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Future ot Main Memory

= DRAM is becoming less reliable - more vulnerable

SAFARI



Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook’s server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,

"Revisiting Memory Errors in Large-Scale Production Data

Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu™* Sanjeev Kumar®™ Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
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http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html
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Aside: SSD Error Analysis in the Field

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.

[Slides (pptx) (pdf)] [Coverage at ZDNet]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu gwu@fb.com skumar@fb.com onur@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/

Future of Main Memory

DRAM is becoming less reliable > more vulnerable

Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

Some errors may already be slipping into the field
o Read disturb errors (Rowhammer)

0 | Retention errors |
o Read errors, write errors

Q ...

These errors can also pose security vulnerabilities

SAFARI



DRAM Data Retention Time Failures

Determining the data retention time of a cell/row is getting
more difficult

Retention failures may already be slipping into the field

SAFARI 8



Analysis of Data Retention Failures [ISCA’13]

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"

Proceedings of the 40th International Symposium on Computer Architecture
(ISCA ), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

Jamie Liu’ Ben Jaiyen* Yoongu Kim

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edt


http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon

SAFARI 10



Two Challenges to Retention Time Profiling

= Challenge 1: Data Pattern Dependence (DPD)

o Retention time of a DRAM cell depends on its value and the
values of cells nearby it

o When a row is activated, all bitlines are perturbed simultaneously

Bitlines
— i 1 Row
< Cell & : <
Word | ssmmmsssmmms s smm sffssssssnnnsssnnnsssnnnsssnnnss @l ssnnnnns ;-....--....--....--..‘
\ .
i

Sense Sense = . | Sense Row
tamp amp amp buffer
SAFARI L e mmmsssmmmmm A smmmm s s smAmm s sm A E At SmAm A M EEEEs s AmEAEES s smEEEEASssmmmmmmsssmamnnsssnnna 11



Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

_|_Jr = | -
/ T |[[cen T} E2

Wordline : w ; U
~ : :

Sense Sense Sense Row
tamp amp amp buffer
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via
o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling - electrical coupling between each bitline and
the activated wordline

= Retention time of a cell depends on data patterns stored in
nearby cells

- need to find the worst data pattern to find worst-case retention time
—> this pattern is location dependent

SAFARI 13



Two Challenges to Retention Time Profiling

Challenge 2: Variable Retention Time (VRT)

o Retention time of a DRAM cell changes randomly over time
a cell alternates between multiple retention time states

o Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

o When the trap becomes occupied, charge leaks more readily
from the transistor’s drain, leading to a short retention time
Called 7Trap-Assisted Gate-Induced Drain Leakage

o This process appears to be a random process [mﬁTEB'—H—]—

a Worst-case retention time depends on a random prpcgss
- need to find the worst case despite this 1

N

14
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Modern DRAM Retention Time Distribution
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An Example VRT Cell
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Variable Retention Time

7 Many failing cells jump from
very high retention time to very low
6
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More on Data Retention Failures [ISCA’13]

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"

Proceedings of the 40th International Symposium on Computer Architecture
(ISCA ), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:

Implications for Retention Time Profiling Mechanisms

Jamie Liu’ Ben Jaiyen* Yoongu Kim

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edt
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http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

* Refresh
+ Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
» Leakage current of cell access transistors increasing

+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
» On-current of the cell access transistor decreasing

» Bit-line resistance increasing

<+ VRT
* Occurring more frequently with cell capacitance decreasing
WiL
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Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

+* Refresh

« Niffictilt ta build hiah-asneect ration cell canacitore decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Refresh Overhead: Performance
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Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 21



Refresh Overhead: Energy

% DRAM energy spent refreshing
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Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Most Retreshes Are Unnecessary

= Retention Time Profile of DRAM looks like this:

04-128ms

128-250ms

23



RAIDR: Eliminating Unnecessary Refreshes
64-128ms

128-2560ms

Can reduce refreshes by ~75%
- reduces energy consumption and improves performance

SAFARI L et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 24




RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM




RAIDR in Memory Controller: Option 1

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands

issued for per-row refresh (all accounted for in evaluations)




RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)




