
Prof. Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
12 June 2019

TU Wien Fast Course 2019

Memory Systems
and Memory-Centric Computing Systems
Lecture 1c: Main Memory and DRAM Basics

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Memory Fundamentals

2

Memory in a Modern System

3

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)

4

The Problem
n Ideal memory’s requirements oppose each other

n Bigger is slower
q Bigger à Takes longer to determine the location

n Faster is more expensive
q Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

n Higher bandwidth is more expensive
q Need more banks, more ports, higher frequency, or faster

technology

5

Memory Technology: DRAM
n Dynamic random access memory
n Capacitor charge state indicates stored value

q Whether the capacitor is charged or discharged indicates
storage of 1 or 0

q 1 capacitor
q 1 access transistor

n Capacitor leaks through the RC path
q DRAM cell loses charge over time
q DRAM cell needs to be refreshed

q Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM
Refresh,” ISCA 2012.

6

row enable

_b
itl

in
e

n Static random access memory
n Two cross coupled inverters store a single bit

q Feedback path enables the stored value to persist in the “cell”
q 4 transistors for storage
q 2 transistors for access

Memory Technology: SRAM

7

row select

bi
tli

ne

_b
itl

in
e

An Aside: Phase Change Memory
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity

8

PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, �Architecting Phase Change Memory as a Scalable DRAM
Alternative,� ISCA 2009.

Reading: PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

9

http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf

Reading: More on PCM As Main Memory
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

10

https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/

Memory Bank: A Fundamental Concept
n Interleaving (banking)

q Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

q Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

q Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)
n Each bank is smaller than the entire memory storage
n Accesses to different banks can be overlapped

q An issue: How do you map data to different banks? (i.e., how
do you interleave data across banks?)

11

Memory Bank Organization and Operation
n Read access sequence:

1. Decode row address
& drive word-lines

2. Selected bits drive
bit-lines

• Entire row read

3. Amplify row data

4. Decode column
address & select subset
of row

• Send to output

5. Precharge bit-lines
• For next access

12

Why Memory Hierarchy?
n We want both fast and large

n But we cannot achieve both with a single level of memory

n Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

13

Memory Hierarchy
n Fundamental tradeoff

q Fast memory: small
q Large memory: slow

n Idea: Memory hierarchy

n Latency, cost, size,
bandwidth

14

CPU
Main

Memory
(DRAM)RF

Cache

Hard Disk

Caching Basics: Exploit Temporal Locality
n Idea: Store recently accessed data in automatically

managed fast memory (called cache)
n Anticipation: the data will be accessed again soon

n Temporal locality principle
q Recently accessed data will be again accessed in the near

future
q This is what Maurice Wilkes had in mind:

n Wilkes, �Slave Memories and Dynamic Storage Allocation,� IEEE
Trans. On Electronic Computers, 1965.

n �The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.�

15

Caching Basics: Exploit Spatial Locality
n Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
q Logically divide memory into equal size blocks
q Fetch to cache the accessed block in its entirety

n Anticipation: nearby data will be accessed soon

n Spatial locality principle
q Nearby data in memory will be accessed in the near future

n E.g., sequential instruction access, array traversal
q This is what IBM 360/85 implemented

n 16 Kbyte cache with 64 byte blocks
n Liptay, �Structural aspects of the System/360 Model 85 II: the

cache,� IBM Systems Journal, 1968.

16

A Note on Manual vs. Automatic Management

n Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q “core” vs “drum” memory in the 50’s
q still done in some embedded processors (on-chip scratch pad

SRAM in lieu of a cache)

n Automatic: Hardware manages data movement across levels,
transparently to the programmer
++ programmer’s life is easier
q simple heuristic: keep most recently used items in cache
q the average programmer doesn’t need to know about it

n You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

17

Automatic Management in Memory Hierarchy

n Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

18

Historical Aside: Other Cache Papers
n Fotheringham, “Dynamic Storage Allocation in the Atlas

Computer, Including an Automatic Use of a Backing Store,”
CACM 1961.
q http://dl.acm.org/citation.cfm?id=366800

n Bloom, Cohen, Porter, “Considerations in the Design of a
Computer with High Logic-to-Memory Speed Ratio,” AIEE
Gigacycle Computing Systems Winter Meeting, Jan. 1962.

