Memory Systems
Fundamentals, Recent Research, Challenges, Opportunities
Lecture 3: Processing-in-Memory

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
8 October 2018
Technion Fast Course 2018
Four Key Directions

- Fundamentally Secure/Reliable/Safe Architectures
- Fundamentally Energy-Efficient Architectures
 - Memory-centric (Data-centric) Architectures
- Fundamentally Low-Latency Architectures
- Architectures for Genomics, Medicine, Health
Maslow’s (Human) Hierarchy of Needs, Revisited

Source: https://www.simplypsychology.org/maslow.html
Do We Want This?

Source: V. Milutinovic
Or This?

Source: V. Milutinovic
Sub-Agenda: In-Memory Computation

- Major Trends Affecting Main Memory
- **The Need for Intelligent Memory Controllers**
 - Bottom Up: Push from Circuits and Devices
 - Top Down: Pull from Systems and Applications
- Processing in Memory: Two Directions
 - Minimally Changing Memory Chips
 - Exploiting 3D-Stacked Memory
- How to Enable Adoption of Processing in Memory
- Conclusion
Observation and Opportunity

- High latency and high energy caused by data movement
 - Long, energy-hungry interconnects
 - Energy-hungry electrical interfaces
 - Movement of large amounts of data

- Opportunity: Minimize data movement by performing computation directly where the data resides
 - Processing in memory (PIM)
 - In-memory computation/processing
 - Near-data processing (NDP)
 - General concept applicable to any data storage & movement unit (caches, SSDs, main memory, network, controllers)
Three Key Systems Trends

1. Data access is a major bottleneck
 - Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
 - Especially true for off-chip to on-chip movement
The Need for More Memory Performance

In-memory Databases
[Mao+, EuroSys’12; Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Challenge and Opportunity for Future

High Performance, Energy Efficient, Sustainable
The Problem

Data access is the major performance and energy bottleneck

Our current design principles cause great energy waste (and great performance loss)
The Problem

Processing of data is performed far away from the data
A Computing System

- Three key components
- Computation
- Communication
- Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.

A Computing System

- Three key components
- Computation
- Communication
- Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.

Today’s Computing Systems

- Are overwhelmingly processor centric
- All data processed in the processor ➔ at great system cost
- Processor is heavily optimized and is considered the master
- Data storage units are dumb and are largely unoptimized (except for some that are on the processor die)
Yet …

- “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

The Performance Perspective

- Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors"

Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark † Chris Wilkerson ‡ Yale N. Patt §

§ECE Department
The University of Texas at Austin
{onur,patt}@ece.utexas.edu

†Microprocessor Research
Intel Labs
jared.w.stark@intel.com

‡Desktop Platforms Group
Intel Corporation
chris.wilkerson@intel.com
The Performance Perspective (Today)

- All of Google’s Data Center Workloads (2015):

The Performance Perspective (Today)

- All of Google’s Data Center Workloads (2015):

![Boxplot](image)

Figure 11: Half of cycles are spent stalled on caches.

Perils of Processor-Centric Design

- **Grossly-imbalanced systems**
 - Processing done only in **one place**
 - Everything else just stores and moves data: **data moves a lot**
 - Energy inefficient
 - Low performance
 - Complex

- **Overly complex and bloated processor (and accelerators)**
 - To tolerate data access from memory
 - Complex hierarchies and mechanisms
 - Energy inefficient
 - Low performance
 - Complex
Perils of Processor-Centric Design

Most of the system is dedicated to storing and moving data
The Energy Perspective

Communication Dominates Arithmetic

Dally, HiPEAC 2015
A memory access consumes $\sim 1000X$ the energy of a complex addition.
Data Movement vs. Computation Energy

- **Data movement** is a major system energy bottleneck
 - Comprises 41% of mobile system energy during web browsing [2]
 - Costs ~115 times as much energy as an ADD operation [1, 2]

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)
62.7% of the total system energy is spent on data movement.
We Do Not Want to Move Data!

A memory access consumes $\sim 1000X$ the energy of a complex addition.
We Need A Paradigm Shift To …

- Enable computation with **minimal data movement**
- **Compute where it makes sense** *(where data resides)*
- Make computing architectures more **data-centric**
Goal: Processing Inside Memory

Many questions ... How do we design the:
- compute-capable memory & controllers?
- processor chip and in-memory units?
- software and hardware interfaces?
- system software and languages?
- algorithms?
Why In-Memory Computation Today?

- **Push from Technology**
 - DRAM scaling at jeopardy
 - Controllers close to DRAM
 - Industry open to new memory architectures

- **Pull from Systems and Applications**
 - Data access is a major system and application bottleneck
 - Systems are energy limited
 - Data movement much more energy-hungry than computation
Agenda

- Major Trends Affecting Main Memory
- The Need for Intelligent Memory Controllers
 - Bottom Up: Push from Circuits and Devices
 - Top Down: Pull from Systems and Applications
- Processing in Memory: Two Directions
 - Minimally Changing Memory Chips
 - Exploiting 3D-Stacked Memory
- How to Enable Adoption of Processing in Memory
- Conclusion
Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
Approach 1: Minimally Changing DRAM

- DRAM has great capability to perform bulk data movement and computation internally with small changes
 - Can exploit internal connectivity to move data
 - Can exploit analog computation capability
 - ...

Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

- RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data (Seshadri et al., MICRO 2013)
- Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
- Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
- "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology" (Seshadri et al., MICRO 2017)
Starting Simple: Data Copy and Initialization

Bulk Data Copy

Bulk Data Initialization

[src] -----> [dst]
[val] -----> [dst]
Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance
Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod, Emmett Witchel, and Anoop Gupta

Hardware Support for Bulk Data Movement in Server Platforms
Li Zhao†, Ravi Iyer‡, Srihari Makineni‡, Laxmi Bhuyan† and Don Newell‡
†Department of Computer Science and Engineering, University of California, Riverside, CA 92521
Email: {zhao, bhuyan}@cs.ucr.edu
‡Communications Technology Lab, Intel Corporation, Hillsboro, OR

Architecture Support for Improving Bulk Memory Copying and Initialization Performance
Xiaowei Jiang, Yan Solihin
Dept. of Electrical and Computer Engineering
North Carolina State University
Raleigh, USA

Li Zhao, Ravishankar Iyer
Intel Labs
Intel Corporation
Hillsboro, USA
Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

- **Forking**
- **Zero initialization** (e.g., security)
- **Checkpointing**
- **VM Cloning**
- **Deduplication**
- **Page Migration**
- **Many more**
Today’s Systems: Bulk Data Copy

1) High latency
2) High bandwidth utilization
3) Cache pollution
4) Unwanted data movement

1046ns, 3.6uJ (for 4KB page copy via DMA)
Future Systems: In-Memory Copy

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

1046ns, 3.6uJ → 90ns, 0.04uJ
RowClone: In-DRAM Row Copy

Idea: Two consecutive ACTivates
Negligible HW cost

Step 1: Activate row A
Step 2: Activate row B

Transfer row

DRAM subarray

Row Buffer (4 Kbytes)

4 Kbytes
RowClone: Intra-Subarray

Data gets copied

Sense Amplifier (Row Buffer)

Amplify the difference

$V_{DD}/2 \pm \delta$

$V_{DD}/2$
RowClone: Intra-Subarray (II)

1. **Activate** src row (copy data from src to row buffer)

2. **Activate** dst row (disconnect src from row buffer, connect dst – copy data from row buffer to dst)
RowClone: Inter-Bank

Overlap the latency of the read and the write

1.9X latency reduction, 3.2X energy reduction
Generalized RowClone

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Inter Bank Copy
(Pipelined Internal RD/WR)

Intra Subarray Copy (2 ACTs)
RowClone: Fast Row Initialization

Fix a row at Zero
(0.5% loss in capacity)
RowClone: Bulk Initialization

- Initialization with arbitrary data
 - Initialize one row
 - Copy the data to other rows

- Zero initialization (most common)
 - Reserve a row in each subarray (always zero)
 - Copy data from reserved row (FPM mode)
 - 6.0\texttimes\text{lower latency}, 41.5\texttimes\text{lower DRAM energy}
 - 0.2\% loss in capacity
RowClone: Latency & Energy Benefits

Latency Reduction

- Intra-Subarray: 11.6x
- Inter-Bank: 6.0x
- Inter-Subarray: 1.9x
- Copy: 1.0x
- Zero:

Energy Reduction

- Intra-Subarray: 74.4x
- Inter-Bank: 3.2x
- Inter-Subarray: 41.5x
- Copy: 1.5x
- Zero:

Very low cost: 0.01% increase in die area
Copy and Initialization in Workloads

![Diagram showing the fraction of memory traffic for different workloads: bootup, compile, forkbench, mcached, mysql, shell. The diagram uses bars to represent the fraction of zero, copy, write, and read traffic.](image)
RowClone: Application Performance

% Compared to Baseline

- IPC Improvement
- Energy Reduction

Applications:
- bootup
- compile
- forkbench
- mcached
- mysql
- shell
End-to-End System Design

Application

Operating System

ISA

Microarchitecture

DRAM (RowClone)

How to communicate occurrences of bulk copy_INITIALIZATION across layers?

How to ensure cache coherence?

How to maximize latency and energy savings?

