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Memory Controllers



DRAM versus Other Types of Memories

n Long latency memories have similar characteristics that 
need to be controlled.

n The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories
q Flash memory
q Other emerging memory technologies

n Phase Change Memory
n Spin-Transfer Torque Magnetic Memory

q These other technologies can place other demands on the 
controller
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Flash Memory (SSD) Controllers
n Similar to DRAM memory controllers, except:

q They are flash memory specific
q They do much more: error correction, garbage collection, 

page remapping, …

4Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 
Lifetime”, ICCD 2012.



Another View of the SSD Controller
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Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf


On Modern SSD Controllers (I)

6https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


On Modern SSD Controllers (II)
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata 

Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern 
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


On Modern SSD Controllers (III)
n Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, 

Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. 
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in 
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer 
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A


DRAM Types
n DRAM has different types with different interfaces optimized 

for different purposes
q Commodity: DDR, DDR2, DDR3, DDR4, …
q Low power (for mobile): LPDDR1, …, LPDDR5, …
q High bandwidth (for graphics): GDDR2, …, GDDR5, …
q Low latency: eDRAM, RLDRAM, …
q 3D stacked: WIO, HBM, HMC, …
q …

n Underlying microarchitecture is fundamentally the same
n A flexible memory controller can support various DRAM types 
n This complicates the memory controller

q Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)

10

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.



DRAM Controller: Functions
n Ensure correct operation of DRAM (refresh and timing)

n Service DRAM requests while obeying timing constraints of 
DRAM chips
q Constraints: resource conflicts (bank, bus, channel), minimum 

write-to-read delays
q Translate requests to DRAM command sequences

n Buffer and schedule requests to for high performance + QoS
q Reordering, row-buffer, bank, rank, bus management

n Manage power consumption and thermals in DRAM
q Turn on/off DRAM chips, manage power modes

11



A Modern DRAM Controller (I)
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A Modern DRAM Controller

Mutlu+, “Stall-Time Fair Memory Scheduling,” MICRO 2007.



DRAM Scheduling Policies (I)
n FCFS (first come first served)

q Oldest request first

n FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

q Actually, scheduling is done at the command level
n Column commands (read/write) prioritized over row commands 

(activate/precharge)
n Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation
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DRAM Scheduling Policies (II)
n A scheduling policy is a request prioritization order

n Prioritization can be based on
q Request age
q Row buffer hit/miss status
q Request type (prefetch, read, write)
q Requestor type (load miss or store miss)
q Request criticality

n Oldest miss in the core?
n How many instructions in core are dependent on it?
n Will it stall the processor?

q Interference caused to other cores
q …
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Row Buffer Management Policies
n Open row

q Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

n Closed row
q Close the row after an access (if no other requests already in the request 

buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

n Adaptive policies
q Predict whether or not the next access to the bank will be to 

the same row and act accordingly
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 
Open row Row 0 Row 1 (row 

conflict)
Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge

18



DRAM Power Management
n DRAM chips have power modes
n Idea: When not accessing a chip power it down

n Power states
q Active (highest power)
q All banks idle
q Power-down
q Self-refresh (lowest power)

n Tradeoff: State transitions incur latency during which the 
chip cannot be accessed

19



Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read 

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two 

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

21



Many DRAM Timing Constraints

n From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013.

23



Why So Many Timing Constraints? (I)
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Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.



Why So Many Timing Constraints? (II)

25

Lee et al., “Tiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,” HPCA 2013.



DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS, 

energy efficiency, …
26
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Reality and Dream
n Reality: It is difficult to design a policy that maximizes 

performance, QoS, energy-efficiency, … 
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?

27



Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt 
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to 
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory 
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best 

scheduling policy to maximize long-term performance.



Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.

29

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … ( 0 £ g < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime 
q Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in 

each state
q Continuously update reward values for <state, action> pairs based on 

feedback from system
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Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

31

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards

32

❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results

33

Large, robust performance improvements 
over many human-designed policies 



Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy. 
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

34



More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures
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System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

37

Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

38

We need to rethink design 
(of all controllers)



Memory Interference

39



Inter-Thread/Application Interference
n Problem: Threads share the memory system, but memory 

system does not distinguish between threads’ requests

n Existing memory systems 
q Free-for-all, shared based on demand
q Control algorithms thread-unaware and thread-unfair
q Aggressive threads can deny service to others
q Do not try to reduce or control inter-thread interference

40
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Uncontrolled Interference: An Example
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// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

42

A Memory Performance Hog

STREAM

- Sequential memory access 
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



43

What Does the Memory Hog Do?
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service 
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)
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DRAM Controllers

n A row-conflict memory access takes significantly longer 
than a row-hit access

n Current controllers take advantage of the row buffer

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput
n But, it is unfair when multiple threads share the DRAM system  

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.



Effect of the Memory Performance Hog
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1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux) 
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.



Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs 
n Low system performance

Uncontrollable, unpredictable system
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Greater Problem with More Cores

n Vulnerable to denial of service (DoS) 
n Unable to enforce priorities or SLAs
n Low system performance 

Uncontrollable, unpredictable system
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More on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu, 

"Memory Performance Attacks: Denial of Memory Service 
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX 
SECURITY), pages 257-274, Boston, MA, August 2007. Slides 
(ppt)

49

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt


How Do We Solve The Problem?

n Inter-thread interference is uncontrolled in all memory 
resources
q Memory controller
q Interconnect
q Caches

n We need to control it
q i.e., design an interference-aware (QoS-aware) memory system

50



QoS-Aware Memory Scheduling

n How to schedule requests to provide
q High system performance
q High fairness to applications
q Configurability to system software 

n Memory controller needs to be aware of threads

51
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Core Core
Memory

Resolves memory contention 
by scheduling requests



QoS-Aware Memory: Readings (I)
n Onur Mutlu and Thomas Moscibroda, 

"Stall-Time Fair Memory Access Scheduling for Chip 
Multiprocessors"
Proceedings of the 40th International Symposium on 
Microarchitecture (MICRO), pages 146-158, Chicago, IL, 
December 2007. [Summary] [Slides (ppt)] 

52

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt


QoS-Aware Memory: Readings (II)
n Onur Mutlu and Thomas Moscibroda, 

"Parallelism-Aware Batch Scheduling: Enhancing both 
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer 
Architecture (ISCA), pages 63-74, Beijing, China, June 2008. 
[Summary] [Slides (ppt)]

53

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt


QoS-Aware Memory: Readings (III)
n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance Scheduling 
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India, 
January 2010. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx


QoS-Aware Memory: Readings (IV)
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-

Balter,
"Thread Cluster Memory Scheduling: Exploiting 
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on 
Microarchitecture (MICRO), pages 65-76, Atlanta, GA, 
December 2010. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf


QoS-Aware Memory: Readings (V)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High 
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on 
Computer Design (ICCD), Seoul, South Korea, October 2014. 
[Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf


QoS-Aware Memory: Readings (VI)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, 

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in 
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to 
appear in 2016.  arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004, 
Carnegie Mellon University, March 2015.
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim


QoS-Aware Memory: Readings (VII)
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, 

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High 
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx


QoS-Aware Memory: Readings (VIII)
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and 

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory 
Scheduler for Heterogeneous Systems with Hardware 
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO), 
Vol. 12, January 2016. 
Presented at the 11th HiPEAC Conference, Prague, Czech Republic, 
January 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim


QoS-Aware Memory: Readings (IX)
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, 

and Onur Mutlu,
"MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China, 
February 2013. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx


QoS-Aware Memory: Readings (X)
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and 

Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling 
the Impact of Inter-Application Interference at Shared Caches 
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)] 
[Source Code] 

61

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim


Some More Suggested Readings
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Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in 
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf
63
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Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM 
Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing 
Refreshes with Accesses,” HPCA 2014.
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the 
Mitigation of DRAM Retention Failures via Profiling at 
Aggressive Conditions,” ISCA 2017.
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf
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Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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Some Key Readings on Memory Control 1
q Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance 

and Fairness of Shared DRAM Systems,” ISCA 2008. 
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

q Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior,” MICRO 2010.
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

q Subramanian et al., “BLISS: Balancing Performance, Fairness and 
Complexity in Memory Access Scheduling,” TPDS 2016.
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

q Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler 
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf
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Some Key Readings on Memory Control 2
q Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning 

Approach,” ISCA 2008. 
https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

q Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS 
2010.
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

q Subramanian et al., “The Application Slowdown Model: Quantifying and 
Controlling the Impact of Inter-Application Interference at Shared Caches 
and Main Memory,” MICRO 2015.
https://people.inf.ethz.ch/omutlu/pub/application-slowdown-
model_micro15.pdf

q Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic 
by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
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More Readings
n To come as we cover the future topics

n Search for “DRAM” or “Memory” in:
q https://people.inf.ethz.ch/omutlu/projects.htm
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Optional Slides: 
Inside A DRAM Chip
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DRAM Module and Chip
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Goals

• Cost
• Latency
• Bandwidth
• Parallelism
• Power
• Energy
• Reliability
• …
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DRAM Chip
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Sense Amplifier
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Sense Amplifier – Two Stable States
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Sense Amplifier Operation
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DRAM Cell – Capacitor
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Capacitor to Sense Amplifier
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DRAM Cell Operation
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DRAM Subarray – Building Block for 
DRAM Chip
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DRAM Bank
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DRAM Chip
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DRAM Operation
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Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in 
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf
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Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM 
Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing 
Refreshes with Accesses,” HPCA 2014.
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the 
Mitigation of DRAM Retention Failures via Profiling at 
Aggressive Conditions,” ISCA 2017.
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf
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Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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