
Prof. Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
13 June 2019

TU Wien Fast Course 2019

Memory Systems
and Memory-Centric Computing Systems

Lecture 2a: Memory Controllers

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Memory Controllers

DRAM versus Other Types of Memories

n Long latency memories have similar characteristics that
need to be controlled.

n The following discussion will use DRAM as an example, but
many scheduling and control issues are similar in the
design of controllers for other types of memories
q Flash memory
q Other emerging memory technologies

n Phase Change Memory
n Spin-Transfer Torque Magnetic Memory

q These other technologies can place other demands on the
controller

3

Flash Memory (SSD) Controllers
n Similar to DRAM memory controllers, except:

q They are flash memory specific
q They do much more: error correction, garbage collection,

page remapping, …

4Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory
Lifetime”, ICCD 2012.

Another View of the SSD Controller

5

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf

On Modern SSD Controllers (I)

6https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

On Modern SSD Controllers (II)
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata

Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

7

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

On Modern SSD Controllers (III)
n Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim,

Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G.
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

8

https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A

DRAM Types
n DRAM has different types with different interfaces optimized

for different purposes
q Commodity: DDR, DDR2, DDR3, DDR4, …
q Low power (for mobile): LPDDR1, …, LPDDR5, …
q High bandwidth (for graphics): GDDR2, …, GDDR5, …
q Low latency: eDRAM, RLDRAM, …
q 3D stacked: WIO, HBM, HMC, …
q …

n Underlying microarchitecture is fundamentally the same
n A flexible memory controller can support various DRAM types
n This complicates the memory controller

q Difficult to support all types (and upgrades)

9

DRAM Types (circa 2015)

10

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.

DRAM Controller: Functions
n Ensure correct operation of DRAM (refresh and timing)

n Service DRAM requests while obeying timing constraints of
DRAM chips
q Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays
q Translate requests to DRAM command sequences

n Buffer and schedule requests to for high performance + QoS
q Reordering, row-buffer, bank, rank, bus management

n Manage power consumption and thermals in DRAM
q Turn on/off DRAM chips, manage power modes

11

A Modern DRAM Controller (I)

12

13

A Modern DRAM Controller

Mutlu+, “Stall-Time Fair Memory Scheduling,” MICRO 2007.

DRAM Scheduling Policies (I)
n FCFS (first come first served)

q Oldest request first

n FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

q Actually, scheduling is done at the command level
n Column commands (read/write) prioritized over row commands

(activate/precharge)
n Within each group, older commands prioritized over younger ones

14

Review: DRAM Bank Operation

15

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

DRAM Scheduling Policies (II)
n A scheduling policy is a request prioritization order

n Prioritization can be based on
q Request age
q Row buffer hit/miss status
q Request type (prefetch, read, write)
q Requestor type (load miss or store miss)
q Request criticality

n Oldest miss in the core?
n How many instructions in core are dependent on it?
n Will it stall the processor?

q Interference caused to other cores
q …

16

Row Buffer Management Policies
n Open row

q Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

n Closed row
q Close the row after an access (if no other requests already in the request

buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

n Adaptive policies
q Predict whether or not the next access to the bank will be to

the same row and act accordingly

17

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read
Open row Row 0 Row 1 (row

conflict)
Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

18

DRAM Power Management
n DRAM chips have power modes
n Idea: When not accessing a chip power it down

n Power states
q Active (highest power)
q All banks idle
q Power-down
q Self-refresh (lowest power)

n Tradeoff: State transitions incur latency during which the
chip cannot be accessed

19

Difficulty of DRAM Control

Why are DRAM Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read

command after a write command is issued
q tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

21

Many DRAM Timing Constraints

n From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

22

More on DRAM Operation
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

23

Why So Many Timing Constraints? (I)

24

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.

Why So Many Timing Constraints? (II)

25

Lee et al., “Tiered-Latency DRAM: A Low Latency
and Low Cost DRAM Architecture,” HPCA 2013.