How to handle data reuse?
RowClone: Latency and Energy Savings

More on RowClone

- Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization"

Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
Memory as an Accelerator

Memory similar to a “conventional” accelerator
In-Memory Bulk Bitwise Operations

- We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
- At low cost
- Using analog computation capability of DRAM
 - Idea: activating multiple rows performs computation
- 30-60X performance and energy improvement

- New memory technologies enable even more opportunities
 - Memristors, resistive RAM, phase change mem, STT-MRAM, ...
 - Can operate on data with minimal movement
In-DRAM AND/OR: Triple Row Activation

Final State

\[AB + BC + AC \]

\[C(A + B) + \sim C(AB) \]

In-DRAM Bulk Bitwise AND/OR Operation

- **BULKAND A, B → C**

- Semantics: Perform a bitwise AND of two rows A and B and store the result in row C

- R0 – reserved zero row, R1 – reserved one row
- D1, D2, D3 – Designated rows for triple activation

1. RowClone A into D1
2. RowClone B into D2
3. RowClone R0 into D3
4. ACTIVATE D1,D2,D3
5. RowClone Result into C
More on In-DRAM Bulk AND/OR

- Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"

In-DRAM NOT: Dual Contact Cell

Idea:
Feed the negated value in the sense amplifier into a special row

Figure 5: A dual-contact cell connected to both ends of a sense amplifier

In-DRAM NOT Operation

Figure 5: Bitwise NOT using a dual contact capacitor

Performance: In-DRAM Bitwise Operations

Figure 9: Throughput of bitwise operations on various systems.

Energy of In-DRAM Bitwise Operations

<table>
<thead>
<tr>
<th>Design</th>
<th>not</th>
<th>and/or</th>
<th>nand/nor</th>
<th>xor/xnor</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM & Channel Energy</td>
<td>DDR3</td>
<td>93.7</td>
<td>137.9</td>
<td>137.9</td>
</tr>
<tr>
<td>(nJ/KB)</td>
<td>Ambit</td>
<td>1.6</td>
<td>3.2</td>
<td>4.0</td>
</tr>
<tr>
<td>(↓)</td>
<td>59.5X</td>
<td>43.9X</td>
<td>35.1X</td>
<td>25.1X</td>
</tr>
</tbody>
</table>

Table 3: Energy of bitwise operations. (↓) indicates energy reduction of Ambit over the traditional DDR3-based design.

Ambit vs. DDR3: Performance and Energy

Bulk Bitwise Operations in Workloads

- Bitmap indices (database indexing)
- Set operations
- Encryption algorithms
- BitWeaving (database queries)
- BitFunnel (web search)
- DNA sequence mapping

[1] Li and Patel, BitWeaving, SIGMOD 2013
Example Data Structure: Bitmap Index

- Alternative to B-tree and its variants
- Efficient for performing *range queries* and *joins*
- Many bitwise operations to perform a query

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Bitmap</th>
</tr>
</thead>
<tbody>
<tr>
<td>age < 18</td>
<td>Bitmap 1</td>
</tr>
<tr>
<td>18 < age < 25</td>
<td>Bitmap 2</td>
</tr>
<tr>
<td>25 < age < 60</td>
<td>Bitmap 3</td>
</tr>
<tr>
<td>age > 60</td>
<td>Bitmap 4</td>
</tr>
</tbody>
</table>
Performance: Bitmap Index on Ambit

Figure 10: Bitmap index performance. The value above each bar indicates the reduction in execution time due to Ambit.

Performance: BitWeaving on Ambit

Figure 11: Speedup offered by Ambit over baseline CPU with SIMD for BitWeaving

More on In-DRAM Bulk AND/OR

- Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"

More on Ambit

Computing Architectures with Minimal Data Movement
Challenge: Intelligent Memory Device

Does memory have to be dumb?
Agenda

- Major Trends Affecting Main Memory
- The Need for Intelligent Memory Controllers
 - Bottom Up: Push from Circuits and Devices
 - Top Down: Pull from Systems and Applications
- Processing in Memory: Two Directions
 - Minimally Changing Memory Chips
 - Exploiting 3D-Stacked Memory
- How to Enable Adoption of Processing in Memory
- Conclusion
Processing in Memory: Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

70
Opportunity: 3D-Stacked Logic+Memory

Other “True 3D” technologies under development
DRAM Landscape (circa 2015)

<table>
<thead>
<tr>
<th>Segment</th>
<th>DRAM Standards & Architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Power</td>
<td>LPDDR3 (2012) [17]; LPDDR4 (2014) [20]</td>
</tr>
<tr>
<td>Graphics</td>
<td>GDDR5 (2009) [15]</td>
</tr>
<tr>
<td>Performance</td>
<td>eDRAM [28], [32]; RLDGRAM3 (2011) [29]</td>
</tr>
</tbody>
</table>

Table 1. Landscape of DRAM-based memory

Two Key Questions in 3D-Stacked PIM

- How can we accelerate important applications if we use 3D-stacked memory as a coarse-grained accelerator?
 - what is the architecture and programming model?
 - what are the mechanisms for acceleration?

- What is the minimal processing-in-memory support we can provide?
 - without changing the system significantly
 - while achieving significant benefits
Graph Processing

- Large graphs are everywhere (circa 2015)
 - 36 Million Wikipedia Pages
 - 1.4 Billion Facebook Users
 - 300 Million Twitter Users
 - 30 Billion Instagram Photos

- Scalable large-scale graph processing is challenging

![Speedup Chart]

- 32 Cores
- 128...
- +42%
Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
 for (w: v.successors) {
 w.next_rank += weight * v.rank;
 }
}

1. Frequent random memory accesses

2. Little amount of computation
Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor
Memory-Mapped Accelerator Interface (Noncacheable, Physically Addressed)

Crossbar Network

In-Order Core
LP
PF Buffer
MTP
Message Queue

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract System for Graph Processing

Host Processor
Memory-Mapped Accelerator Interface
Noncacheable, Physically Addressed

Logic
Crossbar Network

Memory

In-Order Core
Communications via Remote Function Calls

Message Queue

Communications via Remote Function Calls
```
for (v: graph.vertices) {
    for (w: v.successors) {
        w.next_rank += weight * v.rank;
    }
}
```
for (v: graph.vertices) {
 for (w: v.successors) {
 w.next_rank += weight * v.rank;
 }
}
for (v: graph.vertices) {
 for (w: v.successors) {
 put(w.id, function() {
 w.next_rank += weight * v.rank;
 });
 }
}

Non-blocking Remote Function Call

Can be delayed until the nearest barrier

Vault #1

Vault #2

SAFARI
Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core
2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a synchronization barrier is reached

```java
put(w.id, function() { w.next_rank += value; })
```
Tesseract System for Graph Processing

Host Processor

Memory-Mapped Accelerator Interface
(Noncacheable, Physically Addressed)

Crossbar Network

Logic

Memory

Prefetching

LP
PF Buffer
MTP

Message Queue

DRAM Controller

SAFARI
Evaluated Systems

<table>
<thead>
<tr>
<th>DDR3-OoO</th>
<th>HMC-OoO</th>
<th>HMC-MC</th>
<th>Tesseract</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
</tr>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
</tr>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
</tr>
</tbody>
</table>

- **102.4GB/s**
- **640GB/s**
- **640GB/s**
- **8TB/s**

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract Graph Processing Performance

>13X Performance Improvement

On five graph processing algorithms

- DDR3-OoO: +56%
- HMC-OoO: +25%
- HMC-MC: 9.0x
- Tesseract: 11.6x
- Tesseract-LP: 13.8x
- Tesseract-LP-MTP

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract Graph Processing Performance

Memory Bandwidth Consumption

- DDR3-OoO: 80GB/s
- HMC-OoO: 190GB/s
- HMC-MC: 243GB/s
- Tesseract: 1.3TB/s
- Tesseract-LP: 2.2TB/s
- Tesseract-LP-MTP: 2.9TB/s

Memory Bandwidth Consumption vs. Technology
Effect of Bandwidth & Programming Model

- **HMC-MC Bandwidth (640GB/s)**
- **Tesseract Bandwidth (8TB/s)**

Speedup

- **HMC-MC**
- **HMC-MC + PIM BW**
- **Tesseract + Conventional BW**
- **Tesseract (No Prefetching)**

Bandwidth:
- 2.3x

Programming Model:
- 2.3x
- 3.0x
- 6.5x
Tesseract Graph Processing System Energy

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract: Advantages & Disadvantages

Advantages
- Specialized graph processing accelerator using PIM
- Large system performance and energy benefits
- Takes advantage of 3D stacking for an important workload

Disadvantages
- Changes a lot in the system
 - New programming model
 - Specialized Tesseract cores for graph processing
- Cost
- Scalability limited by off-chip links or graph partitioning
More on Tesseract

- Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing"

[Slides (pdf)] [Lightning Session Slides (pdf)]
3D-Stacked PIM on Mobile Devices

- Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI

Carnegie Mellon

Google

SAMSUNG

ETH Zürich
Consumer Devices

Consumer devices are everywhere!

Energy consumption is a first-class concern in consumer devices
Popular Google Consumer Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Google’s video codec

Video Playback

Video Capture
Google’s video codec
Energy Cost of Data Movement

1st key observation: 62.7% of the total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget
Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the data movement often comes from simple functions.

We can design lightweight logic to implement these simple functions in memory.

Offloading to PIM logic reduces energy and improves performance, on average, by 55.4% and 54.2%.
Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
57.3% of the inference energy is spent on data movement.

54.4% of the data movement energy comes from packing/unpacking and quantization.
Packing

Reorders elements of matrices to minimize cache misses during matrix multiplication

Up to 40% of the inference energy and 31% of inference execution time

Packing’s data movement accounts for up to 35.3% of the inference energy

A simple data reorganization process that requires simple arithmetic
Quantization

Converts **32-bit floating point** to **8-bit integers** to improve inference execution time and energy consumption.

