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Memory Fundamentals
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Memory in a Modern System
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Ideal Memory
n Zero access time (latency)
n Infinite capacity
n Zero cost
n Infinite bandwidth (to support multiple accesses in parallel)
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The Problem
n Ideal memory’s requirements oppose each other

n Bigger is slower
q Bigger à Takes longer to determine the location

n Faster is more expensive
q Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

n Higher bandwidth is more expensive
q Need more banks, more ports, higher frequency, or faster 

technology
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Memory Technology: DRAM
n Dynamic random access memory
n Capacitor charge state indicates stored value

q Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

q 1 capacitor
q 1 access transistor

n Capacitor leaks through the RC path
q DRAM cell loses charge over time
q DRAM cell needs to be refreshed

q Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM 
Refresh,” ISCA 2012.
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n Static random access memory
n Two cross coupled inverters store a single bit

q Feedback path enables the stored value to persist in the “cell”
q 4 transistors for storage
q 2 transistors for access

Memory Technology: SRAM
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An Aside: Phase Change Memory
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity
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PCM is resistive memory:  High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, �Architecting Phase Change Memory as a Scalable DRAM 
Alternative,� ISCA 2009.



Reading: PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)
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http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf


Reading: More on PCM As Main Memory
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010. 
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https://users.ece.cmu.edu/~omutlu/pub/pcm_ieee_micro10.pdf
http://www.computer.org/micro/


Memory Bank: A Fundamental Concept
n Interleaving (banking)

q Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel

q Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

q Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles)
n Each bank is smaller than the entire memory storage
n Accesses to different banks can be overlapped

q An issue: How do you map data to different banks? (i.e., how 
do you interleave data across banks?)
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Memory Bank Organization and Operation
n Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines
• For next access
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Why Memory Hierarchy?
n We want both fast and large

n But we cannot achieve both with a single level of memory

n Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s)
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Memory Hierarchy
n Fundamental tradeoff

q Fast memory: small
q Large memory: slow

n Idea: Memory hierarchy

n Latency, cost, size, 
bandwidth
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Caching Basics: Exploit Temporal Locality
n Idea: Store recently accessed data in automatically 

managed fast memory (called cache)
n Anticipation: the data will be accessed again soon

n Temporal locality principle
q Recently accessed data will be again accessed in the near 

future
q This is what Maurice Wilkes had in mind:

n Wilkes, �Slave Memories and Dynamic Storage Allocation,� IEEE 
Trans. On Electronic Computers, 1965.

n �The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.�
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Caching Basics: Exploit Spatial Locality
n Idea: Store addresses adjacent to the recently accessed 

one in automatically managed fast memory
q Logically divide memory into equal size blocks
q Fetch to cache the accessed block in its entirety

n Anticipation: nearby data will be accessed soon

n Spatial locality principle
q Nearby data in memory will be accessed in the near future

n E.g., sequential instruction access, array traversal
q This is what IBM 360/85 implemented

n 16 Kbyte cache with 64 byte blocks
n Liptay, �Structural aspects of the System/360 Model 85 II: the 

cache,� IBM Systems Journal, 1968.
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A Note on Manual vs. Automatic Management

n Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q “core” vs “drum” memory in the 50’s
q still done in some embedded processors (on-chip scratch pad 

SRAM in lieu of a cache)

n Automatic: Hardware manages data movement across levels, 
transparently to the programmer
++ programmer’s life is easier
q simple heuristic: keep most recently used items in cache
q the average programmer doesn’t need to know about it

n You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?)
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Automatic Management in Memory Hierarchy

n Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.”
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Historical Aside: Other Cache Papers
n Fotheringham, “Dynamic Storage Allocation in the Atlas 

Computer, Including an Automatic Use of a Backing Store,” 
CACM 1961.
q http://dl.acm.org/citation.cfm?id=366800

n Bloom, Cohen, Porter, “Considerations in the Design of a 
Computer with High Logic-to-Memory Speed Ratio,” AIEE 
Gigacycle Computing Systems Winter Meeting, Jan. 1962.
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http://dl.acm.org/citation.cfm?id=366800


Cache in 1962 (Bloom, Cohen, Porter)
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A Modern Memory Hierarchy
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The DRAM Subsystem



DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column
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Page Mode DRAM
n A DRAM bank is a 2D array of cells: rows x columns
n A �DRAM row� is also called a �DRAM page�
n �Sense amplifiers� also called �row buffer�

n Each address is a <row,column> pair
n Access to a �closed row�

q Activate command opens row (placed into row buffer)
q Read/write command reads/writes column in the row buffer
q Precharge command closes the row and prepares the bank for 

next access
n Access to an �open row�

q No need for activate command
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The DRAM Bank Structure
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DRAM Bank Operation
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The DRAM Chip
n Consists of multiple banks (8 is a common number today)
n Banks share command/address/data buses
n The chip itself has a narrow interface (4-16 bits per read)

n Changing the number of banks, size of the interface (pins), 
whether or not command/address/data buses are shared 
has significant impact on DRAM system cost
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128M x 8-bit DRAM Chip
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DRAM Rank and Module
n Rank: Multiple chips operated together to form a wide 

interface
n All chips comprising a rank are controlled at the same time

q Respond to a single command
q Share address and command buses, but provide different data

n A DRAM module consists of one or more ranks
q E.g., DIMM (dual inline memory module)
q This is what you plug into your motherboard

n If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM
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A 64-bit Wide DIMM (One Rank)
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A 64-bit Wide DIMM (One Rank)
n Advantages:

q Acts like a high-
capacity DRAM chip 
with a wide 
interface

q Flexibility: memory 
controller does not 
need to deal with 
individual chips

n Disadvantages:
q Granularity: 

Accesses cannot be 
smaller than the 
interface width

31Mutlu+, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” MICRO 2007.



Multiple DIMMs

32

n Advantages:
q Enables even 

higher capacity

n Disadvantages:
q Interconnect 

complexity and 
energy 
consumption 
can be high
à Scalability is 

limited by this



DRAM Channels

n 2 Independent Channels: 2 Memory Controllers (Above)

n 2 Dependent/Lockstep Channels: 1 Memory Controller with 
wide interface (Not shown above)

33Mutlu+, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” MICRO 2007.



Generalized Memory Structure
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Generalized Memory Structure
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Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
Lee+, “Decoupled Direct Memory Access,” PACT 2015.



Readings on DRAM
n DRAM Organization and Operation Basics

q Sections 1 and 2 of: Lee et al., “Tiered-Latency DRAM: A Low 
Latency and Low Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Sections 1 and 2 of Kim et al., “A Case for Subarray-Level 
Parallelism (SALP) in DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

n DRAM Refresh Basics
q Sections 1 and 2 of Liu et al., “RAIDR: Retention-Aware 

Intelligent DRAM Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf
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https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf


The DRAM Subsystem
The Top Down View



DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column
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The DRAM subsystem
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Breaking down a DIMM

DIMM (Dual in-line memory module)
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Breaking down a DIMM
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Breaking down a Rank
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Breaking down a Chip
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Breaking down a Bank
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DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column
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Example: Transferring a cache block
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Latency Components: Basic DRAM Operation

n CPU → controller transfer time
n Controller latency

q Queuing & scheduling delay at the controller
q Access converted to basic commands

n Controller → DRAM transfer time
n DRAM bank latency

q Simple CAS (column address strobe) if row is �open� OR
q RAS (row address strobe) + CAS if array precharged OR
q PRE + RAS + CAS (worst case)

n DRAM → Controller transfer time
q Bus latency (BL)

n Controller to CPU transfer time
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Multiple Banks (Interleaving) and Channels
n Multiple banks

q Enable concurrent DRAM accesses
q Bits in address determine which bank an address resides in

n Multiple independent channels serve the same purpose
q But they are even better because they have separate data buses
q Increased bus bandwidth

n Enabling more concurrency requires reducing
q Bank conflicts
q Channel conflicts

n How to select/randomize bank/channel indices in address?
q Lower order bits have more entropy
q Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help
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Address Mapping (Single Channel)
n Single-channel system with 8-byte memory bus

q 2GB memory, 8 banks, 16K rows & 2K columns per bank

n Row interleaving
q Consecutive rows of memory in consecutive banks

q Accesses to consecutive cache blocks serviced in a pipelined manner

n Cache block interleaving
n Consecutive cache block addresses in consecutive banks
n 64 byte cache blocks

n Accesses to consecutive cache blocks can be serviced in parallel
57
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Bank Mapping Randomization
n DRAM controller can randomize the address mapping to 

banks so that bank conflicts are less likely

n Reading:
q Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.
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Address Mapping (Multiple Channels)

n Where are consecutive cache blocks?
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Interaction with VirtualàPhysical Mapping
n Operating System influences where an address maps to in 

