real DRAM modules
varies significantly for all IDD values that we measure



2. DRAM Power is Dependent on Data Values

§ Some variation due to infrastructure – can be subtracted
§Without infrastructure variation: up to 230 mA of  change
§Toggle affects power consumption, but < 0.15 mA per bit

Page 87 of 20

0

200

400

600

800

0 128 256 384 512

Re
ad

 C
ur

re
nt

 (m
A)

Number of Ones in a Cache Line

Vendor A
Vendor B
Vendor C

0

200

400

600

800

0 128 256 384 512

W
rit

e 
Cu

rr
en

t(
m

A)

Number of Ones in a Cache Line

Vendor A
Vendor B
Vendor C
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3. Structural Variation Affects DRAM Power Usage

§Vendor C: variation in 
idle current across 
banks

§All vendors: variation 
in read current across 
banks

§All vendors: variation 
in activation based on
row address
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4. Generational Savings Are Smaller Than Expected

§ Similar trends for idle and read currents
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Summary of New Observations on DRAM Power

1. Real DRAM modules often consume less power
than vendor-provided IDD values state

2. DRAM power consumption is dependent on the data 
value that is read/written

3. Across banks and rows, structural variation affects power
consumption of  DRAM

4. Newer DRAM modules save less power than indicated in 
datasheets by vendors

Detailed observations and analyses in the paper

Page 90 of 20



A New Variation-Aware DRAM Power Model

§VAMPIRE: Variation-Aware model of  Memory Power
Informed by Real Experiments

§VAMPIRE and raw characterization data are open-source: 
https://github.com/CMU-SAFARI/VAMPIRE

Page 91 of 20

VAMPIRE
Read/Write and
Data-Dependent
Power Modeling

Idle/Activate/Precharge
Power Modeling

Structural Variation Aware
Power Modeling

Inputs
(from memory system 

simulator)

Trace of DRAM 
commands, timing

Data that is
being written

Outputs

Per-vendor
power 

consumption

Range for
each vendor

(optional)

https://github.com/CMU-SAFARI/VAMPIRE


VAMPIRE Has Lower Error Than Existing Models

§Validated using new power measurements: details in the 
paper
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VAMPIRE Enables Several New Studies

§Taking advantage of  structural variation to perform 
variation-aware physical page allocation to reduce power

§ Smarter DRAM power-down scheduling

§Reducing DRAM energy with data-dependency-aware
cache line encodings
• 23 applications from 

the SPEC 2006 
benchmark suite
• Traces collected using

Pin and Ramulator

§We expect there to be many other new studies in the future
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VAMPIRE DRAM Power Model
n Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais Kudrolli, William X. 

Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee, Aditya Agrawal, Mike O'Connor, 
and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed 
Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Irvine, CA, USA, June 2018.
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]
[VAMPIRE DRAM Power Model]
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https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-talk.pdf
https://github.com/CMU-SAFARI/VAMPIRE


Conclusion
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Four Key Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health
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Some Solution Principles (So Far)
n Data-centric system design & intelligence spread around

q Do not center everything around traditional computation units

n Better cooperation across layers of the system
q Careful co-design of components and layers: system/arch/device
q Better, richer, more expressive and flexible interfaces

n Better-than-worst-case design
q Do not optimize for the worst case
q Worst case should not determine the common case

n Heterogeneity in design (specialization, asymmetry)
q Enables a more efficient design (No one size fits all) 
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Some Solution Principles (More Compact)

n Data-centric design 

n All components intelligent

n Better cross-layer communication, better interfaces

n Better-than-worst-case design

n Heterogeneity

n Flexibility, adaptability
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Data-Aware Architectures
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Data-Aware Architectures
n A data-aware architecture understands what it can do with 

and to each piece of data

n It makes use of different properties of data to improve 
performance, efficiency and other metrics
q Compressibility
q Approximability
q Locality
q Sparsity
q Criticality for Computation X
q Access Semantics
q …
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One Problem: Limited Interfaces
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A Solution: More Expressive Interfaces
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Expressive (Memory) Interfaces
n Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady 

Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu,
"A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap 
with Expressive Memory"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA), 
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pdf
https://youtu.be/hasM-p7Ag_g


Expressive (Memory) Interfaces for GPUs
n Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu,

"The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express 
Data Locality in GPUs"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA), 
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-lightning-talk.pdf
https://youtu.be/M_0qvO97_hM


Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
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It Is Time to …
n … design principled system architectures to solve the 

memory problem

n … design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

n … make memory a key priority in system design and 
optimize it & integrate it better into the system

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …
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We Need to Revisit the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step
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