19

http://dl.acm.org/citation.cfm?id=366800

Cache in 1962 (Bloom, Cohen, Porter)

20

A Modern Memory Hierarchy

21

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache,
.....

Main memory (DRAM),
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand
paging

Automatic
HW cache
management

Memory
Abstraction

The DRAM Subsystem

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column

23

Page Mode DRAM
n A DRAM bank is a 2D array of cells: rows x columns
n A �DRAM row� is also called a �DRAM page�
n �Sense amplifiers� also called �row buffer�

n Each address is a <row,column> pair
n Access to a �closed row�

q Activate command opens row (placed into row buffer)
q Read/write command reads/writes column in the row buffer
q Precharge command closes the row and prepares the bank for

next access
n Access to an �open row�

q No need for activate command

24

The DRAM Bank Structure

25

DRAM Bank Operation

26

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

The DRAM Chip
n Consists of multiple banks (8 is a common number today)
n Banks share command/address/data buses
n The chip itself has a narrow interface (4-16 bits per read)

n Changing the number of banks, size of the interface (pins),
whether or not command/address/data buses are shared
has significant impact on DRAM system cost

27

128M x 8-bit DRAM Chip

28

DRAM Rank and Module
n Rank: Multiple chips operated together to form a wide

interface
n All chips comprising a rank are controlled at the same time

q Respond to a single command
q Share address and command buses, but provide different data

n A DRAM module consists of one or more ranks
q E.g., DIMM (dual inline memory module)
q This is what you plug into your motherboard

n If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

29

A 64-bit Wide DIMM (One Rank)

30

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Command Data

A 64-bit Wide DIMM (One Rank)
n Advantages:

q Acts like a high-
capacity DRAM chip
with a wide
interface

q Flexibility: memory
controller does not
need to deal with
individual chips

n Disadvantages:
q Granularity:

Accesses cannot be
smaller than the
interface width

31Mutlu+, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” MICRO 2007.

Multiple DIMMs

32

n Advantages:
q Enables even

higher capacity

n Disadvantages:
q Interconnect

complexity and
energy
consumption
can be high
à Scalability is

limited by this

DRAM Channels

n 2 Independent Channels: 2 Memory Controllers (Above)

n 2 Dependent/Lockstep Channels: 1 Memory Controller with
wide interface (Not shown above)

33Mutlu+, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” MICRO 2007.

Generalized Memory Structure

34

Generalized Memory Structure

35

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
Lee+, “Decoupled Direct Memory Access,” PACT 2015.

Readings on DRAM
n DRAM Organization and Operation Basics

q Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low
Latency and Low Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Sections 1 and 2 of Kim et al., “A Case for Subarray-Level
Parallelism (SALP) in DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

n DRAM Refresh Basics
q Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware

Intelligent DRAM Refresh,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

36

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

The DRAM Subsystem
The Top Down View

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column

38

The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

�Channel�

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

Rank

Rank 0 (Front) Rank 1 (Back)

Data <0:63>CS <0:1>Addr/Cmd

<0:63><0:63>

Memory channel

Breaking down a Rank

Rank 0

<0:63>

Ch
ip

 0

Ch
ip

 1

Ch
ip

 7. . .

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

Breaking down a Chip

Ch
ip

 0
<0

:7
>

8 ban
ks

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

Breaking down a Bank

Bank 0

<0
:7
>

row 0

row 16k-1

...
2kB

1B

1B (column)

1B
Row-buffer

1B
...

<0
:7
>

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column

46

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Channel 0

DIMM 0

Rank 0
Mapped to

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

Row 0
Col 0

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

Row 0
Col 0

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

Row 0
Col 1

. . .

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

8B

Row 0
Col 1

. . .