DRAM

n Operating system can influence which bank/channel/rank a 
virtual page is mapped to. 

n It can perform page coloring to 
q Minimize bank conflicts
q Minimize inter-application interference [Muralidhara+ MICRO’11]
q Minimize latency in the network [Das+ HPCA’13]
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Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 

Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Application-to-Core Mapping
n Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh

Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


More on Reducing Bank Conflicts
n Read Sections 1 through 4 of:

q Kim et al., “A Case for Exploiting Subarray-Level Parallelism in 
DRAM,” ISCA 2012.
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Subarray Level Parallelism
n Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,

"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx


DRAM Refresh (I)
n DRAM capacitor charge leaks over time
n The memory controller needs to read each row periodically 

to restore the charge
q Activate + precharge each row every N ms
q Typical N = 64 ms

n Implications on performance?
-- DRAM bank unavailable while refreshed
-- Long pause times: If we refresh all rows in burst, every 64ms 

the DRAM will be unavailable until refresh ends
n Burst refresh: All rows refreshed immediately after one 

another
n Distributed refresh: Each row refreshed at a different time, 

at regular intervals
65



DRAM Refresh (II)

n Distributed refresh eliminates long pause times
n How else we can reduce the effect of refresh on 

performance?
q Can we reduce the number of refreshes?

66



-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while 
refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling 

Downsides of DRAM Refresh

67

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.



More on DRAM Refresh
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 

Computer Architecture (ISCA), Portland, OR, June 2012. 

Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


DRAM Retention Analysis
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


Data Retention in Memory [Liu et al., ISCA 2013]

n Data Retention Time Profile of DRAM looks like this:

70

Location dependent
Stored value pattern dependent

Time dependent



DRAM Refresh-Access Parallelization
n Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 

Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. 
[Summary] [Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
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Backup Slides
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Memory Controllers



DRAM versus Other Types of Memories

n Long latency memories have similar characteristics that 
need to be controlled.

n The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories
q Flash memory
q Other emerging memory technologies

n Phase Change Memory
n Spin-Transfer Torque Magnetic Memory

q These other technologies can place other demands on the 
controller

75



Flash Memory (SSD) Controllers
n Similar to DRAM memory controllers, except:

q They are flash memory specific
q They do much more: error correction, garbage collection, 

page remapping, …

76Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 
Lifetime”, ICCD 2012.



Another View of the SSD Controller

77

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf


On Modern SSD Controllers (I)

78https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


On Modern SSD Controllers (II)
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata 

Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern 
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


On Modern SSD Controllers (III)
n Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, 

Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. 
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in 
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer 
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A


DRAM Types
n DRAM has different types with different interfaces optimized 

for different purposes
q Commodity: DDR, DDR2, DDR3, DDR4, …
q Low power (for mobile): LPDDR1, …, LPDDR5, …
q High bandwidth (for graphics): GDDR2, …, GDDR5, …
q Low latency: eDRAM, RLDRAM, …
q 3D stacked: WIO, HBM, HMC, …
q …

n Underlying microarchitecture is fundamentally the same
n A flexible memory controller can support various DRAM types 
n This complicates the memory controller

q Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)
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Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.



DRAM Controller: Functions
n Ensure correct operation of DRAM (refresh and timing)

n Service DRAM requests while obeying timing constraints of 
DRAM chips
q Constraints: resource conflicts (bank, bus, channel), minimum 

write-to-read delays
q Translate requests to DRAM command sequences

n Buffer and schedule requests to for high performance + QoS
q Reordering, row-buffer, bank, rank, bus management

n Manage power consumption and thermals in DRAM
q Turn on/off DRAM chips, manage power modes
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A Modern DRAM Controller (I)
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A Modern DRAM Controller

Mutlu+, “Stall-Time Fair Memory Scheduling,” MICRO 2007.