DRAM Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
26

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream
n Reality: It is difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

27

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best

scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

29

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … (0 £ g < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in

each state
q Continuously update reward values for <state, action> pairs based on

feedback from system

30

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

31

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

32

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

33

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

34

More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

35

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures

36

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

37

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

38

We need to rethink design
(of all controllers)

Memory Interference

39

Inter-Thread/Application Interference
n Problem: Threads share the memory system, but memory

system does not distinguish between threads’ requests

n Existing memory systems
q Free-for-all, shared based on demand
q Control algorithms thread-unaware and thread-unfair
q Aggressive threads can deny service to others
q Do not try to reduce or control inter-thread interference

40

41

Uncontrolled Interference: An Example

CORE 1 CORE 2

L2
CACHE

L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = rand();
A[index] = B[index];
…

}

42

A Memory Performance Hog

STREAM

- Sequential memory access
- Very high row buffer locality (96% hit rate)
- Memory intensive

RANDOM

- Random memory access
- Very low row buffer locality (3% hit rate)
- Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
index = j*linesize;
A[index] = B[index];
…

}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

43

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0T1: Row 111
T0: Row 0T0: Row 0T1: Row 5

T0: Row 0T0: Row 0T0: Row 0T0: Row 0T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

44

45

DRAM Controllers

n A row-conflict memory access takes significantly longer
than a row-hit access

n Current controllers take advantage of the row buffer

n Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*
(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n This scheduling policy aims to maximize DRAM throughput
n But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

46

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

47

Greater Problem with More Cores

n Vulnerable to denial of service (DoS)
n Unable to enforce priorities or SLAs
n Low system performance

Uncontrollable, unpredictable system

48

More on Memory Performance Attacks
n Thomas Moscibroda and Onur Mutlu,

"Memory Performance Attacks: Denial of Memory Service
in Multi-Core Systems"
Proceedings of the 16th USENIX Security Symposium (USENIX
SECURITY), pages 257-274, Boston, MA, August 2007. Slides
(ppt)

49

http://users.ece.cmu.edu/~omutlu/pub/mph_usenix_security07.pdf
http://www.usenix.org/events/sec07/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_usenix-security07_talk.ppt

How Do We Solve The Problem?

n Inter-thread interference is uncontrolled in all memory
resources
q Memory controller
q Interconnect
q Caches

n We need to control it
q i.e., design an interference-aware (QoS-aware) memory system

50

QoS-Aware Memory Scheduling

n How to schedule requests to provide
q High system performance
q High fairness to applications
q Configurability to system software

n Memory controller needs to be aware of threads

51

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

QoS-Aware Memory: Readings (I)
n Onur Mutlu and Thomas Moscibroda,

"Stall-Time Fair Memory Access Scheduling for Chip
Multiprocessors"
Proceedings of the 40th International Symposium on
Microarchitecture (MICRO), pages 146-158, Chicago, IL,
December 2007. [Summary] [Slides (ppt)]

52

http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07.pdf
http://www.microarch.org/micro40/
http://users.ece.cmu.edu/~omutlu/pub/stfm_micro07-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_micro07_talk.ppt

QoS-Aware Memory: Readings (II)
n Onur Mutlu and Thomas Moscibroda,

"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems"
Proceedings of the 35th International Symposium on Computer
Architecture (ISCA), pages 63-74, Beijing, China, June 2008.
[Summary] [Slides (ppt)]

53

http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08.pdf
http://isca2008.cs.princeton.edu/
http://users.ece.cmu.edu/~omutlu/pub/parbs_isca08-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca08_talk.ppt

QoS-Aware Memory: Readings (III)
n Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,

"ATLAS: A Scalable and High-Performance Scheduling
Algorithm for Multiple Memory Controllers"
Proceedings of the 16th International Symposium on High-
Performance Computer Architecture (HPCA), Bangalore, India,
January 2010. Slides (pptx)

