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Four Key Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health
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Maslow’s (Human) Hierarchy of Needs, Revisited
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Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Do We Want This?

4Source: V. Milutinovic



Or This?

5Source: V. Milutinovic



Sub-Agenda: In-Memory Computation

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Observation and Opportunity

n High latency and high energy caused by data movement
q Long, energy-hungry interconnects
q Energy-hungry electrical interfaces
q Movement of large amounts of data

n Opportunity: Minimize data movement by performing 
computation directly where the data resides
q Processing in memory (PIM)
q In-memory computation/processing
q Near-data processing (NDP)
q General concept applicable to any data storage & movement 

unit (caches, SSDs, main memory, network, controllers)
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Three Key Systems Trends

1. Data access is a major bottleneck
q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement
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The Need for More Memory Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Challenge and Opportunity for Future

High Performance,
Energy Efficient,

Sustainable
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The Problem

Data access is the major performance and energy bottleneck

Our current
design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 
is performed 

far away from the data
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A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory
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Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)
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Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

18Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

19Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils of Processor-Centric Design

n Grossly-imbalanced systems
q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient 
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms 
à Energy inefficient 
à Low performance
à Complex
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Perils of Processor-Centric Design

21

Most of the system is dedicated to storing and moving data 



The Energy Perspective
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Dally, HiPEAC 2015



Data Movement vs. Computation Energy

23

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]
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[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!
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Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric
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Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip and in-memory units?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy 
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation
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Dally, HiPEAC 2015



Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Approach 1: Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and 

computation internally with small changes
q Can exploit internal connectivity to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology” (Seshadri et al., MICRO 2017)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization

Bulk Data 
Copy

Bulk Data 
Initialization

src dst

dstval



Bulk Data Copy and Initialization

Bulk Data 
Copy

Bulk Data 
Initialization

src dst

dstval



Starting Simple: Data Copy and Initialization

35

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

361046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

371046ns, 3.6uJ à 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



RowClone: Intra-Subarray

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD
VDDVDD/2 + δ

Sense Amplifier
(Row Buffer)

Amplify the 
difference

0

Data gets 
copied

src

dst



RowClone: Intra-Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to row buffer)

2. Activate dst row (disconnect src from row buffer, 
connect dst – copy data from row buffer to dst)



RowClone: Inter-Bank
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Inter Bank Copy
(Pipelined 

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost



RowClone: Fast Row Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

n Initialization with arbitrary data
q Initialize one row
q Copy the data to other rows

n Zero initialization (most common)
q Reserve a row in each subarray (always zero)
q Copy data from reserved row (FPM mode)
q 6.0X lower latency, 41.5X lower DRAM energy
q 0.2% loss in capacity
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RowClone: Latency & Energy Benefits
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Copy and Initialization in Workloads
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RowClone: Application Performance
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End-to-End System Design
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DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 
copy/initialization across 
layers?

How to maximize latency and 
energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
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GPU
(throughput)
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GPU

(throughput)
core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost

n Using analog computation capability of DRAM
q Idea: activating multiple rows performs computation

n 30-60X performance and energy improvement
q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 

Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM Bulk Bitwise AND/OR Operation

n BULKAND A, B à C 
n Semantics: Perform a bitwise AND of two rows A and B and 

store the result in row C

n R0 – reserved zero row, R1 – reserved one row
n D1, D2, D3 – Designated rows for triple activation

1. RowClone  A  into  D1
2. RowClone  B  into  D2
3. RowClone  R0  into  D3
4. ACTIVATE  D1,D2,D3
5. RowClone  Result  into  C
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More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


In-DRAM NOT: Dual Contact Cell

56

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



In-DRAM NOT Operation
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Energy of In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and Energy
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

n Alternative to B-tree and its variants
n Efficient for performing range queries and joins
n Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Performance: BitWeaving on Ambit
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Challenge: Intelligent Memory Device

Does memory
have to be

dumb?
68



Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Opportunity: 3D-Stacked Logic+Memory