- Up to **16.8%** of the inference energy
- and **16.1%** of inference execution time

Majority of quantization energy comes from data movement.

A simple **data conversion** operation that requires **shift, addition, and multiplication** operations.
Quantization

Converts 32-bit floating point to 8-bit integers to improve inference execution time and energy consumption.

Based on our analysis, we conclude that:
- Both functions are good candidates for PIM execution
- It is feasible to implement them in PIM logic

A simple data conversion operation that requires shift, addition, and multiplication operations
Evaluation Methodology

- **System Configuration (gem5 Simulator)**
 - **SoC**: 4 OoO cores, 8-wide issue, 64 kB L1 cache, 2MB L2 cache
 - **PIM Core**: 1 core per vault, 1-wide issue, 4-wide SIMD, 32kB L1 cache
 - **3D-Stacked Memory**: 2GB cube, 16 vaults per cube
 - Internal Bandwidth: 256GB/S
 - Off-Chip Channel Bandwidth: 32 GB/s
 - **Baseline Memory**: LPDDR3, 2GB, FR-FCFS scheduler

- **We study each target in isolation** and emulate each separately and run them in our simulator
Normalized Energy

77.7% and 82.6% of energy reduction for texture tiling and packing comes from eliminating data movement.

PIM core and PIM accelerator reduces energy consumption on average by 49.1% and 55.4%.
Offloading these kernels to **PIM core** and **PIM accelerator** improves **performance** on average by **44.6%** and **54.2%**.
Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018

SAFARI
Carnegie Mellon
Google
More on PIM for Mobile Devices

62.7% of the total system energy is spent on data movement.
Truly Distributed GPU Processing with PIM?

3D-stacked memory (memory stack)

SM (Streaming Multiprocessor)

Logic layer

Main GPU

Crossbar switch

Logic layer

Vault Ctrl

Vault Ctrl

Crossbar switch

Vault Ctrl
Accelerating GPU Execution with PIM (I)

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Proceedings of the 25th International Conference on Parallel Architectures and Compilation Techniques (PACT), Haifa, Israel, September 2016.
Accelerating Linked Data Structures

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
Accelerating Dependent Cache Misses

 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]
Two Key Questions in 3D-Stacked PIM

- How can we accelerate important applications if we use 3D-stacked memory as a coarse-grained accelerator?
 - what is the architecture and programming model?
 - what are the mechanisms for acceleration?

- What is the minimal processing-in-memory support we can provide?
 - without changing the system significantly
 - while achieving significant benefits
PEI: PIM-Enabled Instructions (Ideas)

- **Goal:** Develop mechanisms to get the most out of near-data processing with minimal cost, minimal changes to the system, no changes to the programming model

- **Key Idea 1:** Expose each PIM operation as a cache-coherent, virtually-addressed host processor instruction (called PEI) that operates on only a single cache block
 - e.g., __pim_add(&w.next_rank, value) → pim.add r1, (r2)
 - No changes sequential execution/programming model
 - No changes to virtual memory
 - Minimal changes to cache coherence
 - No need for data mapping: Each PEI restricted to a single memory module

- **Key Idea 2:** Dynamically decide where to execute a PEI (i.e., the host processor or PIM accelerator) based on simple locality characteristics and simple hardware predictors
 - Execute each operation at the location that provides the best performance
Simple PIM Operations as ISA Extensions (II)

```java
for (v: graph.vertices) {
    value = weight * v.rank;
    for (w: v.successors) {
        w.next_rank += value;
    }
}
```

Conventional Architecture

- **Host Processor**
 - `w.next_rank`

- **Main Memory**
 - `w.next_rank`

- 64 bytes **in** and 64 bytes **out**
for (v: graph.vertices) {
 value = weight * v.rank;
 for (w: v.successors) {
 __pim_add(&w.next_rank, value);
 }
}
Always Executing in Memory? Not a Good Idea

Increased Memory Bandwidth Consumption
Caching very effective

Reduced Memory Bandwidth Consumption due to In-Memory Computation

More Vertices
PEI: PIM-Enabled Instructions (Example)

```c
for (v: graph.vertices) {
    value = weight * v.rank;
    for (w: v.successors) {
        __pim_add(&w.next_rank, value);
    }
}
pfence();
```

- Executed either in memory or in the processor: dynamic decision
 - Low-cost locality monitoring for a single instruction
- Cache-coherent, virtually-addressed, single cache block only
- Atomic between different PEIs
- *Not* atomic with normal instructions (use `pfence` for ordering)

Table 1: Summary of Supported PIM Operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>R</th>
<th>W</th>
<th>Input</th>
<th>Output</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-byte integer increment</td>
<td>O</td>
<td>O</td>
<td>0 bytes</td>
<td>0 bytes</td>
<td>AT</td>
</tr>
<tr>
<td>8-byte integer min</td>
<td>O</td>
<td>O</td>
<td>8 bytes</td>
<td>0 bytes</td>
<td>BFS, SP, WCC</td>
</tr>
<tr>
<td>Floating-point add</td>
<td>O</td>
<td>O</td>
<td>8 bytes</td>
<td>0 bytes</td>
<td>PR</td>
</tr>
<tr>
<td>Hash table probing</td>
<td>O</td>
<td>X</td>
<td>8 bytes</td>
<td>9 bytes</td>
<td>HJ</td>
</tr>
<tr>
<td>Histogram bin index</td>
<td>O</td>
<td>X</td>
<td>1 byte</td>
<td>16 bytes</td>
<td>HG, RP</td>
</tr>
<tr>
<td>Euclidean distance</td>
<td>O</td>
<td>X</td>
<td>64 bytes</td>
<td>4 bytes</td>
<td>SC</td>
</tr>
<tr>
<td>Dot product</td>
<td>O</td>
<td>X</td>
<td>32 bytes</td>
<td>8 bytes</td>
<td>SVM</td>
</tr>
</tbody>
</table>
PIM-Enabled Instructions

- **Key to practicality:** single-cache-block restriction
 - Each PEI can access *at most one last-level cache block*
 - Similar restrictions exist in atomic instructions

- **Benefits**
 - **Localization:** each PEI is bounded to one memory module
 - **Interoperability:** easier support for cache coherence and virtual memory
 - **Simplified locality monitoring:** data locality of PEIs can be identified simply by the cache control logic
Example (Abstract) PEI uArchitecture
PEI: Initial Evaluation Results

- Initial evaluations with 10 emerging data-intensive workloads
 - Large-scale graph processing
 - In-memory data analytics
 - Machine learning and data mining
 - Three input sets (small, medium, large) for each workload to analyze the impact of data locality

- Pin-based cycle-level x86-64 simulation

Performance Improvement and Energy Reduction:
- 47% average speedup with large input data sets
- 32% speedup with small input data sets
- 25% avg. energy reduction in a single node with large input data sets
Evaluated Data-Intensive Applications

- Ten emerging data-intensive workloads
 - **Large-scale graph processing**
 - Average teenage follower, BFS, PageRank, single-source shortest path, weakly connected components
 - **In-memory data analytics**
 - Hash join, histogram, radix partitioning
 - **Machine learning and data mining**
 - Streamcluster, SVM-RFE

- Three input sets (small, medium, large) for each workload to show the impact of data locality
PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
PEI Performance: Large Data Sets

Normalized Amount of Off-chip Transfer

- ATF
- BFS
- PR
- SP
- WCC
- HJ
- HG
- RP
- SC
- SVM

- Host-Only
- PIM-Only
- Locality-Aware

SAFARI
PEI Performance Delta: Small Data Sets

(Small Inputs, Baseline: Host-Only)
PEI Performance: Small Data Sets

Normalized Amount of Off-chip Transfer

- ATF
- BFS
- PR
- SP
- WCC
- HJ
- HG
- RP
- SC
- SVM

Host-Only | PIM-Only | Locality-Aware
PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)

- ATF
- BFS
- PR
- SP
- WCC
- HJ
- HG
- RP
- SC
- SVM
- GM

Legend:
- PIM-Only
- Locality-Aware
PEI: Advantages & Disadvantages

- **Advantages**
 - Simple and low cost approach to PIM
 - No changes to programming model, virtual memory
 - Dynamically decides where to execute an instruction

- **Disadvantages**
 - Does not take full advantage of PIM potential
 - Single cache block restriction is limiting
Simpler PIM: PIM-Enabled Instructions

- Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoungh Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture"
 [Slides (pdf)] [Lightning Session Slides (pdf)]
Automatic Code and Data Mapping

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]
Automatic Offloading of Critical Code

- Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller"
 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]
Automatic Offloading of Prefetch Mechanisms

- Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads". Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu§, Yale N. Patt*

*The University of Texas at Austin §ETH Zürich
Efficient Automatic Data Coherence Support

- Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand†, Saugata Ghose†, Minesh Patel†, Hasan Hassan†§, Brandon Lucia†, Kevin Hsieh†, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu††

†Carnegie Mellon University *Samsung Semiconductor, Inc. §TOBB ETÜ ††ETH Zürich
Challenge and Opportunity for Future

Fundamentally Energy-Efficient (Data-Centric) Computing Architectures
Challenge and Opportunity for Future

Fundamentally Low-Latency (Data-Centric) Computing Architectures
Challenge and Opportunity for Future