DRAM Scheduling Policies (I)
n FCFS (first come first served)

q Oldest request first

n FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

q Actually, scheduling is done at the command level
n Column commands (read/write) prioritized over row commands 

(activate/precharge)
n Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation
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DRAM Scheduling Policies (II)
n A scheduling policy is a request prioritization order

n Prioritization can be based on
q Request age
q Row buffer hit/miss status
q Request type (prefetch, read, write)
q Requestor type (load miss or store miss)
q Request criticality

n Oldest miss in the core?
n How many instructions in core are dependent on it?
n Will it stall the processor?

q Interference caused to other cores
q …
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Row Buffer Management Policies
n Open row

q Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

n Closed row
q Close the row after an access (if no other requests already in the request 

buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

n Adaptive policies
q Predict whether or not the next access to the bank will be to 

the same row and act accordingly
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 
Open row Row 0 Row 1 (row 

conflict)
Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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DRAM Power Management
n DRAM chips have power modes
n Idea: When not accessing a chip power it down

n Power states
q Active (highest power)
q All banks idle
q Power-down
q Self-refresh (lowest power)

n Tradeoff: State transitions incur latency during which the 
chip cannot be accessed
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Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read 

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two 

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

n From Lee et al., �DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,� HPS Technical Report, 
April 2010.

94



More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013.
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Why So Many Timing Constraints? (I)
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Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.



Why So Many Timing Constraints? (II)
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Lee et al., “Tiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,” HPCA 2013.



DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS, 

energy efficiency, …
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Reality and Dream
n Reality: It difficult to design a policy that maximizes 

performance, QoS, energy-efficiency, … 
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt 
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to 
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory 
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best 

scheduling policy to maximize long-term performance.



Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.
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Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … ( 0 £ g < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime 
q Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in 

each state
q Continuously update reward values for <state, action> pairs based on 

feedback from system
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Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results
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Large, robust performance improvements 
over many human-designed policies 



Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy. 
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow
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More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions
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Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents
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We need to rethink design 
(of all controllers)



Simulating Memory
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Evaluating New Ideas 
for New (Memory) Architectures



Potential Evaluation Methods
n How do we assess an idea will improve a target metric X?

n A variety of evaluation methods are available:

q Theoretical proof

q Analytical modeling/estimation

q Simulation (at varying degrees of abstraction and accuracy)

q Prototyping with a real system (e.g., FPGAs)

q Real implementation
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The Difficulty in Architectural Evaluation
n The answer is usually workload dependent

q E.g., think caching
q E.g., think pipelining
q E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

n Workloads change

n System has many design choices and parameters
q Architect needs to decide many ideas and many parameters 

for a design
q Not easy to evaluate all possible combinations!

n System parameters may change
114



Simulation: The Field of Dreams



Dreaming and Reality
n An architect is in part a dreamer, a creator

n Simulation is a key tool of the architect

n Simulation enables
q The exploration of many dreams
q A reality check of the dreams
q Deciding which dream is better

n Simulation also enables
q The ability to fool yourself with false dreams
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Why High-Level Simulation?
n Problem: RTL simulation is intractable for design space 

exploration à too time consuming to design and evaluate

q Especially over a large number of workloads

q Especially if you want to predict the performance of a good 

chunk of a workload on a particular design

q Especially if you want to consider many design choices

n Cache size, associativity, block size, algorithms

n Memory control and scheduling algorithms

n In-order vs. out-of-order execution

n Reservation station sizes, ld/st queue size, register file size, …

n …

n Goal: Explore design choices quickly to see their impact on 

the workloads we are designing the platform for
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Different Goals in Simulation
n Explore the design space quickly and see what you want to

q potentially implement in a next-generation platform
q propose as the next big idea to advance the state of the art
q the goal is mainly to see relative effects of design decisions

n Match the behavior of an existing system so that you can
q debug and verify it at cycle-level accuracy
q propose small tweaks to the design that can make a difference in 

performance or energy
q the goal is very high accuracy

n Other goals in-between:
q Refine the explored design space without going into a full 

detailed, cycle-accurate design
q Gain confidence in your design decisions made by higher-level 

design space exploration
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Tradeoffs in Simulation
n Three metrics to evaluate a simulator

q Speed
q Flexibility
q Accuracy

n Speed: How fast the simulator runs (xIPS, xCPS, slowdown)
n Flexibility: How quickly one can modify the simulator to 