RAIDR: Results and Takeaways

System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

RAIDR hardware cost: 1.25 kB (2 Bloom filters)
Refresh reduction: 74.6%

Dynamic DRAM energy reduction: 16%

Idle DRAM power reduction: 20%

Performance improvement: 9%

Benefits increase as DRAM scales in density
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DRAM Device Capacity Scaling: Performance
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RAIDR performance benefits increase with DRAM chip capacity

SAFARI Liu et al,, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 29



DRAM Device Capacity Scaling: Energy
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RAIDR energy benefits increase with DRAM chip capacity

SAFARI Luet al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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RAIDR: Eliminating Unnecessary Refreshes

= Observation: Most DRAM rows can be refreshgd much less often

without losing data [kim+, EDL'09][Liu+ ISCA"13] %" 0

g 1052

o 1077 4

= Key idea: Refresh rows containing weak cellsz v |§__1999_9911§_@_2,59}!1_s ______________ o
% 10_9 ~ cels ms ; 2%

more frequently, other rows less frequently g =ReREERs e oS

e . . . :—:10_“ Cutoff @ 64 ms 028
1. Profiling: Profile retention time of all rows Eopr— st e » 5
Refresh interval (s)

2. Binning: Store rows into bins by retention time in memory controller
Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at

different rates 160
~ 140

= Results: 8-core, 32GB, SPEC, TPC-C, TPC-H Z 12
a 74.6% refresh reduction @ 1.25KB storage 5 100
a0 ~16%/20% DRAM dynamic/idle power reduction &

o ~9% performance improvement ?*;’3

84
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Benefits increase with DRAM capacity
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SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



More on RAIDR: Pert+Energy Perspective

= Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh”
Proceedings of the 39th International Symposium on

Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu  Ben Jaiyen Richard Veras Onur Mutlu
Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

Finding DRAM Retention Failures

How can we reliably find the retention time of all DRAM
cells?

Goals: so that we can

o Make DRAM reliable and secure

o Make techniques like RAIDR work
-> improve performance and energy

33



Mitigation of Retention Issues [SIGMETRICS’14]

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
fCarnegie Mellon University *Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

Towards an Online Profiling System

Key Observations:

* Testing alone cannot detect all possible failures

* Combination of ECC and other mitigation
techniques is much more effective

— But degrades performance

* Testing can help to reduce the ECC strength
— Even when starting with a higher strength ECC

Khan+, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.



Towards an Online Profiling System

Initially Protect DRAM Periodically Test
with Strong ECC 1 Parts of DRAM y.

Mitigate errors and
reduce ECC 3

Run tests periodically after a short interval
at smaller regions of memory



Handling Variable Retention Time [DsN’15]

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM
Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@ cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

AVATAR

Insight: Avoid retention failures =» Upgrade row on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

(fgrub ) DRAM Rows Ref. Rate Table
min _
A 0
B Weak Cell 0
C 1
D == 0 Row protected from
= PROFILING 0 (e
= 0 retention failures
G 1
H / - 1

AVATAR mitigates VRT by increasing refresh rate on error




RESULTS: REFRESH SAVINGS

in Refresh (%
N

Retention Testing Once a Year can revert refresh saving from
60% to 70%

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Months Since Testing

AVATAR reduces refresh by 60%-70%, similar to multi rate
refresh but with VRT tolerance




SPEEDUP
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AVATAR gets 2/3 the performance of NoRefresh. More

gains at higher capacity nodes




ENERGY DELAY PRODUCT
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Handling Data-Dependent Failures [psnie]

= Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan*  Donghyuk Lee’™*  Onur Mutlu*"
*University of Virginia TCarnegie Mellon University *Nvidia *ETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_dsn16.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pdf

Handling Data-Dependent Failures [MICRO17]

= Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content”
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures
by Exploiting Current Memory Content

Samira Khan* Chris Wilkerson” Zhe Wang' Alaa R. Alameldeen” Donghyuk Lee* Onur Mutlu*
*University of Virginia Intel Labs *Nvidia Research *ETH Zirich

SAFARI 43


https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pdf

Handling Both DPD and VRT [isca17]

= Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

= First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
= Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel’*  Jeremie S. Kim*®  Onur Mutlu®*
SETH Ziirich  *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf
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Leaky Cells