71

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

72
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can 
provide?
q without changing the system significantly
q while achieving significant benefits
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Graph Processing

74

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank
w.next_rank

w.edges
…



Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Communications In Tesseract (I)
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Communications In Tesseract (II)
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Communications In Tesseract (III)
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Remote Function Call (Non-Blocking)
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Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching



Evaluated Systems
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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Effect of Bandwidth & Programming Model
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Tesseract Graph Processing System Energy
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> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract: Advantages & Disadvantages

n Advantages
+ Specialized graph processing accelerator using PIM
+ Large system performance and energy benefits
+ Takes advantage of 3D stacking for an important workload

n Disadvantages
- Changes a lot in the system

- New programming model
- Specialized Tesseract cores for graph processing

- Cost
- Scalability limited by off-chip links or graph partitioning
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More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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3D-Stacked PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
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Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Consumer Devices
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Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices



Popular Google Consumer Workloads
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec
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Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the total system 
energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 



Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of the
data movement often comes from simple functions

PIM 
Core

PIM 
Accelerator

PIM 
Accelerator

PIM 
Accelerator

We can design lightweight logic to implement
these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy and improves 
performance, on average, by 55.4% and 54.2%



Workload Analysis
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec



TensorFlow Mobile

34

57.3% of the inference energy is spent on
data movement

54.4% of the data movement energy comes from 
packing/unpacking and quantization

Inference Prediction



Packing

36

Reorders elements of matrices to minimize 
cache misses during matrix multiplication

Up to 40% of the
inference energy and 31% of

inference execution time 

Packing’s data movement 
accounts for up to 

35.3% of the inference energy

PackingMatrix Packed Matrix

A simple data reorganization process
that requires simple arithmetic 



Quantization

36

Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption 

Up to 16.8% of the 
inference energy

and 16.1% of 
inference execution time 

Majority of quantization
energy comes from 

data movement

Quantizationfloating point integer

A simple data conversion operation that requires 
shift, addition, and multiplication operations



Quantization

37

Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption 

Up to 16.8% of the 
inference energy

and 16.1% of 
inference execution time 

Majority of quantization
energy comes from 

data movement

Quantizationfloating point integer

A simple data conversion operation that requires 
shift, addition, and multiplication operations

Based on our analysis, we conclude that:
• Both functions are good candidates for PIM execution 
• It is feasible to implement them in PIM logic



Evaluation Methodology 
• System Configuration (gem5 Simulator)
– SoC:  4 OoO cores, 8-wide issue, 64 kB L1cache,

2MB L2 cache

– PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD, 
32kB L1 cache

– 3D-Stacked Memory: 2GB cube, 16 vaults per cube
• Internal Bandwidth: 256GB/S 
• Off-Chip Channel Bandwidth: 32 GB/s

– Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

• We study each target in isolation and emulate each 
separately and run them in our simulator
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Normalized Energy 
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PIM core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%

77.7% and 82.6% of energy reduction for texture tiling 
and packing comes from eliminating data movement
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Normalized Runtime
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Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%
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More on PIM for Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Truly Distributed GPU Processing with PIM?

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Accelerating Dependent Cache Misses
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use         
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can 
provide?
q without changing the system significantly
q while achieving significant benefits
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PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block
q e.g., __pim_add(&w.next_rank, value) à pim.add r1, (r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)
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Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture



Simple PIM Operations as ISA Extensions (III)
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Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)



Always Executing in Memory? Not A Good Idea
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PEI: PIM-Enabled Instructions (Example)

116

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}
pfence();

pim.add r1, (r2)

pfence



PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and 

virtual memory
q Simplified locality monitoring: data locality of PEIs can be 

identified simply by the cache control logic



Example (Abstract) PEI uArchitecture
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PEI: Initial Evaluation Results
n Initial evaluations with 10 emerging data-intensive workloads

q Large-scale graph processing
q In-memory data analytics
q Machine learning and data mining
q Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality

n Pin-based cycle-level x86-64 simulation

n Performance Improvement and Energy Reduction: 
n 47% average speedup with large input data sets
n 32% speedup with small input data sets
n 25% avg. energy reduction in a single node with large input data sets
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Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest 
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality



PEI Performance Delta: Large Data Sets
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PEI Performance: Large Data Sets
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PEI Performance Delta: Small Data Sets
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PEI Performance: Small Data Sets
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PEI Performance Delta: Medium Data Sets
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PEI Energy Consumption
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PEI: Advantages & Disadvantages

n Advantages
+ Simple and low cost approach to PIM
+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

n Disadvantages
- Does not take full advantage of PIM potential

- Single cache block restriction is limiting
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Simpler PIM: PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping 
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Automatic Offloading of Critical Code
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Automatic Offloading of Prefetch Mechanisms
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
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Efficient Automatic Data Coherence Support

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping, 

access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack
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Micro-architecture
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Logic
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Key Challenge 1: Code Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf


How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Challenge: Coherence for Hybrid CPU-PIM Apps

144

Traditional
coherence

No coherence
overhead



How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator
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https://github.com/CMU-SAFARI/ramulator


An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


New Applications and Use Cases for PIM
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
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https://arxiv.org/pdf/1711.01177.pdf
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Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 
Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary
n Genome Read Mapping is a very important problem and is the first 

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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GRIM-Filter in 3D-stacked DRAM

n The layout of bit vectors in a bank enables filtering many bins in parallel
n Customized logic for accumulation and comparison per genome segment

q Low area overhead, simple implementation
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GRIM-Filter Performance
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Time (x1000 
seconds)

1.8x-3.7x performance benefit across real data sets

Benchmarks and their Execution Times



GRIM-Filter False Positive Rate

156

False Positive 
Rate (%)

5.6x-6.4x False Positive reduction across real data sets

Benchmarks and their False Positive Rates



Conclusions

n We propose an in memory filter algorithm to accelerate end-
to-end genome read mapping by reducing the number of 
required alignments

n Compared to the previous best filter
q We observed 1.8x-3.7x speedup
q We observed 5.6x-6.4x fewer false positives

n GRIM-Filter is a universal filter that can be applied to any 
genome read mapper 
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In-Memory DNA Sequence Analysis
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Open Problems: PIM Adoption

https://arxiv.org/pdf/1802.00320.pdf
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https://arxiv.org/pdf/1802.00320.pdf


Enabling the Paradigm Shift



Computer Architecture Today
n You can revolutionize the way computers are built, if you 

understand both the hardware and the software (and 
change each accordingly)

n You can invent new paradigms for computation, 
communication, and storage

n Recommended book: Thomas Kuhn, “The Structure of 
Scientific Revolutions” (1962)
q Pre-paradigm science: no clear consensus in the field
q Normal science: dominant theory used to explain/improve 

things (business as usual); exceptions considered anomalies
q Revolutionary science: underlying assumptions re-examined
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Four Key Directions

n Fundamentally Secure/Reliable/Safe Architectures

n Fundamentally Energy-Efficient Architectures
q Memory-centric (Data-centric) Architectures

n Fundamentally Low-Latency Architectures

n Architectures for Genomics, Medicine, Health
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Maslow’s Hierarchy of Needs, A Third Time
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Speed

Speed
Speed
Speed
Speed

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures

167



Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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PIM: Concluding Remarks
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A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon 

precedent”

170



Precedent-Based Design?
n “architecture […] based upon principle, and not upon 

precedent”
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Principled Design
n “architecture […] based upon principle, and not upon 

precedent”
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The Overarching Principle
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Another Example: Precedent-Based Design

175Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

176Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

177Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

178Source: De Galván - Puente del Alamillo.jpg on Enciclopedia.us.es, GFDL, https://commons.wikimedia.org/w/index.php?curid=15026095



Principle Applied to Another Structure

179
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By �������� Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle
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Overarching Principle for Computing?

181Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks

n It is time to design principled system architectures to solve 
the memory problem

n Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

n Enable computation capability inside and close to memory

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …
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The Future of Processing in Memory is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 

183

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology 

q for at least two decades

184https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


For Some Open Problems, See

https://arxiv.org/pdf/1802.00320.pdf
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Consumer Devices

189

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices



Popular Google Consumer Workloads

190

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec
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Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the 
total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-in-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 



Using PIM to Reduce Data Movement

5

2nd key observation: a significant fraction of 
data movement often comes from simple functions

PIM 
Core

PIM 
Accelerator

PIM 
Accelerator

PIM 
Accelerator

We can design lightweight logic to 
implement these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy by 55.4%
and improves performance by 54.2% on average



Goals

193

1

2

Understand the data movement related 
bottlenecks in modern consumer workloads

Analyze opportunities to mitigate data movement 
by using processing-in-memory (PIM)

Design PIM logic that can maximize energy 
efficiency given the limited area and energy 

budget in consumer devices

3



Outline

• Introduction

• Background
• Analysis Methodology
• Workload Analysis
• Evaluation
• Conclusion
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Potential Solution to Address Data Movement 
• Processing-in-Memory (PIM) 
– A potential solution to reduce data movement
– Idea: move computation close to data

• Enabled by recent advances in 3D-stacked memory

8

Reduces data movement
Exploits large in-memory bandwidth
Exploits shorter access latency to memory



Outline

• Introduction
• Background

• Analysis Methodology
• Workload Analysis
• Evaluation
• Conclusion
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Workload Analysis Methodology
• Workload Characterization
– Chromebook with an

Intel Celeron SoC and 2GB of DRAM
– Extensively use performance counters within SoC

• Energy Model
– Sum of the energy consumption within the CPU, 

all caches, off-chip interconnects, and DRAM

197

DRA
ML2L1CPUCPU



PIM Logic Implementation

11

SoC
DRAM

Logic Layer

PIM Core
PIM 

Accelerator
PIM 

Accelerator
PIM 

Accelerator N
Customized embedded 
general-purpose core

256-bit SIMD unit 
No aggressive ILP techniques

Small fixed-function 
accelerators

Multiple copies of customized 
in-memory logic unit



Workload Analysis
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Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video Codec
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TensorFlow
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis

Chrome
Google’s web browser



How Chrome Renders a Web Page

14

HTML

CSS

HTML 
Parser

CSS 
Parser

Render 
Tree Layout Rasteriza-

tion
Composit-

ing

HTML

CSS

HTML 
Parser

CSS 
Parser

Loading and 
Parsing

Render 
Tree Layout Rasteriza-

tion
Composi-

ting

Painting



How Chrome Renders a Web Page

15

HTML

CSS

HTML 
Parser

CSS 
Parser

Render 
Tree Layout Rasteriza-

tion
Composi-

ting

HTML

CSS

HTML 
Parser

CSS 
Parser

Loading and 
Parsing

Render 
Tree Layout

Layouting

Rasteriza-
tion

Composi-
ting

Painting

paints those objects
and generates the bitmapscalculates the

visual elements and 
position of each object

assembles all layers
into a final screen image



Browser Analysis
• To satisfy user experience, the browser must 

provide:
– Fast loading of webpages
– Smooth scrolling of webpages
– Quick switching between browser tabs

• We focus on two important user interactions:
1)  Page Scrolling 
2)   Tab Switching
– Both include page loading

16



Scrolling

17



What Does Happen During Scrolling?