Computing Architectures with Minimal Data Movement
Agenda

- Major Trends Affecting Main Memory
- The Need for Intelligent Memory Controllers
 - Bottom Up: Push from Circuits and Devices
 - Top Down: Pull from Systems and Applications
- Processing in Memory: Two Directions
 - Minimally Changing Memory Chips
 - Exploiting 3D-Stacked Memory
- How to Enable Adoption of Processing in Memory
- Conclusion
Eliminating the Adoption Barriers

How to Enable Adoption of Processing in Memory
Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility
We Need to Revisit the Entire Stack

- Problem
- Algorithm
- Program/Language
- System Software
- SW/HW Interface
- Micro-architecture
- Logic
- Devices
- Electrons
Key Challenge 1: Code Mapping

- **Challenge 1:** Which operations should be executed in memory vs. in CPU?

```c
__global__
void applyScaleFactorsKernel( uint8_t * const out,
uint8_t * const * const in, const double * const factor,
size_t const numRows, size_t const numCols )
{
    // Work out which pixel we are working on.
    const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
    const int colIdx = blockIdx.y;
    const int sliceIdx = threadIdx.z;

    // Check this thread isn't off the image
    if( rowIdx >= numRows ) return;

    // Compute the index of my element
    size_t linearIdx = rowIdx + colIdx*numRows +
    sliceIdx*numRows*numCols;

    // ...
Key Challenge 2: Data Mapping

- **Challenge 2**: How should data be mapped to different 3D memory stacks?
How to Do the Code and Data Mapping?

Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems"
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]
How to Schedule Code?

  Proceedings of the 25th International Conference on Parallel Architectures and Compilation Techniques (PACT), Haifa, Israel, September 2016.

Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayiran³
Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu⁵,⁶ Chita R. Das¹

¹Pennsylvania State University ²College of William and Mary
³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University
Challenge: Coherence for Hybrid CPU-PIM Apps

The graph illustrates the speedup of various applications under different coherence mechanisms. The x-axis represents different applications: Components, Radii, PageRank, Components, Radii, PageRank, Components, Radii, PageRank, HTAP-256, HTAP-128, GMean. The y-axis shows speedup ranging from 0.00 to 2.00.

- **Traditional coherence** is compared against three different PIM coherence mechanisms: CPU-only, FG, CG, and NC.
- **LazyPIM** and **Ideal-PIM** are also shown for comparison.
- The graph shows that traditional coherence leads to significant overhead, whereas PIM coherence mechanisms offer better performance with varying degrees of improvement depending on the application.

The bar colors indicate the different coherence mechanisms, providing a clear visual comparison.
How to Maintain Coherence?

- Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"

How to Support Virtual Memory?

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation"

Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016.
How to Design Data Structures for PIM?


Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu  
Computer Science Department  
Brown University  
zhiyu.liu@brown.edu

Irina Calciu  
VMware Research Group  
icalciu@vmware.com

Maurice Herlihy  
Computer Science Department  
Brown University  
mph@cs.brown.edu

Onur Mutlu  
Computer Science Department  
ETH Zürich  
onur.mutlu@inf.ethz.ch
Simulation Infrastructures for PIM

- **Ramulator** extended for PIM
  - Flexible and extensible DRAM simulator
  - Can model many different memory standards and proposals
  - Kim+, “**Ramulator: A Flexible and Extensible DRAM Simulator**”, IEEE CAL 2015.
  - [https://github.com/CMU-SAFARI/ramulator](https://github.com/CMU-SAFARI/ramulator)
An FPGA-based Test-bed for PIM?


- Flexible
- Easy to Use (C++ API)
- Open-source
  
  `github.com/CMU-SAFARI/SoftMC`

SAFARI
New Applications and Use Cases for PIM

- Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
  "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies"
  *BMC Genomics*, 2018.
  Proceedings of the *16th Asia Pacific Bioinformatics Conference (APBC)*, Yokohama, Japan, January 2018.
  arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim$^{1,6*}$, Damla Senol Cali$^1$, Hongyi Xin$^2$, Donghyuk Lee$^3$, Saugata Ghose$^1$, Mohammed Alser$^4$, Hasan Hassan$^6$, Oguz Ergin$^5$, Can Alkan$^{4*}$ and Onur Mutlu$^{6,1*}$

*From The Sixteenth Asia Pacific Bioinformatics Conference 2018*
Yokohama, Japan. 15-17 January 2018
Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
Genome Read In-Memory (GRIM) Filter:
Fast Seed Location Filtering in DNA Read Mapping using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu
Executive Summary

- **Genome Read Mapping** is a very important problem and is the first step in many types of genomic analysis
  - Could lead to improved health care, medicine, quality of life

- Read mapping is an **approximate string matching** problem
  - Find the best fit of 100 character strings into a 3 billion character dictionary
  - **Alignment** is currently the best method for determining the similarity between two strings, but is very expensive

- We propose an in-memory processing algorithm **GRIM-Filter** for accelerating read mapping, by reducing the number of required alignments

- We implement GRIM-Filter using in-memory processing within 3D-stacked memory and show up to 3.7x speedup.
GRIM-Filter in 3D-stacked DRAM

The layout of bit vectors in a bank enables filtering many bins in parallel.

- Customized logic for accumulation and comparison per genome segment
  - Low area overhead, simple implementation

Figure 7: Left block: GRIM-Filter bitvector layout within a DRAM bank. Center block: 3D-stacked DRAM with tightly integrated logic layer stacked underneath with TSVs for a high intra-DRAM data transfer bandwidth. Right block: Custom GRIM-Filter logic placed in the logic layer.
GRIM-Filter Performance

Time (x1000 seconds)

Benchmarks and their Execution Times

1.8x-3.7x performance benefit across real data sets
GRIM-Filter False Positive Rate

False Positive Rate (%)

Benchmarks and their False Positive Rates

5.6x-6.4x False Positive reduction across real data sets
Conclusions

- We propose an in memory filter algorithm to accelerate end-to-end genome read mapping by reducing the number of required alignments.

- Compared to the previous best filter:
  - We observed 1.8x-3.7x speedup.
  - We observed 5.6x-6.4x fewer false positives.

- GRIM-Filter is a universal filter that can be applied to any genome read mapper.
In-Memory DNA Sequence Analysis


Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

---

GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim⁵,⁶*, Damla Senol Cali¹, Hongyi Xin², Donghyuk Lee³, Saugata Ghose¹, Mohammed Alser⁴, Hasan Hassan⁶, Oguz Ergin⁵, Can Alkan⁴* and Onur Mutlu⁶,¹*

*From* The Sixteenth Asia Pacific Bioinformatics Conference 2018

Yokohama, Japan. 15-17 January 2018
Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND, RACHATA AUSAVARUNGNIRUN
Carnegie Mellon University

ONUR MUTLU
ETH Zürich and Carnegie Mellon University

Enabling the Paradigm Shift
Computer Architecture Today

- You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly)

- You can invent new paradigms for computation, communication, and storage

- Recommended book: Thomas Kuhn, “The Structure of Scientific Revolutions” (1962)
  - Pre-paradigm science: no clear consensus in the field
  - Normal science: dominant theory used to explain/improve things (business as usual); exceptions considered anomalies
  - Revolutionary science: underlying assumptions re-examined
You can revolutionize the way computers are built, if you understand both the hardware and the software (and change each accordingly).

You can invent new paradigms for computation, communication, and storage.


- Pre-paradigm science: no clear consensus in the field.
- Normal science: dominant theory used to explain/improve things (business as usual); exceptions considered anomalies.
- Revolutionary science: underlying assumptions re-examined.
Agenda

- Major Trends Affecting Main Memory
- The Need for Intelligent Memory Controllers
  - Bottom Up: Push from Circuits and Devices
  - Top Down: Pull from Systems and Applications
- Processing in Memory: Two Directions
  - Minimally Changing Memory Chips
  - Exploiting 3D-Stacked Memory
- How to Enable Adoption of Processing in Memory
- Conclusion
Four Key Directions

- Fundamentally **Secure/Reliable/Safe** Architectures

- Fundamentally **Energy-Efficient** Architectures
  - Memory-centric (Data-centric) Architectures

- Fundamentally **Low-Latency** Architectures

- Architectures for **Genomics, Medicine, Health**
Maslow’s Hierarchy of Needs, A Third Time


Source: https://www.simplypsychology.org/maslow.html
Challenge and Opportunity for Future

Fundamentally Energy-Efficient (Data-Centric) Computing Architectures
Challenge and Opportunity for Future

Fundamentally Low-Latency (Data-Centric) Computing Architectures
Challenge and Opportunity for Future Computing Architectures with Minimal Data Movement
PIM: Concluding Remarks
A Quote from A Famous Architect

“architecture [...] based upon principle, and not upon precedent”
Precedent-Based Design?

- “architecture [...] based upon principle, and not upon precedent”
Principled Design

- “architecture [...] based upon principle, and not upon precedent”
The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

**Organic architecture** is a **philosophy** of **architecture** which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is **Fallingwater**, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring **cantilevers** of colored beige concrete blend with native rock outcroppings and the wooded environment.
Another Example: Precedent-Based Design
Another Principled Design
Another Principled Design

Principle Applied to Another Structure
The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