Y

Periodic DRAM Refresh

U

Performance + Energy Overhead
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The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel Jeremie S. Kim
Onur Mutlu

mgs SAFARI

Systems @ ETH ziicn

ETH:.... CarnegieMellon



Goal: find all retention failures for
a refresh interval T > default (64ms)
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Process, voltage, temperature

Variable retention time

Data pattern dependence
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Characterization of
368 LPDDR4 DRAM Chips

@

Cells are more likely to fail at an
increased (refresh interval | temperature)
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Complex tradeoff space between profiling

(speed & coverage & false positives)
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Reach Profiling

A new DRAM retention failure
profiling methodology

+ and
than current approaches

+ Enables
SAFARI



REAPER Outline
1. DRAM Refresh Background

2. Failure Profiling Challenges

3. Current Approaches
4. LPDDR4 Characterization
5. Reach Protfiling

6. End-to-end Evaluation
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Experimental Infrastructure

*368 2y-nm LPDDR4 DRAM chips

- 4Gb chip size
- From 3 major DRAM vendors

* Thermally controlled testing chamber

- Ambient temperature range: {40°C - 55°C} + 0.25°C
- DRAM temperature is held at 15°C above ambient

SAFARI



LPDDR4 Studies

1. Temperature
2. Data Pattern Dependence
3. Retention Time Distributions

Variable Retention Time

Individual Cell Characterization
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Long-term Continuous Profiling

Representative chip from Vendor B, 2048ms, 45°C

=
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N

Steady-state accumulation
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* New failing cells continue to appear over time
- Attributed to variable retention time (VRT)

* The set of failing cells changes over time
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Long-term Continuous Profiling

Representative chip from Vendor B, 2048ms, 45°C

=
o
N

ling Cells

Error correction codes (ECC)
and online profiling are necessary
to manage new failing cells

* New failing cells continue to appear over time
- Attributed to variable retention time (VRT)

* The set of failing cells changes over time
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Single-cell Failure Probability (Cartoon)
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Single-cell Failure Probability (Cartoon)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)
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Single-cell Failure Probability (Real)

operate here profile here

Any cell is more likely to fail
at a longer refresh interval

OR a higher temperature
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REAPER Outline
1. DRAM Refresh Background

2. Failure Profiling Challenges

3. Current Approaches
4. LPDDR4 Characterization
5. Reach Profiling

6. End-to-end Evaluation
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Reach Profiling

profile at a longer refresh interval
and/or a higher temperature
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Reach Profiling

profile at a longer refresh interval
and/or a higher temperature
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Reach Profiling

profile at a longer refresh interval
and/or a higher temperature

° Pros

reach profiling searches
for cells where they are most likely to fail

eCons

- False Positives: profiler may identify
cells that fail under profiling conditions,
but not under operating conditions

SAFARI



Towards an Implementation

Reach profiling is a general methodology

3 key questions for an implementation:

What are desirable profiling conditions?

How often should the system profile?

What information does the profiler need?

SAFARI



Three Key Profiling Metrics

1. Runtime: how long profiling takes

2. Coverage: portion of all possible
failures discovered by profiling

3. False positives: number of cells
observed to fail during profiling but
never during actual operation

SAFARI



Three Key Profiling Metrics

1. Runtime: how long profiling takes

2. Coverage: portion of all possible
failures discovered by profiling

We explore how these three metrics
change under many different
profiling conditions

SAFARI



Evaluation Methodology

e Simulators

- Performance: Ramulator [Kim+, CAL'15]
- Energy: DRAMPower [Chandrasekar+, DSD’11]

* Configuration
- 4-core (4GHz), 8MB LLC
- LPDDR4-3200, 4 channels, 1 rank/channel

e Workloads

- 20 random 4-core benchmark mixes
- SPEC CPU2006 benchmark suite

SAFARI



Simulated End-to-end Performance

B2 Brute-force profiling EZ3 REAPER [ZZ1 Ideal profiling
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Simulated End-to-end Performance
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Simulated End-to-end Performance

B2 Brute-force profiling EZ=X REAPER [ZZ Ideal profiling
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Simulated End-to-end Performance

XA Brute-force profiling [E=X1 REAPER [ZZ1 Ideal profiling

On average, REAPER enables:
16.3% system performance improvement
36.4% DRAM power reductlon