8B

Example: Transferring a cache block

0xFFFF…F

0x00

0x40

...

64B
cache block

Physical memory space

Rank 0Chip 0 Chip 1 Chip 7

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>
8B

8B

Row 0
Col 1

A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .

Latency Components: Basic DRAM Operation

n CPU → controller transfer time
n Controller latency

q Queuing & scheduling delay at the controller
q Access converted to basic commands

n Controller → DRAM transfer time
n DRAM bank latency

q Simple CAS (column address strobe) if row is �open� OR
q RAS (row address strobe) + CAS if array precharged OR
q PRE + RAS + CAS (worst case)

n DRAM → Controller transfer time
q Bus latency (BL)

n Controller to CPU transfer time

54

Multiple Banks (Interleaving) and Channels
n Multiple banks

q Enable concurrent DRAM accesses
q Bits in address determine which bank an address resides in

n Multiple independent channels serve the same purpose
q But they are even better because they have separate data buses
q Increased bus bandwidth

n Enabling more concurrency requires reducing
q Bank conflicts
q Channel conflicts

n How to select/randomize bank/channel indices in address?
q Lower order bits have more entropy
q Randomizing hash functions (XOR of different address bits)

55

How Multiple Banks Help

56

Address Mapping (Single Channel)
n Single-channel system with 8-byte memory bus

q 2GB memory, 8 banks, 16K rows & 2K columns per bank

n Row interleaving
q Consecutive rows of memory in consecutive banks

q Accesses to consecutive cache blocks serviced in a pipelined manner

n Cache block interleaving
n Consecutive cache block addresses in consecutive banks
n 64 byte cache blocks

n Accesses to consecutive cache blocks can be serviced in parallel
57

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

Bank Mapping Randomization
n DRAM controller can randomize the address mapping to

banks so that bank conflicts are less likely

n Reading:
q Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

58

Column (11 bits)3 bits Byte in bus (3 bits)

XOR

Bank index
(3 bits)

Address Mapping (Multiple Channels)

n Where are consecutive cache blocks?

59

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)
3 bits8 bits

C

Interaction with VirtualàPhysical Mapping
n Operating System influences where an address maps to in

DRAM

n Operating system can influence which bank/channel/rank a
virtual page is mapped to.

n It can perform page coloring to
q Minimize bank conflicts
q Minimize inter-application interference [Muralidhara+ MICRO’11]
q Minimize latency in the network [Das+ HPCA’13]

60

Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA

PA
PA

Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu,

Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), Porto Alegre, Brazil, December
2011. Slides (pptx)

61

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx

Application-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance
Computer Architecture (HPCA), Shenzhen, China, February 2013.
Slides (pptx)

62

http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx

More on Reducing Bank Conflicts
n Read Sections 1 through 4 of:

q Kim et al., “A Case for Exploiting Subarray-Level Parallelism in
DRAM,” ISCA 2012.

63

Subarray Level Parallelism
n Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,

"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

64

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

DRAM Refresh (I)
n DRAM capacitor charge leaks over time
n The memory controller needs to read each row periodically

to restore the charge
q Activate + precharge each row every N ms
q Typical N = 64 ms

n Implications on performance?
-- DRAM bank unavailable while refreshed
-- Long pause times: If we refresh all rows in burst, every 64ms

the DRAM will be unavailable until refresh ends
n Burst refresh: All rows refreshed immediately after one

another
n Distributed refresh: Each row refreshed at a different time,

at regular intervals
65

DRAM Refresh (II)

n Distributed refresh eliminates long pause times
n How else we can reduce the effect of refresh on

performance?
q Can we reduce the number of refreshes?

66

-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while
refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

67

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.

More on DRAM Refresh
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on

Computer Architecture (ISCA), Portland, OR, June 2012.