**Zoomorphic architecture** is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of **biomorphism** is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."

Some well-known examples of Zoomorphic architecture can be found in the **TWA Flight Center** building in **New York City**, by **Eero Saarinen**, or the **Milwaukee Art Museum** by **Santiago Calatrava**, both inspired by the form of a bird’s wings.
Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg
Concluding Remarks

- It is time to design principled system architectures to solve the memory problem

- Design complete systems to be balanced, high-performance, and energy-efficient, i.e., data-centric (or memory-centric)

- Enable computation capability inside and close to memory

- This can
  - Lead to orders-of-magnitude improvements
  - Enable new applications & computing platforms
  - Enable better understanding of nature
  - ...

182
The Future of Processing in Memory is Bright

- Regardless of challenges
  - in underlying technology and overlying problems/requirements

Can enable:
- Orders of magnitude improvements
- New applications and computing systems

Yet, we have to
- Think across the stack
- Design enabling systems
If In Doubt, See Other Doubtful Technologies

- A very “doubtful” emerging technology
  - for at least two decades

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
For Some Open Problems, See

Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND, RACHATA AUSAVARUNGNIRUN
Carnegie Mellon University

ONUR MUTLU
ETH Zürich and Carnegie Mellon University

Memory Systems
Fundamentals, Recent Research, Challenges, Opportunities

Lecture 3: Processing-in-Memory

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
8 October 2018
Technion Fast Course 2018
Backup Slides
Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
Consumer Devices

Consumer devices are everywhere!

Energy consumption is a first-class concern in consumer devices.
Popular Google Consumer Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
YouTube
Video Playback
Google’s video codec

VP9
YouTube
Video Capture
Google’s video codec
Energy Cost of Data Movement

1st key observation: 62.7% of the total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget
Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of data movement often comes from simple functions

We can design lightweight logic to implement these simple functions in memory

Small embedded low-power core

Small fixed-function accelerators

Offloading to PIM logic reduces energy by 55.4% and improves performance by 54.2% on average
Goals

1. Understand the data movement related bottlenecks in modern consumer workloads.

2. Analyze opportunities to mitigate data movement by using processing-in-memory (PIM).

3. Design PIM logic that can maximize energy efficiency given the limited area and energy budget in consumer devices.
Outline

• Introduction
• **Background**
  • Analysis Methodology
  • Workload Analysis
• Evaluation
• Conclusion
Potential Solution to Address Data Movement

• Processing-in-Memory (PIM)
  – A potential solution to reduce data movement
  – Idea: move computation close to data
    ✅ Reduces data movement
    ✅ Exploits large in-memory bandwidth
    ✅ Exploits shorter access latency to memory

• Enabled by recent advances in 3D-stacked memory
Outline

• Introduction
• Background
• **Analysis Methodology**
• Workload Analysis
• Evaluation
• Conclusion
Workload Analysis Methodology

• **Workload Characterization**
  – Chromebook with an Intel Celeron SoC and 2GB of DRAM
  – Extensively use performance counters within SoC

• **Energy Model**
  – Sum of the energy consumption within the **CPU**, **all caches**, **off-chip interconnects**, and **DRAM**
PIM Logic Implementation

SoC <-> DRAM

Logic Layer

PIM Core

Customized embedded general-purpose core

No aggressive ILP techniques
256-bit SIMD unit

PIM Accelerator N

Small fixed-function accelerators

Multiple copies of customized in-memory logic unit
Workload Analysis

Chrome
Google’s web browser

TensorFlow
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

Video Capture
Google’s video Codec
Workload Analysis

Chrome
Google’s web browser

TensorFlow
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
How Chrome Renders a Web Page

HTML → HTML Parser → Render Tree

CSS → CSS Parser → Layout

→ Rasterization → Compositing
How Chrome Renders a Web Page

- **Loading and Parsing**
  - HTML
    - HTML Parser
  - CSS
    - CSS Parser

- **Layouting**
  - Render Tree
  - Layout
  - Rasterization
  - Compositing

- **Painting**
  - Assembles all layers into a final screen image
  - Paints those objects and generates the bitmaps

**Calculates the visual elements and position of each object**
Browser Analysis

• To satisfy user experience, the browser must provide:
  – Fast loading of webpages
  – Smooth scrolling of webpages
  – Quick switching between browser tabs

• We focus on two important user interactions:
  1) Page Scrolling
  2) Tab Switching
  – Both include page loading
Scrolling
What Does Happen During Scrolling?

rasterization uses **color blitters** to convert the **basic primitives** into **bitmaps**

to minimize **cache misses** during **compositing**, the graphics driver reorganizes the bitmaps
41.9% of page scrolling energy is spent on texture tiling and color blitting.
A significant portion of total data movement comes from texture tiling and color blitting.

77% of total energy consumption goes to data movement.

37.7% of total system energy
A significant portion of total data movement comes from texture tiling and color blitting.

Can we use PIM to mitigate the data movement cost for texture tiling and color blitting?

37.7% of total system energy

77% of total energy consumption goes to data movement.
Can We Use PIM for Texture Tiling?

Main sources of data movement:

- Poor data locality
- Large rasterized bitmap size (e.g., 4MB)

Texture tiling is a good candidate for PIM execution.
Can We Implement Texture Tiling in PIM Logic?

Requires simple primitives: `memcpy`, bitwise operations, and simple arithmetic operations.

- **Linear Bitmap** → **Texture Tiling** → **Tiled Texture**

**PIM Core**
- 9.4% of the area available for PIM logic

**PIM Accelerator**
- 7.1% of the area available for PIM logic

PIM core and PIM accelerator are feasible to implement in-memory Texture Tiling.
Color Blitting Analysis

Generates a large amount of data movement
Accounts for 19.1% of the total system energy during scrolling

Color blitting is a good candidate for PIM execution

Requires low-cost operations: Memset, simple arithmetic, and shift operations

It is feasible to implement color blitting in PIM core and PIM accelerator
Scrolling Wrap Up

Texture tiling and color blitting account for a significant portion (41.9%) of energy consumption

37.7% of total system energy goes to data movement generated by these functions

1. Both functions can benefit significantly from PIM execution

2. Both functions are feasible to implement as PIM logic
Tab Switching
What Happens During Tab Switching?

• **Chrome employs a multi-process architecture**
  – Each tab is a separate process

![Diagram showing Chrome Process and multiple Tab Processes](image)

• **Main operations during tab switching:**
  – Context switch
  – Load the new page
Memory Consumption

- Primary concerns during tab switching:
  - How fast a new tab loads and becomes interactive
  - Memory consumption

Chrome uses compression to reduce each tab’s memory footprint
Data Movement Study

- To study data movement during tab switching, we emulate a user switching through 50 tabs.

We make two key observations:

1. Compression and decompression contribute to 18.1% of the total system energy.

2. 19.6 GB of data moves between CPU and ZRAM.
Can We Use PIM to Mitigate the Cost?

**CPU-Only**
- Swap out N pages
- Read N Pages
- Compress
- Write back
- Other tasks

**CPU + PIM**
- Swap out N pages
- Other tasks
- Compress
- ZRAM

**high data movement**

**PIM core and PIM accelerator are feasible to implement in-memory compression/decompression**
Tab Switching Wrap Up

A large amount of data movement happens during tab switching as Chrome attempts to compress and decompress tabs.

Both functions can benefit from PIM execution and can be implemented as PIM logic.
Workload Analysis

Chrome
Google’s web browser

TensorFlow
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
Workload Analysis

Chrome
Google’s web browser

TensorFlow
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
57.3% of the inference energy is spent on data movement

54.4% of the data movement energy comes from packing/unpacking and quantization
Packing

Reorders elements of matrices to minimize cache misses during matrix multiplication

- Up to **40%** of the inference **energy** and **31%** of inference execution time
- Packing’s data movement accounts for up to **35.3%** of the inference **energy**

A simple **data reorganization** process that requires **simple arithmetic**
Quantization

Converts 32-bit floating point to 8-bit integers to improve inference execution time and energy consumption.

- Up to 16.8% of the inference energy
- And 16.1% of inference execution time

A simple data conversion operation that requires shift, addition, and multiplication operations.

Majority of quantization energy comes from data movement.
Quantization

Converts **32-bit floating point** to **8-bit integers** to improve inference execution time and energy consumption.

Based on our analysis, we conclude that:

- Both functions are good candidates for PIM execution
- It is feasible to implement them in PIM logic

A simple **data conversion** operation that requires **shift**, **addition**, and **multiplication** operations.
Video Playback and Capture

VP9

Majority of energy is spent on data movement

Majority of data movement comes from simple functions in decoding and encoding pipelines
Outline

• Introduction
• Background
• Analysis Methodology
• Workload Analysis
• Evaluation
• Conclusion
Evaluation Methodology

- **System Configuration (gem5 Simulator)**
  - **SoC**: 4 OoO cores, 8-wide issue, 64 kB L1 cache, 2MB L2 cache
  - **PIM Core**: 1 core per vault, 1-wide issue, 4-wide SIMD, 32kB L1 cache
  - **3D-Stacked Memory**: 2GB cube, 16 vaults per cube
    - Internal Bandwidth: 256GB/S
    - Off-Chip Channel Bandwidth: 32 GB/s
  - **Baseline Memory**: LPDDR3, 2GB, FR-FCFS scheduler