18

HTML

CSS

HTML 
Parser

CSS 
Parser

Render 
Tree Layout Rasteriza-

tion
Composi-

itngLayout Rasteriza-
tion

Composi-
ting

Texture 
Tiling

to minimize cache misses 
during compositing, the graphics driver 

reorganizes the bitmaps

rasterization uses color blitters
to convert the basic primitives

into bitmaps
Color 

Blitting



Scrolling Energy Analysis

19

0%
20%
40%
60%
80%
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Texture Tiling Color Blitting Other

Google
Docs

Gmail Google
Calendar

Word-
Press

Twitter Ani-
mation

AVG

41.9% of page scrolling energy is spent on
texture tiling and color blitting



A significant portion of
total data movement comes from

texture tiling and color blitting

Scrolling a Google Docs Web Page
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77% of total energy 
consumption goes to 

data movement

37.7% of total system energy 
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Scrolling a Google Docs Web Page

A significant portion of
total data movement comes from

texture tiling and color blitting
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77% of total energy 
consumption goes to 

data movement

37.7% of total system energy 

CPU L1 LLC Inter-
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Can we use PIM to mitigate the data movement cost

for texture tiling and color blitting?



Can We Use PIM for Texture Tiling?

22

time
CPU Memory

Rasterization

Read Bitmap

Conversion

Write Back

data movement

CPU PIM
CPU + PIM

Rasterization

Conversionid
le

CPU-Only

Linear
Bitmap

Texture
TilesInvoke

Compositing

Invoke
Compositing

Linear
Bitmap

Texture
Tiles

Major sources of data movement:
1) poor data locality
2) large rasterized bitmap size (e.g. 4MB)

high

Te
xt

ur
e T

ilin
g

Texture tiling is a good candidate for
PIM execution



Can We Implement Texture Tiling in PIM Logic?

210

Requires simple primitives: memcopy, bitwise 
operations, and simple arithmetic operations

PIM Core PIM 
Accelerator

Texture 
Tiling

Linear Bitmap Tiled Texture

9.4% of the area 
available for PIM logic

7.1% of the area 
available for PIM logic

PIM core and PIM accelerator are feasible to 
implement in-memory Texture Tiling



Color Blitting Analysis

24

Color blitting is a good candidate 
for PIM execution 

It is feasible to implement color blitting
in PIM core and PIM accelerator

Generates a large amount of data movement

Requires low-cost operations:
Memset, simple arithmetic, and shift operations

Accounts for 19.1% of the total system energy during scrolling



Scrolling Wrap Up

25

Texture tiling and color blitting account for
a significant portion (41.9%) of energy consumption

37.7% of total system energy goes to
data movement generated by these functions

Both functions can benefit significantly 
from PIM execution

Both functions are feasible to implement 
as PIM logic

1

2



Tab Switching

26



What Happens During Tab Switching?
• Chrome employs a multi-process architecture
– Each tab is a separate process

• Main operations during tab switching:
– Context switch
– Load the new page

27

Chrome Process

…

Tab 1 
Process 

Tab 2
Process 

Tab N
Process 



Memory Consumption
• Primary concerns during tab switching:

– How fast a new tab loads and becomes interactive
– Memory consumption

28

CPU

DRAM
Inactive Tab

CompressionDecompression

Chrome uses compression to
reduce each tab’s memory footprint

ZRAM

Compressed Tab



Data Movement Study
• To study data movement during tab switching, 

we emulate a user switching through 50 tabs

29

Compression and decompression
contribute to18.1% of the total system energy

19.6 GB of data moves between
CPU and ZRAM2

1

We make two key observations:



Can We Use PIM to Mitigate the Cost?

30

CPU
CPU-Only

Memory CPU
CPU + PIM

PIM
time

Swap out N pages

Read N Pages

Compress

Other tasks

Write back

co
m

pr
es

sio
n

ZRAM

Swap out N pages

Other tasks
Compress

ZRAM
No off-chip data 

movement

PIM core and PIM accelerator are feasible to 
implement in-memory compression/decompression

data movement
high

Uncompressed
Pages

Uncompressed
Pages



Tab Switching Wrap Up

31

A large amount of data movement happens 
during tab switching as Chrome attempts to 

compress and decompress tabs

2

Both functions can benefit from PIM execution 
and can be implemented as PIM logic
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Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis
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Chrome
Google’s web browser

TensorFlow
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Workload Analysis