Slides (pdf)

68

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

69

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Data Retention in Memory [Liu et al., ISCA 2013]

n Data Retention Time Profile of DRAM looks like this:

70

Location dependent
Stored value pattern dependent

Time dependent

DRAM Refresh-Access Parallelization
n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris

Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

71

http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Prof. Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
12 June 2019

TU Wien Fast Course 2019

Memory Systems
and Memory-Centric Computing Systems
Lecture 1c: Main Memory and DRAM Basics

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Backup Slides

73

Memory Controllers

DRAM versus Other Types of Memories

n Long latency memories have similar characteristics that
need to be controlled.

n The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories
q Flash memory
q Other emerging memory technologies

n Phase Change Memory
n Spin-Transfer Torque Magnetic Memory

q These other technologies can place other demands on the
controller

75

Flash Memory (SSD) Controllers
n Similar to DRAM memory controllers, except:

q They are flash memory specific
q They do much more: error correction, garbage collection,

page remapping, …

76Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory
Lifetime”, ICCD 2012.

Another View of the SSD Controller

77

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf

On Modern SSD Controllers (I)

78https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

On Modern SSD Controllers (II)
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

79

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

On Modern SSD Controllers (III)
n Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim,

Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G.
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

80

https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A

DRAM Types
n DRAM has different types with different interfaces optimized

for different purposes
q Commodity: DDR, DDR2, DDR3, DDR4, …
q Low power (for mobile): LPDDR1, …, LPDDR5, …
q High bandwidth (for graphics): GDDR2, …, GDDR5, …
q Low latency: eDRAM, RLDRAM, …
q 3D stacked: WIO, HBM, HMC, …
q …

n Underlying microarchitecture is fundamentally the same
n A flexible memory controller can support various DRAM types
n This complicates the memory controller

q Difficult to support all types (and upgrades)

81

DRAM Types (circa 2015)

82

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.

DRAM Controller: Functions
n Ensure correct operation of DRAM (refresh and timing)

n Service DRAM requests while obeying timing constraints of
DRAM chips
q Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays
q Translate requests to DRAM command sequences

n Buffer and schedule requests to for high performance + QoS
q Reordering, row-buffer, bank, rank, bus management

n Manage power consumption and thermals in DRAM
q Turn on/off DRAM chips, manage power modes

83

A Modern DRAM Controller (I)

84

85

A Modern DRAM Controller

Mutlu+, “Stall-Time Fair Memory Scheduling,” MICRO 2007.

DRAM Scheduling Policies (I)
n FCFS (first come first served)

q Oldest request first

n FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

q Actually, scheduling is done at the command level
n Column commands (read/write) prioritized over row commands

(activate/precharge)
n Within each group, older commands prioritized over younger ones

86

Review: DRAM Bank Operation

87

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

DRAM Scheduling Policies (II)
n A scheduling policy is a request prioritization order

n Prioritization can be based on
q Request age
q Row buffer hit/miss status
q Request type (prefetch, read, write)
q Requestor type (load miss or store miss)
q Request criticality

n Oldest miss in the core?
n How many instructions in core are dependent on it?
n Will it stall the processor?

q Interference caused to other cores
q …

88

Row Buffer Management Policies
n Open row

q Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

n Closed row
q Close the row after an access (if no other requests already in the request

buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

n Adaptive policies
q Predict whether or not the next access to the bank will be to

the same row and act accordingly

89

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read
Open row Row 0 Row 1 (row

conflict)
Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

90

DRAM Power Management
n DRAM chips have power modes
n Idea: When not accessing a chip power it down

n Power states
q Active (highest power)
q All banks idle
q Power-down
q Self-refresh (lowest power)

n Tradeoff: State transitions incur latency during which the
chip cannot be accessed

91

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

93

Many DRAM Timing Constraints

n From Lee et al., �DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,� HPS Technical Report,
April 2010.