- We study each target in isolation and emulate each separately and run them in our simulator
PIM core and PIM accelerator reduces energy consumption on average by 49.1% and 55.4%. 77.7% and 82.6% of energy reduction for texture tiling and packing comes from eliminating data movement.
Offloading these kernels to PIM core and PIM accelerator improves performance on average by 44.6% and 54.2%
Conclusion

- Energy consumption is a **major challenge** in consumer devices
- **We conduct an in-depth analysis of popular Google consumer workloads**
  - 62.7% of the total system energy is spent on **data movement**
  - Most of the **data movement** comes from **simple functions** that consist of **simple operations**
- **We use PIM to reduce data movement cost**
  - We design **lightweight logic** to implement **simple operations** in DRAM
  - Reduces **total energy** by 55.4% on average
  - Reduces **execution time** by 54.2% on average
Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu
3D-Stacked PIM on Mobile Devices

- Amirali Boroumand, Saugata Ghose, Youngsok Kim, RachataAusavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, AkiKuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand¹
Rachata Ausavarungnirun¹
Aki Kuusela³

Saugata Ghose¹
Eric Shiu³
Allan Knies³

Youngsok Kim²
Rahul Thakur³
Parthasarathy Ranganathan³

Daehyun Kim⁴,³
Onur Mutlu⁵,¹
Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh
Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, Onur Mutlu

Carnegie Mellon University  University of Virginia  ETH Zürich

SAFARI
Executive Summary

• Our Goal: Accelerating pointer chasing inside main memory

• Challenges: Parallelism challenge and Address translation challenge

• Our Solution: In-Memory Pointer Chasing Accelerator (IMPICA)
  • Address-access decoupling: enabling parallelism in the accelerator with low cost
  • IMPICA page table: low cost page table structure

• Key Results:
  • 1.2X – 1.9X speedup for pointer chasing operations, +16% database throughput
  • 6% - 41% reduction in energy consumption
Linked Data Structures

• Linked data structures are widely used in many important applications

B-Tree

Hash Table
The Problem: Pointer Chasing

- Traversing linked data structures requires chasing pointers

Find(A)

Serialized and irregular access pattern
6X cycles per instruction in real workloads
Our Goal

Accelerating pointer chasing inside main memory

Find(A)

H
E
Q
A
F
M

CPU

Find (A)

Data (A)

Logic layer

RAM layers
Outline

• Motivation and Our Approach
• Parallelism Challenge
• IMPICA Core Architecture
• Address Translation Challenge
• IMPICA Page Table
• Evaluation
• Conclusion
Parallelism Challenge

- CPU core: Faster for one operation, Slower for two operations
- In-Memory Accelerator: Faster for one operation, Slower for two operations
Parallelism Challenge and Opportunity

• A simple in-memory accelerator can still be slower than multiple CPU cores

• Opportunity: a pointer-chasing accelerator spends a long time waiting for memory
Our Solution: Address-Access Decoupling

Address-access decoupling enables parallelism in both engines with low cost.
Outline

• Motivation and Our Approach
• Parallelism Challenge
• IMPICA Core Architecture

• Address Translation Challenge
• IMPICA Page Table

• Evaluation
• Conclusion
Address Translation Challenge

The page table walk requires multiple memory accesses.

No TLB/MMU on the memory side. Duplicating it is costly and creates a compatibility issue.

Page table walk
Our Solution: IMPICA Page Table

- Completely decouple the page table of IMPICA from the page table of the CPUs

Map linked data structure into IMPICA regions

IMPICA page table is a partial-to-any mapping
IMPICA Page Table: Mechanism

Virtual Address

Bit [47:41]  
Region Table

Bit [40:21]  
Flat Page Table (2MB)

Bit [20:12]  
Tiny region table is almost always in the cache

Bit [11:0]  
Small Page Table (4KB)

Physical Address

Flat page table saves one memory access
Outline

• Motivation and Our Approach
• Parallelism Challenge
• IMPICA Core Architecture
• Address Translation Challenge
• IMPICA Page Table

• Evaluation
• Conclusion
Evaluated Workloads

• Microbenchmarks
  • Linked list (from Olden benchmark)
  • Hash table (from Memcached)
  • B-tree (from DBx1000)

• Application
  • DBx1000 (with TPC-C benchmark)
Evaluation Methodology

• Simulator: gem5

• System Configuration
  • CPU
    • 4 OoO cores, 2GHz
    • Cache: 32KB L1, 1MB L2
  • IMPICA
    • 1 core, 500MHz, 32KB Cache
  • Memory Bandwidth
    • 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

• Our simulator code is open source
  • https://github.com/CMU-SAFARI/IMPICA
Result – Microbenchmark Performance

![Graph showing speedup comparison between Baseline + extra 128KB L2 and IMPICA for different data structures.

- Linked List: 1.9X speedup for IMPICA compared to Baseline.
- Hash Table: 1.3X speedup for IMPICA.
- B-Tree: 1.2X speedup for IMPICA.

The y-axis represents speedup, with values ranging from 0.0 to 2.0.

Legend:
- Blue: Baseline + extra 128KB L2
- Orange: IMPICA

Graph categories include Linked List, Hash Table, and B-Tree.
Result – Database Performance

![Database Performance Chart]

Database Throughput:
- Baseline + extra 128KB L2: +2%
- Baseline + extra 1MB L2: +5%
- IMPICA: +16%

Database Latency:
- Baseline + extra 128KB L2: -0%
- Baseline + extra 1MB L2: -4%
- IMPICA: -13%
System Energy Consumption

<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Baseline + extra 128KB L2</th>
<th>IMPICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked List</td>
<td>-41%</td>
<td></td>
</tr>
<tr>
<td>Hash Table</td>
<td>-24%</td>
<td></td>
</tr>
<tr>
<td>B-Tree</td>
<td>-10%</td>
<td></td>
</tr>
<tr>
<td>DBx1000</td>
<td>-6%</td>
<td></td>
</tr>
</tbody>
</table>
## Area and Power Overhead

<table>
<thead>
<tr>
<th>Component</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (Cortex-A57)</td>
<td>5.85 mm² per core</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>5 mm² per MB</td>
</tr>
<tr>
<td>Memory Controller</td>
<td>10 mm²</td>
</tr>
<tr>
<td>IMPICA (+32KB cache)</td>
<td>0.45 mm²</td>
</tr>
</tbody>
</table>

- **Power overhead**: average power increases by 5.6%
More in the Paper

• Interface and design considerations
  • CPU interface and programming model
  • Page table management
  • Cache coherence

• Area and power overhead analysis

• Sensitivity to IMPICA page table design
Conclusion

• Performing pointer-chasing inside main memory can greatly speed up the traversal of linked data structures

• **Challenges:** Parallelism challenge and Address translation challenge

• **Our Solution:** In-Memory Pointer Chasing Accelerator
  • Address-access decoupling: enabling parallelism with low cost
  • IMPICA page table: low cost page table structure

• **Key Results:**
  • 1.2X – 1.9X speedup for pointer chasing operations, +16% database throughput
  • 6% - 41% reduction in energy consumption

• Our solution can be applied to a broad class of in-memory accelerators
Current Investigations

• More efficient address translation and protection mechanisms for PIM

• More concurrent data structures for PIM
More Info on IMPICA (Current Status)


Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh† Samira Khan‡ Nandita Vijaykumar†
Kevin K. Chang† Amirali Boroumand† Saugata Ghose† Onur Mutlu§†
†Carnegie Mellon University ‡University of Virginia §ETH Zürich
Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh
Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, Onur Mutlu

Carnegie Mellon University
University of Virginia
ETH Zürich
Accelerating Linked Data Structures

Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh† Samira Khan‡ Nandita Vijaykumar†
Kevin K. Chang† Amirali Boroumand† Saugata Ghose† Onur Mutlu§†
†Carnegie Mellon University ‡University of Virginia §ETH Zürich
GRIM-Filter:
Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu
Genome Read Mapping is a very important problem and is the first step in genome analysis.

Read Mapping is an approximate string matching problem:
- Find the best fit of 100 character strings into a 3 billion character dictionary
- Alignment is currently the best method for determining the similarity between two strings, but is very expensive.

We propose an algorithm called GRIM-Filter:
- Accelerates read mapping by reducing the number of required alignments.
- GRIM-Filter can be accelerated using processing-in-memory:
  - Adds simple logic into 3D-Stacked memory
  - Uses high internal memory bandwidth to perform parallel filtering.

GRIM-Filter with processing-in-memory delivers a 3.7x speedup.
# GRIM-Filter Outline

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Motivation and Goal</td>
</tr>
<tr>
<td>2.</td>
<td>Background Read Mappers</td>
</tr>
<tr>
<td></td>
<td>a. Hash Table Based</td>
</tr>
<tr>
<td></td>
<td>b. Hash Table Based with Filter</td>
</tr>
<tr>
<td>3.</td>
<td>Our Proposal: GRIM-Filter</td>
</tr>
<tr>
<td>4.</td>
<td>Mapping GRIM-Filter to 3D-Stacked Memory</td>
</tr>
<tr>
<td>5.</td>
<td>Results</td>
</tr>
<tr>
<td>6.</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>
Motivation and Goal

- **Sequencing**: determine the [A,C,G,T] series in DNA strand
- Today’s machines sequence short strands (**reads**)
  - Reads are on the order of 100 – 20k base pairs (**bp**)
  - The human genome is approximately 3 billion bp
- Therefore genomes are cut into reads, which are sequenced independently, and then reconstructed
  - **Read mapping** is the first step in analyzing someone’s genome to detect predispositions to diseases, personalize medicine, etc.
- **Goal**: We want to **accelerate** end-to-end performance of **read mapping**
GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers
   a. Hash Table Based
   b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Background: Read Mappers

We now have **sequenced reads** and want a **full genome**

We map **reads** to a known **reference genome** (>99.9% similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in **reads** perfectly match in the **reference genome**

![DNA sequence comparison]

We can use a hash table to help quickly map the **reads**!
# GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers
   - a. Hash Table Based