REAPER enables longer refresh intervals,
which are unreasonable
usmg brute-force profllmg
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Other Analyses in the Paper

* Detailed LPDDR4 characterization data
- Temperature dependence effects
- Retention time distributions
- Data pattern dependence
- Variable retention time
- Individual cell failure distributions

* Profiling tradeoff space characterization
- Runtime, coverage, and false positive rate
- Temperature and refresh interval

 Probabilistic model for tolerable failure rates

* Detailed results for end-to-end evaluations
SAFARI



REAPER Summary

Problem:

*DRAM refresh performance and energy overhead is high

*Current approaches to retention failure profiling are slow or unreliable

Goals:

1. Thoroughly analyze profiling tradeoffs

2. Develop a fast and reliable profiling mechanism

Key Contributions:

1. First detailed characterization of 368 LPDDR4 DRAM chips

2. Reach profiling: Profile at a longer refresh interval or higher
temperature than target conditions, where cells are more likely to fail

Evaluation:

*2.5x faster profiling with 99% coverage and 50% false positives

*REAPER enables 16.3% system performance improvement and 36.4%
DRAM power reduction

*Enables longer refresh intervals that were previously unreasonable
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Handling Both DPD and VRT [isca17]

= Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

= First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
= Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel’*  Jeremie S. Kim*®  Onur Mutlu®*
SETH Ziirich  *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

The Takeaway, Reinforced

Main Memory Needs
Intelligent Controllers
for Reliability & Security




Understanding In-DRAM ECC

= Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu,
"Understanding and Modeling On-Die Error Correction in
Modern DRAM: An Experimental Study Using Real Devices"
Proceedings of the 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Portland, OR, USA, June
20109.
[Source Code for EINSim, the Error Inference Simulator]
Best paper session.

Understanding and Modeling On-Die Error Correction
in Modern DRAM: An Experimental Study Using Real Devices

Minesh Patel’ Jeremie S. Kim*T Hasan Hassan  Onur Mutlu'*
TETH Ziirich ~ *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/understanding-and-modeling-in-DRAM-ECC_dsn19.pdf
http://2019.dsn.org/
https://github.com/CMU-SAFARI/EINSim

Flip Side: Using Memory for Security




Key Goal

How to Use
Memory Devices
to Support Security
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A Flip Side: Using Memory for Security
= |Generating True Random Numbers (using DRAM)
o Kim et al., HPCA 2019

= Evaluating Physically Unclonable Functions (using DRAM)
o Kim et al., HPCA 2018

= Quickly Destroying In-Memory Data (using DRAM)
o Orosa et al., arxiv 2019
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D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers

with Low Latency and High Throughput

Jeremie S. Kim Minesh Patel

Hasan Hassan Lois Orosa Onur Mutlu

SAFAR/| Hpca20i9
Carnegie Mellon ETH...



Executive Summary

Motivation: High-throughput true random numbers enable system
security and various randomized algorithms.

* Many systems (e.g., [oT, mobile, embedded) do not have dedicated True
Random Number Generator (TRNG) hardware but have DRAM devices

Problem: Current DRAM-based TRNGs either

1. do not sample a fundamentally non-deterministic entropy source
2. are too slow for continuous high-throughput operation

Goal: A novel and effective TRNG that uses existing commodity DRAM

to provide random values with 1) high-throughput, 2) low latency and
3) no adverse effect on concurrently running applications

D-RaNGe: Reduce DRAM access latency below reliable values and
exploit DRAM cells’ failure probabilities to generate random values
Evaluation:

1. Experimentally characterize 282 real LPDDR4 DRAM devices
2. D-RaNGe (717.4 Mb/s) has significantly higher throughput (211x)
3. D-RaNGe (100ns) has significantly lower latency (180x)
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Generating True Random Numbers

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance
Computer Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim?*$ Minesh Patel® Hasan Hassan® Lois Orosa’ Onur Mutlu$?
fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

HPCA 2018

g LI o AFARI

syStEMS@MZW w  htps ://people.inf.ethz .ch/omutlu /pub/dram-latency-puf hpcal8.pdf
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Evaluating Physically Unclonable Functions