evaluate different algorithms and design choices?
n Accuracy: How accurate the performance (energy) numbers 

the simulator generates are vs. a real design (Simulation 
error)

n The relative importance of these metrics varies depending 
on where you are in the design process (what your goal is)
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Trading Off Speed, Flexibility, Accuracy
n Speed & flexibility affect:

q How quickly you can make design tradeoffs

n Accuracy affects:
q How good your design tradeoffs may end up being
q How fast you can build your simulator (simulator design time)

n Flexibility also affects:
q How much human effort you need to spend modifying the 

simulator

n You can trade off between the three to achieve design 
exploration and decision goals
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High-Level Simulation
n Key Idea: Raise the abstraction level of modeling to give up 

some accuracy to enable speed & flexibility (and quick 
simulator design)

n Advantage
+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can 
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not 
exact performance numbers

n Disadvantage
-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
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Simulation as Progressive Refinement
n High-level models (Abstract, C)
n …
n Medium-level models (Less abstract)
n …
n Low-level models (RTL with everything modeled)
n …
n Real design

n As you refine (go down the above list)
q Abstraction level reduces
q Accuracy (hopefully) increases (not necessarily, if not careful)
q Flexibility reduces; Speed likely reduces except for real design
q You can loop back and fix higher-level models
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Making The Best of Architecture
n A good architect is comfortable at all levels of refinement

q Including the extremes

n A good architect knows when to use what type of 
simulation 
q And, more generally, what type of evaluation method

n Recall: A variety of evaluation methods are available:
q Theoretical proof
q Analytical modeling
q Simulation (at varying degrees of abstraction and accuracy)
q Prototyping with a real system (e.g., FPGAs)
q Real implementation
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Ramulator: A Fast and Extensible 
DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed
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Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards

127

Across 22 
workloads, 
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Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator

128

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
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https://github.com/CMU-SAFARI/ramulator


Optional Assignment
n Review the Ramulator paper

q Email me your review (omutlu@gmail.com) 

n Download and run Ramulator
q Compare DDR3, DDR4, SALP, HBM for the libquantum

benchmark (provided in Ramulator repository)
q Email me your report (omutlu@gmail.com) 

n This will help you get into memory systems research
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Some More Suggested Readings
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Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in 
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf
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Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM 

Refresh,” ISCA 2012. 

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-

refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing 

Refreshes with Accesses,” HPCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the 

Mitigation of DRAM Retention Failures via Profiling at 

Aggressive Conditions,” ISCA 2017.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-

profiling-lpddr4_isca17.pdf
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Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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Some Key Readings on Memory Control 1
q Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance 

and Fairness of Shared DRAM Systems,” ISCA 2008. 
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

q Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior,” MICRO 2010.
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

q Subramanian et al., “BLISS: Balancing Performance, Fairness and 
Complexity in Memory Access Scheduling,” TPDS 2016.
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

q Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler 
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf
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Some Key Readings on Memory Control 2
q Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning 

Approach,” ISCA 2008. 

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

q Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-

Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS 

2010.

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

q Subramanian et al., “The Application Slowdown Model: Quantifying and 

Controlling the Impact of Inter-Application Interference at Shared Caches 

and Main Memory,” MICRO 2015.

https://people.inf.ethz.ch/omutlu/pub/application-slowdown-

model_micro15.pdf

q Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic 

by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
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More Readings
n To come as we cover the future topics

n Search for “DRAM” or “Memory” in:
q https://people.inf.ethz.ch/omutlu/projects.htm
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Inside A DRAM Chip
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DRAM Module and Chip
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Goals

• Cost
• Latency
• Bandwidth
• Parallelism
• Power
• Energy
• Reliability
• …
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DRAM Chip
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Sense Amplifier
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Sense Amplifier – Two Stable States
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Sense Amplifier Operation
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DRAM Cell – Capacitor
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Capacitor to Sense Amplifier
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DRAM Cell Operation
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DRAM Subarray – Building Block for 
DRAM Chip
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DRAM Bank

148

Ro
w

 D
ec

od
er

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

Ro
w

 D
ec

od
er

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O (64b)

Ad
dr
es
s

Address
Data



DRAM Chip
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