TensorFlow Mobile

34

57.3% of the inference energy is spent on
data movement

54.4% of the data movement energy comes from 
packing/unpacking and quantization

Inference Prediction



Packing

36

Reorders elements of matrices to minimize 
cache misses during matrix multiplication

Up to 40% of the
inference energy and 31% of

inference execution time 

Packing’s data movement 
accounts for up to 

35.3% of the inference energy

PackingMatrix Packed Matrix

A simple data reorganization process
that requires simple arithmetic 



Quantization

36

Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption 

Up to 16.8% of the 
inference energy

and 16.1% of 
inference execution time 

Majority of quantization
energy comes from 

data movement

Quantizationfloating point integer

A simple data conversion operation that requires 
shift, addition, and multiplication operations



Quantization

37

Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption 

Up to 16.8% of the 
inference energy

and 16.1% of 
inference execution time 

Majority of quantization
energy comes from 

data movement

Quantizationfloating point integer

A simple data conversion operation that requires 
shift, addition, and multiplication operations

Based on our analysis, we conclude that:
• Both functions are good candidates for PIM execution 
• It is feasible to implement them in PIM logic



Video Playback and Capture

38

Compressed 
video VP9 

Decoder

Display Captured 
video VP9 

Encoder

Compressed
video

Majority of energy is spent on data movement

Majority of data movement comes from 
simple functions in decoding and encoding pipelines



Outline

• Introduction
• Background
• Analysis Methodology
• Workload Analysis

• Evaluation
• Conclusion
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Evaluation Methodology 
• System Configuration (gem5 Simulator)
– SoC:  4 OoO cores, 8-wide issue, 64 kB L1cache,

2MB L2 cache

– PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD, 
32kB L1 cache

– 3D-Stacked Memory: 2GB cube, 16 vaults per cube
• Internal Bandwidth: 256GB/S 
• Off-Chip Channel Bandwidth: 32 GB/s

– Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

• We study each target in isolation and emulate each 
separately and run them in our simulator

40



Normalized Energy 
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PIM core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%

77.7% and 82.6% of energy reduction for texture tiling 
and packing comes from eliminating data movement
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Normalized Runtime
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Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%



Conclusion
• Energy consumption is a major challenge in consumer devices
• We conduct an in-depth analysis of popular Google 

consumer workloads
– 62.7% of the total system energy is spent on data movement
– Most of the data movement comes from simple functions that 

consist of simple operations

• We use PIM to reduce data movement cost 
– We design lightweight logic to implement

simple operations in DRAM

– Reduces total energy by 55.4% on average 
– Reduces execution time by 54.2% on average 
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3D-Stacked PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
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Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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3D-Stacked Memory:

Challenges, Mechanisms, Evaluation

Kevin Hsieh
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Amirali Boroumand, Saugata Ghose, Onur Mutlu



Executive Summary
• Our Goal: Accelerating pointer chasing inside            

main memory

• Challenges: Parallelism challenge and Address 
translation challenge

• Our Solution: In-Memory PoInter Chasing 
Accelerator (IMPICA)
• Address-access decoupling: enabling parallelism in the 

accelerator with low cost
• IMPICA page table: low cost page table structure

• Key Results: 
• 1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput
• 6% - 41% reduction in energy consumption
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Linked Data Structures

• Linked data structures are widely used 
in many important applications

235

Database

B-Tree Hash Table

Key-value stores
Linked data structures are 

connected by pointers



The Problem: Pointer Chasing

•Traversing linked data structures 
requires chasing pointers
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MEM
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A F
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Find(A)

Addr
(H)

Data 
(H)

Addr
(E)

Data 
(E)

Addr
(A)

Data 
(A)

Serialized and irregular access pattern
6X cycles per instruction in real workloads



DRAM layers

Our Goal
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Accelerating pointer chasing         
inside main memory

H

E
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M

Find(A)

MEM

Data 
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Find
(A)



Outline

•Motivation and Our Approach
•Parallelism Challenge
• IMPICA Core Architecture
•Address Translation Challenge
• IMPICA Page Table
•Evaluation
•Conclusion
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Parallelism Challenge
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Time
Memory 
accessCPU core