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in

Modern DRAM Devices"

Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim'$ Minesh Patel® Hasan Hassan® Onur Mutlu$t
TCarnegie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf

Quickly Destroying In-Memory Data

= Dataplant: In-DRAM Security Mechanisms for Low-Cost Devices
o https://arxiv.org/pdf/1902.07344.pdf

Dataplant: In-DRAM Security Mechanisms for Low-Cost Devices

Lois Orosa!  Yaohua Wang!'?> Ivan Puddu! Mohammad Sadrosadati'?
Kaveh Razavi'** Juan Gomez-Luna! Hasan Hassan! Nika Mansouri-Ghiasi!
Arash Tavakkol! Minesh Patel'! Jeremie Kim'~  Vivek Seshadri®
Uksong Kang’ Saugata Ghose® Rodolfo Azevedo® Onur Mutlu'

TETH Ziirich 2 National University of Defense Technology 3 Sharif University of Technology
*Vrije Universiteit Amsterdam 5Carnegie Mellon University 6Microsoft ’SK Hynix SUNICAMP
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https://arxiv.org/pdf/1902.07344.pdf

For Some Other Time ...

Using Commodity Memory Devices to
Support Fundamental Security Primitives

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
26 April 2019
IBM Research

SAFARI ETHzurich CarnegieMellon
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Keeping Future Memory Secure




How Do We Keep Memory Secure?

= DRAM
= Flash memory

= Emerging Technologies
o Phase Change Memory
o STT-MRAM
o RRAM, memristors
Q
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Solution Direction: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent
such safety issues
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Architecting for Security

Understand: Methods for vulnerability modeling & discovery
o Modeling and prediction based on real (device) data and analysis
o Understanding vulnerabilities

o Developing reliable metrics

Architect: Principled architectures with security as key concern
o Good partitioning of duties across the stack

o Cannot give up performance and efficiency

o Patch-ability in the field

Designh & Test: Principled design, automation, (online) testing
o Design for security

o High coverage and good interaction with system reliability

methods
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Understanding Flash Memory
Vulnerabilities




Understand and Model with Experiments (Flash)
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Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.




Understanding Flash Memory Reliability

INVITED

§H+H' PAPER Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, Saucata GHosg, EricH F. HArATscH, YIXIN Luo, AND ONUR MUTLU

SAFARI https:/ /arxiv.org/pdf/1706.08642 105



https://arxiv.org/pdf/1706.08642

Understanding Flash Memory Reliability

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Portland, OR, June
2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register]
[Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu qwu@fb.com skumar@fb.com onur@cmu.edu
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

NAND Flash Vulnerabilities [HPCA’17]

HPCA, Feb. 2017

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Saugata Ghose! Yixin Luot |
f Carnegie Mellon University

Yu Cail

Modern NAND flash memory chips provide high density by
storing two bits of data in each flash cell, called a multi-level cell
(MLC). An MLC partitions the threshold voltage range of a flash
cell into four voltage states. When a flash cell is programmed,
a high voltage is applied to the cell. Due to parasitic capacitance
coupling between flash cells that are physically close to each
other, flash cell programming can lead to cell-to-cell program
interference, which introduces errors into neighboring flash
cells. In order to reduce the impact of cell-to-cell interference on
the reliability of MLC NAND flash memory, flash manufactu-
rers adopt a two-step programming method, which programs
the MLC in two separate steps. First, the flash memory partially
programs the least significant bit of the MLC to some intermedi-
ate threshold voltage. Second. it programs the most significant
bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming
exposes new reliability and security vulnerabilities. We expe-

Ken Mail
iSeagare Technology

Onur MutluST  Erich F. Haratsch?
SETH Ziirich

belongs to a different flash memory page (the unit of data
programmed and read at the same time), which we refer to,
respectively, as the least significant bit (LSB) page and the
most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage
on the control gate of the transistor, which triggers charge
transfer into the floating gate, thereby increasing the thres-
hold voltage. To precisely control the threshold voltage of
the cell, the flash memory uses incremental step pulse pro-
gramming (ISPP) [12,21,25,41]. ISPP applies multiple short
pulses of the programming voltage to the control gate, in
order to increase the cell threshold voltage by some small
voltage amount (Viep) after each step. Initial MLC designs
programmed the threshold voltage in one shot, issuing all
of the pulses back-to-back to program both bits of data at
the same time. However, as flash memory scales down, the
distance between neighboring flash cells decreases, which