   - b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Generating Hash Tables

To map any reads, generate a **hash table** per **reference genome**.

k-length sequences (k-mers) | Location list where k-mer occurs in the reference genome
---|---
A A A A A | 12 35 502 610 721 989
A A A A C | 13 609 788
A A A A T | 36 434
G G G G G | 52 67 334 634 851

We can query the table with substrings from reads to quickly find a list of possible mapping locations
Hash Tables in Read Mapping

Read Sequence (100 bp)

99.9% of locations result in a mismatch

Hash Table
Reference Genome

We want to filter these out so we do not waste time trying to align them
Location Filtering

- **Alignment** is expensive and requires the use of $O(n^2)$ dynamic programming algorithm
  - We need to align millions to billions of reads

- Modern read mappers reduce the time spent on alignment for increased performance. Can be done in two ways:
  1. Optimize the algorithm for alignment
  2. Reduce the number of alignments necessary by filtering out mismatches quickly

- Both methods are used by mappers today, but **filtering has replaced alignment as the bottleneck** [Xin+, BMC Genomics 2013]

Our goal is to accelerate **read mapping** by improving the **filtering step**
GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers
   a. Hash Table Based
   b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Hash Tables in Read Mapping

Read Sequence (100 bp)

Hash Table

Reference Genome

Filter

False Negative

SAFARI
1. Motivation and Goal

2. Background: Read Mappers
   a. Hash Table Based
   b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin
3. Integrating GRIM-Filter into a Mapper
GRIM-Filter: Bins

- We partition the genome into large sequences (bins).

- Represent each bin with a bitvector that holds the occurrence of all permutations of a small string (token) in the bin.

- To account for matches that straddle bins, we employ overlapping bins.
  - A read will now always completely fall within a single bin.

Bitvector

<table>
<thead>
<tr>
<th></th>
<th>Bitvector</th>
<th>AAAAAA</th>
<th>AAAAC</th>
<th>AAAAT</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bin</td>
<td>AAAAA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>x</td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>AAAAT</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>x-1</td>
<td>AAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-2</td>
<td>AAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-3</td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bin</td>
<td>AAAAA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAAAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-1</td>
<td>AAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-2</td>
<td>AAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-3</td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bin</td>
<td>AAAAA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AAAAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-1</td>
<td>AAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-2</td>
<td>AAAAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x-3</td>
<td>AAAAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A read will now always completely fall within a single bin.
GRIM-Filter: Bitvectors

Bin x

<table>
<thead>
<tr>
<th>Bitvector</th>
<th>Bin x Bitvector</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAAA</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>CGTGA</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>TGAGT</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>GAGTC</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>GTGAG</td>
<td>...</td>
</tr>
</tbody>
</table>

... C G T G A G T C ...
GRIM-Filter: Bitvectors

Storing all bitvectors requires $4^n \times t$ bits in memory, where $t = \text{number of bins}$.

For bin size $\sim200$, and $n = 5$, memory footprint $\sim3.8$ GB.
Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin
3. Integrating GRIM-Filter into a Mapper
GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential match locations in a given bin prior to alignment

**INPUT:** Read Sequence \( r \)

GAACTTGGAGTCTA \( \cdots \) CGAG

1. **Get tokens**
2. **Read bitvector for bin_num(\( x \))**
3. **Match tokens to bitvector**

\[
\begin{array}{cccccc}
1 & 0 & 1 & \cdots & 0 & 1 \\
1 & 0 & 1 & \cdots & 1 & 0 \\
\end{array}
\]

4. **Sum**

5. **Compare**

\( \geq \) Threshold?

- NO: Discard
- YES: Send to Read Mapper for Sequence Alignment
Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin
3. Integrating GRIM-Filter into a Mapper
Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin
3. Integrating GRIM-Filter into a Mapper
Integrating GRIM-Filter into a Read Mapper

**INPUT**: Read Sequence
GAACCTTGCGAG...GTATT

**1.** GRIM-Filter:
Filter Bitmask Generator

**INPUT**: All Potential Seed Locations
...
020128
020131
414415...

**2.** GRIM-Filter:
Seed Location Filter Bitmask

**3.** Reference Segment Storage
reference segment @ 020131...
reference segment @ 414415...

**4.** Read Mapper:
Sequence Alignment

**OUTPUT**: Correct Mappings

SAFARI
1. Motivation and Goal

2. Background: Read Mappers
   a. Hash Table Based
   b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Key Properties of GRIM-Filter

1. **Simple Operations:**
   - To check a given bin, find the *sum* of all bits corresponding to each token in the read
   - *Compare* against threshold to determine whether to align

2. **Highly Parallel:** Each bin is operated on independently and there are many many bins

3. **Memory Bound:** Given the frequent accesses to the large bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter a good algorithm to be run in 3D-Stacked DRAM
3D-Stacked Memory

- 3D-Stacked DRAM architecture has **extremely high bandwidth** as well as a stacked customizable logic layer
  - Logic Layer enables **Processing-in-Memory**, offloading computation to this layer and alleviating the memory bus
  - Embed GRIM-Filter operations into **DRAM logic layer** and appropriately distribute bitvectors throughout memory
3D-Stacked Memory

- 3D-Stacked DRAM architecture has extremely high bandwidth as well as a stacked customizable logic layer.
- Logic Layer enables Processing in Memory, offloading computation to this layer and alleviating the memory bus.
- Embed GRIM-Filter operations into DRAM logic layer and appropriately distribute bitvectors throughout memory.

3D-Stacked Memory

Micron’s HMC

Micron has working demonstration components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg
GRIM-Filter in 3D-Stacked DRAM

- Each DRAM layer is organized as an array of **banks**
  - A **bank** is an array of cells with a row buffer to transfer data

- The layout of bitvectors in a bank enables filtering many bins in parallel
Customized logic for accumulation and comparison per genome segment

- Low area overhead, simple implementation
- For HBM2, we use 4096 incremeneter LUTs, 7-bit counters, and comparators in logic layer

Details are in the paper
GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers
   a. Hash Table Based
   b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Methodology

- Performance simulated using an in-house 3D-Stacked DRAM simulator

- Evaluate 10 real read data sets (From the 1000 Genomes Project)
  - Each data set consists of 4 million reads of length 100

- Evaluate two key metrics
  - Performance
  - False negative rate
    - The fraction of locations that pass the filter but result in a mismatch

- Compare against a state-of-the-art filter, FastHASH [Xin+, BMC Genomics 2013] when using mrFAST, but **GRIM-Filter can be used with ANY read mapper**
GRIM-Filter Performance

Benchmarks and their Execution Times

- FastHASH filter
- GRIM-Filter

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design

Sequence Alignment Error Tolerance ($e$)

$e = 0.05$
GRIM-Filter False Negative Rate

Benchmarks and their False Negative Rates

- FastHASH filter
- GRIM-Filter

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter
Other Results in the Paper

- Sensitivity of execution time and false negative rates to error tolerance of string matching

- Read mapper execution time breakdown

- Sensitivity studies on the filter
  - Token Size
  - Bin Size
  - Error Tolerance
GRIM-Filter Outline

1. Motivation and Goal

2. Background: Read Mappers
   a. Hash Table Based
   b. Hash Table Based with Filter

3. Our Proposal: GRIM-Filter

4. Mapping GRIM-Filter to 3D-Stacked Memory

5. Results

6. Conclusion
Conclusion

We propose an in-memory filtering algorithm to accelerate end-to-end read mapping by reducing the number of required alignments.

Key ideas:
- Introduce a new representation of coarse-grained segments of the reference genome.
- Use massively-parallel in-memory operations to identify read presence within each coarse-grained segment.

Key contributions and results:
- Customized filtering algorithm for 3D-Stacked DRAM.
- Compared to the previous best filter:
  - We observed 1.8x-3.7x read mapping speedup.
  - We observed 5.6x-6.4x fewer false negatives.

GRIM-Filter is a universal filter that can be applied to any read mapper.
GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu
In-Memory DNA Sequence Analysis

- Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies"

*BMC Genomics*, 2018.

*Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC)*, Yokohama, Japan, January 2018.

[arxiv.org Version (pdf)]

---

**GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies**

Jeremie S. Kim\(^1,6^*\), Damla Senol Cali\(^1\), Hongyi Xin\(^2\), Donghyuk Lee\(^3\), Saugata Ghose\(^1\), Mohammed Alser\(^4\), Hasan Hassan\(^6\), Oguz Ergin\(^5\), Can Alkan\(^4^*\) and Onur Mutlu\(^6,1^*\)

*From The Sixteenth Asia Pacific Bioinformatics Conference 2018*  
Yokohama, Japan. 15-17 January 2018
LazyPIM
An Efficient Cache Coherence Mechanism for Processing In Memory

Amirali Boroumand

"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory",
IEEE CAL 2016. (Preliminary version)
LazyPIM Summary

• Cache Coherence is a major system challenge for PIM
  – Conventional cache coherence makes PIM programming easy but loses a significant portion of PIM benefits

• Observation:
  – Significant amount of sharing between PIM cores and CPU cores in many important data-intensive applications
  – Efficient handling of coherence is critical to retain PIM benefits

• LazyPIM
  – Key idea: use speculation to avoid coherence lookups during PIM core execution and compressed signatures to verify correctness after PIM core is done
  – Improves performance by 19.8% and energy by 18% vs. best previous
  – Comes within 4.4% and 9.8% of ideal PIM energy and performance

• We believe LazyPIM can enable new applications that benefit from fine-grained sharing between CPU and PIM
PIM Coherence

- A Major System Challenge for PIM: Coherence

Need a coherence mechanism to ensure correctness!
PIM Coherence

• Potential solution: Conventional coherence protocols
  – We can treat PIM cores as additional independent cores
  – Use conventional coherence protocol to make them coherent with the CPUs

Conventional coherence is impractical: large number of coherence messages over off-chip channel

✓ Simplifies PIM programming model

✗ Generates a large amount of off-chip coherence traffic

✗ Eliminates on average 72.4% of Ideal PIM energy improvement
Goal and Key Idea

• Our goal is to develop a cache coherence mechanism that:
  1) Maintains the logical behavior of conventional cache coherence protocols to simplify PIM programming model
  2) Retains the large performance and energy benefits of PIM

• Our key idea is
  1) Avoid coherence lookups during PIM core execution
  2) Batch lookups in compressed signatures and use them to verify correctness after PIM core finishes
Background

Prior Approaches to PIM Coherence
Prior Approaches to PIM Coherence

• There are many recent proposals on PIM
  – Primarily focus on the design of compute unit within the logic layer

• Prior works employ other approaches than conventional coherence protocol
  – Marking PIM-data as Non-cacheable
    • They no longer need to deal with coherence
  – Coarse-grained coherence
    • Tracks coherence at a larger granularity than a single cache line
    • Does not transfer permission while PIM is working
    • No concurrent access from the CPU and PIM
Prior Approaches to PIM Coherence

• Prior works proposed coherence mechanisms assuming:
  – Entire application could be offloaded to PIM core $\rightarrow$ **Almost zero sharing** between PIM and CPU
  – Only **limited** communication happens between CPU and PIM

**Observation:** These assumptions *do not hold* for many important data-intensive applications that benefit from PIM
Motivation

Applications with Data Sharing
Application Analysis for PIM

• An application benefits from PIM when we offload its memory-intensive parts that:
  – Generate a lot of data movement
  – Have poor cache locality
  – Contribute to a large portion of execution time

• Parts of the application that are compute-intensive or cache friendly should remain on the CPU
  – To benefit from larger and sophisticated cores with larger caches
Example: Hybrid In-Memory Database

Transactional Threads (CPU Friendly)

Analytical Threads (PIM Friendly)

Hybrid Database

Ideal PIM vs. CPU-only:
- 1.93x Speedup
- 68% reduction in energy

Data Sharing

SAFARI
Applications with High Data Sharing

- Our application analysis shows that:
  - Some portions of the applications perform better on CPUs
  - These portions often access the same region of data as the PIM cores

- Based on this observation, we can conclude that:
  - There are important data-intensive applications that have strong potential for PIM and show significant data sharing between the CPU and PIM
Let’s see how prior approaches work for these applications
Non-Cacheable

- Generates a large number of off-chip accesses
- Significantly hurts CPU threads’ performance
Coarse-Grained Coherence

- Need to get coherence permission for the entire region
  - Needs to flush every dirty data within that region to transfer permission

  ❌ Unnecessarily flushes a large amount of data in pointer-based data structure

- Does not allow concurrent accesses
  - Blocks CPUs accessing PIM-data during PIM execution

  ❌ Coarse-grained locks frequently cause thread serialization
Motivation: Summary

• **Conventional cache coherence** loses a significant portion of PIM benefits

• Prior works use other approaches to avoid those costs
  – Their assumption: *Zero* or *a limited* amount of sharing

• We observe that those assumptions *do not hold* for a number of important data-intensive applications
  – Using prior approaches *eliminates a significant portion* of PIM benefits

• We want to get the best of both worlds
  1) Maintain the *logical behavior* of conventional cache coherence
  2) *Retain* the large *performance and energy benefits* of PIM
LazyPIM
Baseline PIM Architecture
Our Proposal

- **LazyPIM:**
  - Lets PIM cores use *speculation to avoid* coherence lookups *during execution*
  - Uses *compressed signatures* to batch the lookups and verify correctness *after* the PIM core completes
LazyPIM High-level Operation

1) CPU portion execution

2) Offload PIM kernel

3) PIM portion execution

4) Send PIM Signatures

No Coherence

5) Conflict Check

6) Commit or Rollback
How LazyPIM Avoids Pitfalls of Prior Approaches

- **Conventional Coherence (Fine-grained)**
  - ✗ Generates a large amount of off-chip coherence traffic *for every miss*
  - ✔ LazyPIM only sends a compressed signature after PIM cores finishes

- **Coarse-grained Coherence**
  - ✗ Unnecessarily flushes a large amount of data
  - ✔ LazyPIM performs only the necessary flushes
  - ✗ Causes Thread Serialization
  - ✔ LazyPIM enables concurrent execution of the CPUs and PIM cores

- **Non-Cacheable**
  - ✗ A large number of off-chip accesses hurting CPU threads’ performance
  - ✔ LazyPIM allows CPU threads to use caches
How we define conflicts in LazyPIM?
Conflicts

1) PIM Read and Processor Write: **Conflict**

2) Processor Read and PIM Write: **No Conflict**

3) Processor Write and PIM Write: **No Conflict**

1) Offload PIM kernel

2) Send PIM signatures

5) Commit PIM data
Architecture Support
LazyPIM Architecture

- How does LazyPIM support **speculative execution**?
- How does LazyPIM implement **signatures**?
- How does LazyPIM **handle conflicts**?
Tracking speculative updates

- One-bit flag per cache line to mark all data updates as speculative
Tracking potential conflicts

- The CPU records all dirty cache lines and writes in the PIM data region in the CPUWriteSet

Tracking memory accesses

- The PIMReadSet and PIMWriteSet are updated for every read and write by the PIM core
Bloom filter based signature has two major benefits:

- Allows us to easily perform conflict detection
- Allows for a large number of addresses to be stored within a fixed-length register
Handling Conflicts

If conflict happens:
- The CPU flushes the dirty cache lines that match addresses in the PIMReadSet
- The CPU flushes the dirty cache lines that match addresses in the PIMWriteSet
- Signatures are erased and PIM core restarts execution

If no conflicts:
- Any clean cache lines in the CPU that match an address in the PIMWriteSet are invalidated
- PIM core commits speculative updates
Evaluation
Evaluation Methodology

• **Simulator**
  – Gem5 full system simulator

• **System Configuration:**
  – **Processor**
    • 4-16 Cores, 8 wide issue, 2GHz Frequency
    • L1 I/D Cache: 64KB private, 4-way associative, 64B Block
    • L2 Cache: 2MB shared, 8-way associative, 64B Blocks
    • Cache Coherence Protocol: MESI
  – **PIM**
    • 4-16 Cores, 1 wide issue, 2GHz Frequency
    • L1 I/D Cache: 64KB private, 4-way associative, 64B Block
    • Cache Coherence Protocol: MESI
  – **3D-stacked Memory**
    • One 4GB Cube, 16 Vaults per cube
Applications

• **Ligra**
  – Lightweight multithreaded graph processing for shared memory system
  – We used three Ligra graph applications
    • PageRank
    • Radii
    • Connected Components
  – Input graphs constructed from real-world network datasets:
    • arXiV General Relativity (5K nodes, 14K edges)
    • peer-to-peer Gnutella25 (22K nodes, 54K edges).
    • Enron email communication network (36K nodes, 183K edges)

• **IMDB**
  – In-house prototype of an in-memory database (IMDB)
  – Capable of running both transactional queries and analytical queries on the same database tables (HTAP workload)
  – 32K transactions, 128/256 analytical queries
Speedup with 16 Threads

- **FG** loses a significant portion of Ideal-PIM’s improvement.
- LazyPIM consistently retains most of Ideal-PIM’s benefits, coming within 9.8% of the Ideal-PIM performance.

Components:
- arXiv
- Gnutella
- Enron
- IMDB

Radii:
- HTAP-128
- HTAP-256

PageRank:
- GMean
Energy with 16 threads

- **NC** suffers greatly from the *large number of accesses to DRAM*
- **Interconnect** and **DRAM** energy increase by *3.1x* and *4.5x*

**LazyPIM** significantly reduces energy consumption and comes within *4.4% of Ideal-PIM*
Conclusion
Conclusion

• **Cache Coherence is a major system challenge for PIM**
  – Conventional cache coherence makes PIM programming easy but loses a significant portion of PIM benefits

• **Observation:**
  – Significant amount of sharing between PIM cores and CPU cores in many important data-intensive applications
  – Efficient handling of coherence is critical to retain PIM benefits

• **LazyPIM**
  – **Key idea:** use speculation to avoid coherence lookups during PIM core execution and compressed signatures to verify correctness after PIM core is done
  – Improves performance by 19.8% and energy by 18% vs. best previous
  – Comes within 4.4% and 9.8% of ideal PIM energy and performance

• **We believe LazyPIM can enable new applications that benefit from fine-grained sharing between CPU and PIM**
LazyPIM
An Efficient Cache Coherence Mechanism for Processing In Memory

Amirali Boroumand

"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory",
IEEE CAL 2016. (Preliminary version)
Efficient Automatic Data Coherence Support

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand†, Saugata Ghose†, Minesh Patel†, Hasan Hassan†‡, Brandon Lucia†,
Kevin Hsieh†, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu††

†Carnegie Mellon University  *Samsung Semiconductor, Inc.  ‡TOBB ETÜ  †ETH Zürich
End of Backup Slides