In-Memory 
Accelerator

Comp Memory 
access

CPU core

Comp

Comp Comp

Memory 
accessComp Comp

Comp Memory 
access Comp

Faster for one operationSlower for two operations



Parallelism Challenge and Opportunity

•A simple in-memory accelerator can 
still be slower than multiple CPU cores

•Opportunity: a pointer-chasing 
accelerator spends a long time     
waiting for memory
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CPU core

Accelerator

CPU core CPU core

Comp Memory access (10-15X of Comp) Comp



Our Solution: 
Address-Access Decoupling
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Time

Comp

Memory 
access

Comp CompAddress 
Engine

Access 
Engine

Comp

Memory 
access

Memory 
accessCPU core

CPU core

Comp Comp

Memory 
accessComp Comp

Address-access decoupling enables 

parallelism in both engines with low cost



DRAM Dies

IMPICA Core Architecture
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Outline

•Motivation and Our Approach
•Parallelism Challenge
• IMPICA Core Architecture
•Address Translation Challenge
• IMPICA Page Table
•Evaluation
•Conclusion
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Address Translation Challenge
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TLB/MMU

Pointer (VA)

Pointer (PA)

Page table walk

PTW

PTW

PTW
PTW

PTW
No TLB/MMU on the memory side

Duplicating it is costly and creates 

compatibility issue

The page table walk requires 

multiple memory accesses



Our Solution: IMPICA Page Table

•Completely decouple the page table of 
IMPICA from the page table of the 
CPUs
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IMPICA 
Region

Physical Address Space

Virtual Page

Physical Page

Physical Page

Virtual Page

CPU Page Table

Virtual Address Space

IMPICA Page Table

Map linked data structure into IMPICA regions

IMPICA page table is a partial-to-any mapping



IMPICA Page Table: Mechanism

Bit [47:41] Bit [40:21] Bit [20:12] Bit [11:0]

Region Table

Flat Page Table 
(2MB)

Small Page Table 
(4KB)

+

+

Virtual Address

+

Physical Address

Tiny region table is almost 

always in the cache

Flat page table 

saves one memory access



Outline

•Motivation and Our Approach
•Parallelism Challenge
• IMPICA Core Architecture
•Address Translation Challenge
• IMPICA Page Table
•Evaluation
•Conclusion
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Evaluated Workloads

•Microbenchmarks
• Linked list (from Olden benchmark)
•Hash table (from Memcached)
• B-tree (from DBx1000)

•Application
•DBx1000 (with TPC-C benchmark)
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Evaluation Methodology

• Simulator: gem5
• System Configuration
• CPU
• 4 OoO cores, 2GHz
• Cache: 32KB L1, 1MB L2

• IMPICA
• 1 core, 500MHz, 32KB Cache

•Memory Bandwidth
• 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

•Our simulator code is open source
• https://github.com/CMU-SAFARI/IMPICA
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Result – Microbenchmark Performance
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Result – Database Performance
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System Energy Consumption
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Area and Power Overhead

•Power overhead: average power 
increases by 5.6%
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CPU (Cortex-A57) 5.85 mm2 per core

L2 Cache 5 mm2 per MB

Memory Controller 10 mm2

IMPICA (+32KB cache) 0.45 mm2



More in the Paper

• Interface and design considerations
• CPU interface and programming model
• Page table management
• Cache coherence

•Area and power overhead analysis

• Sensitivity to IMPICA page table design
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Conclusion
• Performing pointer-chasing inside main memory can greatly 

speed up the traversal of linked data structures

• Challenges: Parallelism challenge and Address translation 
challenge

• Our Solution: In-Memory PoInter Chasing Accelerator
• Address-access decoupling: enabling parallelism with low cost
• IMPICA page table: low cost page table structure