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities hpcal7.pdf
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf

3D NAND Flash Reliability I [HPCA’18]

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"HeatWatch: Improving 3D NAND Flash Memory Device
Reliability by Exploiting Self-Recovery and Temperature-
Awareness"
Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

HeatWatch: Improving 3D NAND Flash Memory Device Reliability
by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo! Saugata Ghose! Yu Cait Erich F. Haratsch? Onur Mutlu$T
TCarnegie Mellon University iSeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=7ZpGozzEVpY&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/heatwatch-3D-nand-errors-and-self-recovery_hpca18_lightning-talk.pdf

3D NAND Flash Reliability 11 [sicMETRICS 18]

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu,
"Improving 3D NAND Flash Memory Lifetime by Tolerating
Early Retention Loss and Process Variation"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.
[Abstract]
[POMACS Journal Version (same content, different format)]
[Slides (pptx) (pdf)]

Improving 3D NAND Flash Memory Lifetime
by Tolerating Early Retention Loss and Process Variation

Yixin Luo’ Saugata Ghose' Yu Cai' Erich F. Haratsch* Onur Muthu®”
"Carnegie Mellon University *Seagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18_pomacs18-twocolumn.pdf
http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18_pomacs18.pdf
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/3D-NAND-flash-lifetime-early-retention-loss-and-process-variation_sigmetrics18-talk.pdf

Another Talk: NAND Flash Memory Robustness

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"

to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.

ai+, "Neighbor-Cell Assisted Error Correction for ash Memories,” SIGMETRICS 2014.
Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

| Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. |

Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE JSAC
2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017. \
Fukami+, "Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.
Luo+, “HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-

Awareness," HPCA 2018.

Luo+, “Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation," SIGMETRICS
2018.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.


http://proceedingsoftheieee.ieee.org/

Two Other Solution Directions




There are Two Other Solution Directions

= New Technologies: Replace or (more likely) augment DRAM
with a different technology

o Non-volatile memories

Problem

Program/Language

= Embracing Un-reliability: System Software
SW/HW Interface

Design memories with different reliability
and store data intelligently across them
[Luo+ DSN 2014]

Fundamental solutions to security
require co-design across the hierarchy




Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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Heterogeneous-Reliability Memory

App 1 App 1 App 2 App 2 App 3 App 3
data A data B data A data B data A data B

Step 1: Characterize and classify
appllcatlon memory error tolerance

App 2 App 2
data A data B

olerant

Step 2: Map application data to the HRM system

enabled by SW/HW cooperative solutions
ble _ o o L o o e o o e e e e o Unreliable
{ Reliable Parity memory f !

|

. _ software recovery (Par+R)




Evaluation Results

® Typical Server
Consumer PC

© HRM
Less-Tested (L)

® HRM/L

Memory cost savings (%)

Crashes/server/month

Server HW cost savings (%)

40

>
Outer is better

Bigger area means better tradeoff



More on Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello® Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

Conclusion




Summary: Memory Reliability & Security

= DRAM reliability is reducing

= Reliability issues open up security vulnerabilities
o Very hard to defend against

= Rowhammer is a prime example

o First example of how a simple hardware failure mechanism can create
a widespread system security vulnerability

o Its implications on system security research are tremendous & exciting

= Bad news: Memory reliability & security issues are getting worse.

= Good news: We have a lot more to do.
a We are now fully aware hardware is easily fallible.
o We are developing both attacks and solutions.
o We are developing principled models, methodologies, solutions.
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For More on This Topic...

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Haradware and Embedaed Security, 2019.
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu*  Jeremie S. Kim*3
SETH Ziirich tCarnegie Mellon University
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

And, An Older One...

= Onur Mutluy,

"Memory Scaling: A Systems Architecture
Perspective”

Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]

[Video] [Coverage on StorageSearch]

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur @cmu.edu
http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling _memconl3.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe
Computing Architectures
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One Important Takeaway

Main Memory Needs
Intelligent Controllers
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