94

More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

95

Why So Many Timing Constraints? (I)

96

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

97

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
98

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream
n Reality: It difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

99

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best

scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

101

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … (0 £ g < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in

each state
q Continuously update reward values for <state, action> pairs based on

feedback from system

102

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

103

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

104

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

105

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

106

More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

107

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures

108

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

109

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

110

We need to rethink design
(of all controllers)

Simulating Memory

111

Evaluating New Ideas
for New (Memory) Architectures

Potential Evaluation Methods
n How do we assess an idea will improve a target metric X?

n A variety of evaluation methods are available:

q Theoretical proof

q Analytical modeling/estimation

q Simulation (at varying degrees of abstraction and accuracy)

q Prototyping with a real system (e.g., FPGAs)

q Real implementation
113

The Difficulty in Architectural Evaluation
n The answer is usually workload dependent

q E.g., think caching
q E.g., think pipelining
q E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

n Workloads change

n System has many design choices and parameters
q Architect needs to decide many ideas and many parameters

for a design
q Not easy to evaluate all possible combinations!

n System parameters may change
114

Simulation: The Field of Dreams

Dreaming and Reality
n An architect is in part a dreamer, a creator

n Simulation is a key tool of the architect

n Simulation enables
q The exploration of many dreams
q A reality check of the dreams
q Deciding which dream is better

n Simulation also enables
q The ability to fool yourself with false dreams

116

Why High-Level Simulation?
n Problem: RTL simulation is intractable for design space

exploration à too time consuming to design and evaluate

q Especially over a large number of workloads

q Especially if you want to predict the performance of a good

chunk of a workload on a particular design

q Especially if you want to consider many design choices

n Cache size, associativity, block size, algorithms

n Memory control and scheduling algorithms

n In-order vs. out-of-order execution

n Reservation station sizes, ld/st queue size, register file size, …

n …

n Goal: Explore design choices quickly to see their impact on

the workloads we are designing the platform for

117

Different Goals in Simulation
n Explore the design space quickly and see what you want to

q potentially implement in a next-generation platform
q propose as the next big idea to advance the state of the art
q the goal is mainly to see relative effects of design decisions

n Match the behavior of an existing system so that you can
q debug and verify it at cycle-level accuracy
q propose small tweaks to the design that can make a difference in

performance or energy
q the goal is very high accuracy

n Other goals in-between:
q Refine the explored design space without going into a full

detailed, cycle-accurate design
q Gain confidence in your design decisions made by higher-level

design space exploration
118

Tradeoffs in Simulation
n Three metrics to evaluate a simulator

q Speed
q Flexibility
q Accuracy

n Speed: How fast the simulator runs (xIPS, xCPS, slowdown)
n Flexibility: How quickly one can modify the simulator to

evaluate different algorithms and design choices?
n Accuracy: How accurate the performance (energy) numbers

the simulator generates are vs. a real design (Simulation
error)

n The relative importance of these metrics varies depending
on where you are in the design process (what your goal is)

119

Trading Off Speed, Flexibility, Accuracy
n Speed & flexibility affect:

q How quickly you can make design tradeoffs

n Accuracy affects:
q How good your design tradeoffs may end up being
q How fast you can build your simulator (simulator design time)

n Flexibility also affects:
q How much human effort you need to spend modifying the

simulator

n You can trade off between the three to achieve design
exploration and decision goals

120

High-Level Simulation
n Key Idea: Raise the abstraction level of modeling to give up

some accuracy to enable speed & flexibility (and quick
simulator design)

n Advantage
+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not
exact performance numbers

n Disadvantage
-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
121

Simulation as Progressive Refinement
n High-level models (Abstract, C)
n …
n Medium-level models (Less abstract)
n …
n Low-level models (RTL with everything modeled)
n …
n Real design

n As you refine (go down the above list)
q Abstraction level reduces
q Accuracy (hopefully) increases (not necessarily, if not careful)
q Flexibility reduces; Speed likely reduces except for real design
q You can loop back and fix higher-level models

122

Making The Best of Architecture
n A good architect is comfortable at all levels of refinement

q Including the extremes

n A good architect knows when to use what type of
simulation
q And, more generally, what type of evaluation method

n Recall: A variety of evaluation methods are available:
q Theoretical proof
q Analytical modeling
q Simulation (at varying degrees of abstraction and accuracy)
q Prototyping with a real system (e.g., FPGAs)
q Real implementation