54

http://users.ece.cmu.edu/~omutlu/pub/atlas_hpca10.pdf
http://www.cse.psu.edu/hpcl/hpca16.html
http://users.ece.cmu.edu/~omutlu/pub/kim_hpca10_talk.pptx

QoS-Aware Memory: Readings (IV)
n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-

Balter,
"Thread Cluster Memory Scheduling: Exploiting
Differences in Memory Access Behavior"
Proceedings of the 43rd International Symposium on
Microarchitecture (MICRO), pages 65-76, Atlanta, GA,
December 2010. Slides (pptx) (pdf)

55

http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf

QoS-Aware Memory: Readings (V)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha

Rastogi, and Onur Mutlu,
"The Blacklisting Memory Scheduler: Achieving High
Performance and Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on
Computer Design (ICCD), Seoul, South Korea, October 2014.
[Slides (pptx) (pdf)]

56

http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf

QoS-Aware Memory: Readings (VI)
n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi,

and Onur Mutlu,
"BLISS: Balancing Performance, Fairness and Complexity in
Memory Access Scheduling"
IEEE Transactions on Parallel and Distributed Systems (TPDS), to
appear in 2016. arXiv.org version, April 2015.
An earlier version as SAFARI Technical Report, TR-SAFARI-2015-004,
Carnegie Mellon University, March 2015.
[Source Code]

57

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
http://www.computer.org/web/tpds/
http://arxiv.org/pdf/1504.00390.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_cmu-safari-tr15.pdf
http://www.ece.cmu.edu/~safari/tr.html
https://github.com/CMU-SAFARI/MemSchedSim

QoS-Aware Memory: Readings (VII)
n Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian,

Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High
Performance and Scalability in Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)

58

http://users.ece.cmu.edu/~omutlu/pub/staged-memory-scheduling_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/rachata_isca12_talk.pptx

QoS-Aware Memory: Readings (VIII)
n Hiroyuki Usui, Lavanya Subramanian, Kevin Kai-Wei Chang, and

Onur Mutlu,
"DASH: Deadline-Aware High-Performance Memory
Scheduler for Heterogeneous Systems with Hardware
Accelerators"
ACM Transactions on Architecture and Code Optimization (TACO),
Vol. 12, January 2016.
Presented at the 11th HiPEAC Conference, Prague, Czech Republic,
January 2016.
[Slides (pptx) (pdf)]
[Source Code]

59

https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf
http://taco.acm.org/
https://www.hipeac.net/2016/prague/
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_usui_hipeac16-talk.pdf
https://github.com/CMU-SAFARI/HWASim

QoS-Aware Memory: Readings (IX)
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen,

and Onur Mutlu,
"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

60

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx

QoS-Aware Memory: Readings (X)
n Lavanya Subramanian, Vivek Seshadri, Arnab Ghosh, Samira Khan, and

Onur Mutlu,
"The Application Slowdown Model: Quantifying and Controlling
the Impact of Inter-Application Interference at Shared Caches
and Main Memory"
Proceedings of the 48th International Symposium on Microarchitecture
(MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

61

https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_micro15.pdf
http://www.microarch.org/micro48/
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-lightning-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pptx
https://users.ece.cmu.edu/~omutlu/pub/application-slowdown-model_lavanya_micro15-poster.pdf
https://github.com/CMU-SAFARI/ASMSim

Some More Suggested Readings

62

Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf
63

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-3d-stacked-memory_taco16.pdf

Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing
Refreshes with Accesses,” HPCA 2014.
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions,” ISCA 2017.
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf

64

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf

Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

65

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Some Key Readings on Memory Control 1
q Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance

and Fairness of Shared DRAM Systems,” ISCA 2008.
https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

q Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” MICRO 2010.
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

q Subramanian et al., “BLISS: Balancing Performance, Fairness and
Complexity in Memory Access Scheduling,” TPDS 2016.
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

q Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf

66

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf
https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-tpds16.pdf
https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-heterogeneous-memory-scheduler_taco16.pdf

Some Key Readings on Memory Control 2
q Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning

Approach,” ISCA 2008.
https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

q Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS
2010.
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

q Subramanian et al., “The Application Slowdown Model: Quantifying and
Controlling the Impact of Inter-Application Interference at Shared Caches
and Main Memory,” MICRO 2015.
https://people.inf.ethz.ch/omutlu/pub/application-slowdown-
model_micro15.pdf

q Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic
by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

67

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf
https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf
https://people.inf.ethz.ch/omutlu/pub/application-slowdown-model_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf

More Readings
n To come as we cover the future topics

n Search for “DRAM” or “Memory” in:
q https://people.inf.ethz.ch/omutlu/projects.htm

68

https://people.inf.ethz.ch/omutlu/projects.htm

Optional Slides:
Inside A DRAM Chip

69

DRAM Module and Chip

70

Goals

• Cost
• Latency
• Bandwidth
• Parallelism
• Power
• Energy
• Reliability
• …

71

DRAM Chip

72

Row Decoder

Array of Sense Am
plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense Am
plifiers

Cell Array

Cell Array

Bank I/O

Sense Amplifier

73

enable

top

bottom

Inverter

Sense Amplifier – Two Stable States

74

1 1

0

0VDD

VDD

Logical “1” Logical “0”

Sense Amplifier Operation

75

0

VT

VB

VT > VB1

0

VDD

DRAM Cell – Capacitor

76

Empty State Fully Charged State

Logical “0” Logical “1”

1

2

Small – Cannot drive circuits

Reading destroys the state

Capacitor to Sense Amplifier

77

1

0

VDD

1

VDD

0

DRAM Cell Operation

78

½VDD

½VDD

01

0

VDD½VDD+δ

DRAM Subarray – Building Block for
DRAM Chip

79

Ro
w

 D
ec

od
er

Cell Array

Cell Array

Array of Sense Amplifiers (Row Buffer) 8Kb

DRAM Bank

80

Ro
w

 D
ec

od
er

Array of Sense Amplifiers (8Kb)

Cell Array

Cell Array

Ro
w

 D
ec

od
er

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O (64b)

Ad
dr

es
s

Address
Data

DRAM Chip

81

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Row Decoder

Array of Sense
Am

plifiers

Cell Array

Cell Array

Bank I/O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Row Decoder

Ar
ra

y
of

 S
en

se

Am
pl

ifi
er

s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Row Decoder
Ar

ra
y

of
 S

en
se

Am

pl
ifi

er
s

Ce
ll

Ar
ra

y

Ce
ll

Ar
ra

y

Ba
nk

 I/
O

Shared internal bus

Memory channel - 8bits

DRAM Operation

82

Ro
w

 D
ec

od
er

Ro
w

 D
ec

od
er

Array of Sense Amplifiers

Cell Array

Cell Array

Bank I/O
Data

1

2

ACTIVATE Row

READ/WRITE Column

3 PRECHARGE

Ro
w

 A
dd

re
ss

Column Address

Some Key Readings on DRAM (I)
n DRAM Organization and Operation

q Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.
https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

q Kim et al., “A Case for Subarray-Level Parallelism (SALP) in
DRAM,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

q Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-

3d-stacked-memory_taco16.pdf
83

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-3d-stacked-memory_taco16.pdf

Some Key Readings on DRAM (II)
n DRAM Refresh

q Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

q Chang et al., “Improving DRAM Performance by Parallelizing
Refreshes with Accesses,” HPCA 2014.
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-

parallelization_hpca14.pdf

q Patel et al., “The Reach Profiler (REAPER): Enabling the
Mitigation of DRAM Retention Failures via Profiling at
Aggressive Conditions,” ISCA 2017.
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf

84

https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf

Reading on Simulating Main Memory
n How to evaluate future main memory systems?
n An open-source simulator and its brief description

n Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

85

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator

Prof. Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
13 June 2019

TU Wien Fast Course 2019

Memory Systems
and Memory-Centric Computing Systems

Lecture 2a: Memory Controllers

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