123

Ramulator: A Fast and Extensible
DRAM Simulator

[IEEE Comp Arch Letters’15]

124

Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed

125

Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards

126

Case Study: Comparison of DRAM Standards

127

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator

128

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

Optional Assignment
n Review the Ramulator paper

q Email me your review (omutlu@gmail.com)

n Download and run Ramulator
q Compare DDR3, DDR4, SALP, HBM for the libquantum

benchmark (provided in Ramulator repository)
q Email me your report (omutlu@gmail.com)

n This will help you get into memory systems research

129

mailto:omutlu@gmail.com
mailto:omutlu@gmail.com

Some More Suggested Readings

130

Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf

131

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-3d-stacked-memory_taco16.pdf

Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM

Refresh,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-

refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing

Refreshes with Accesses,” HPCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the

Mitigation of DRAM Retention Failures via Profiling at

Aggressive Conditions,” ISCA 2017.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-

profiling-lpddr4_isca17.pdf

132

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf

Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

133

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Some Key Readings on Memory Control 1
q Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance

and Fairness of Shared DRAM Systems,” ISCA 2008.
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

q Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” MICRO 2010.
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

q Subramanian et al., “BLISS: Balancing Performance, Fairness and
Complexity in Memory Access Scheduling,” TPDS 2016.
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

q Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf

134

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf

Some Key Readings on Memory Control 2
q Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning

Approach,” ISCA 2008.

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

q Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-

Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS

2010.

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

q Subramanian et al., “The Application Slowdown Model: Quantifying and

Controlling the Impact of Inter-Application Interference at Shared Caches

and Main Memory,” MICRO 2015.

https://people.inf.ethz.ch/omutlu/pub/application-slowdown-

model_micro15.pdf

q Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic

by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

135

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
https://people.inf.ethz.ch/omutlu/pub/application-slowdown-model_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

More Readings
n To come as we cover the future topics

n Search for “DRAM” or “Memory” in:
q https://people.inf.ethz.ch/omutlu/projects.htm

136

https://people.inf.ethz.ch/omutlu/projects.htm

Inside A DRAM Chip

137

DRAM Module and Chip

138

Goals

• Cost
• Latency
• Bandwidth
• Parallelism
• Power
• Energy
• Reliability
• …

139

DRAM Chip

140

Row Decoder

Array of Sense Am
plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense Am
plifiers

Cell Array

Cell Array

Bank I/O

Sense Amplifier

141

enable

top

bottom

Inverter

Sense Amplifier – Two Stable States

142

1 1

0

0VDD

VDD

Logical “1” Logical “0”

Sense Amplifier Operation

143

0

VT

VB

VT > VB1

0

VDD

DRAM Cell – Capacitor

144

Empty State Fully Charged State

Logical “0” Logical “1”

1

2

Small – Cannot drive circuits

Reading destroys the state

Capacitor to Sense Amplifier

145

1

0

VDD

1

VDD

0

DRAM Cell Operation

146

½VDD

½VDD

01

0

VDD½VDD+δ

DRAM Subarray – Building Block for
DRAM Chip

147

Ro
w

 D
ec

od
er

Cell Array

Cell Array

Array of Sense Amplifiers (Row Buffer) 8Kb

DRAM Bank

148

Ro
w

 D
ec

od
er

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

Ro
w

 D
ec

od
er

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O (64b)

Ad
dr
es
s

Address
Data

DRAM Chip

149

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder
Ar

ra
y

of
 S

en
se

Am

pl
ifi

er
s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Shared internal bus

Memory channel - 8bits

DRAM Operation

150

Ro
w

 D
ec

od
er

Ro
w

 D
ec

od
er

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O
Data

1

2

ACTIVATE Row

READ/WRITE Column

3 PRECHARGE

Ro
w

 A
dd

re
ss

Column Address

End of Backup Slides

151