• Key Results: 
• 1.2X – 1.9X speedup for pointer chasing operations, +16% 

database throughput
• 6% - 41% reduction in energy consumption

• Our solution can be applied to a broad class of in-memory 
accelerators 255



Current Investigations
• More efficient address translation and protection 

mechanisms for PIM

• More concurrent data structures for PIM
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More Info on IMPICA (Current Status)

• Kevin Hsieh, Samira Khan, NanditaVijaykumar, Kevin K. Chang, Amirali 
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 
Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), 
Phoenix, AZ, USA, October 2016. 
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Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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GRIM-Filter:	
Fast	seed	location	filtering	in	DNA	read	mapping

using	processing-in-memory	technologies



n Genome Read Mapping is a very important problem and is the first 
step in genome analysis

n Read Mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an algorithm called GRIM-Filter
q Accelerates read mapping by reducing the number of required 

alignments
q GRIM-Filter can be accelerated using processing-in-memory

n Adds simple logic into 3D-Stacked memory
n Uses high internal memory bandwidth to perform parallel filtering

n GRIM-Filter with processing-in-memory delivers a 3.7x speedup
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1.	Motivation	and	Goal

2.	Background Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory
5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter



Motivation	and	Goal
n Sequencing: determine the [A,C,G,T] series in DNA strand 

n Today’s machines sequence short strands (reads)

q Reads are on the order of 100 – 20k base pairs (bp)

q The human genome is approximately 3 billion bp

n Therefore genomes are cut into reads, which are sequenced 

independently, and then reconstructed 

q Read mapping is the first step in analyzing someone’s genome to 

detect predispositions to diseases, personalize medicine, etc.

n Goal: We want to accelerate end-to-end performance     

of read mapping
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Background:	Read	Mappers
We now have sequenced reads and want a full genome
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via Read Mapping

We map reads to a known reference genome (>99.9% 
similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in reads
perfectly match in the reference genome

… G   A   C   T   G   T   G   T   C   G   A   …

G   A   C   T   G   T   G   T   C   A   A

✘

We can use a hash table to help quickly map the reads!
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Generating	Hash	Tables	
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To map any reads, generate a hash table per reference genome.

A   A   A   A   A 12    35    502    610    721    989

A   A   A   A   C 13    609    788

A   A   A   A   T 36   434

G   G   G   G   G 52    67    334    634    851 

…

k-length sequences 
(k-mers)  

Location list where k-mer occurs 
in the reference genome

@36:  AAAAT

@434:  AAAAT

We can query the table with substrings from reads 
to quickly find a list of possible mapping locations



Aligning...Mismatch

8943715641401203

1564

894 1203

37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping
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Hash Table

Read Sequence (100 bp)

Reference Genome

37 140
894 1203 

1564

We want to filter these out 
so we do not waste time 

trying to align them

Aligning...Match! Aligning...Mismatch

Aligning...MismatchAligning...Mismatch

✘ ✘
✘✘99.9% of locations 

result in a mismatch



Location	Filtering
n Alignment is expensive and requires the use of O(n2) 

dynamic programming algorithm 
q We need to align millions to billions of reads 

n Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly 

n Both methods are used by mappers today, but filtering has 
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]
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Our goal is to accelerate read mapping
by improving the filtering step 
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Filter

8943715641401203

1564

894 1203

37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping
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Hash Table

Read Sequence (100 bp)

Reference Genome

37 140
894 1203 

1564

Aligning...Match! Aligning...Mismatch

✘✘✘

False 
Negative

✘
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Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin
3. Integrating	GRIM-Filter	into	a	Mapper
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GRIM-Filter:	Bins
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n We partition the genome into large sequences (bins). 

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector
AAAAA
AAAAC
AAAAT

…
CCCCC
CCCCT
CCCCG

…
GGGGG

AAAAA
exists in 
bin x

CCCCT
doesn’t 
exist in 
bin x

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) in 
the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall within 

a single bin



GRIM-Filter:	Bitvectors
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GRIM-Filter:	Bitvectors

276

Storing all bitvectors
requires 4" ∗ $ bits
in memory, 
where t = number 
of bins.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 
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Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors
2. Checking	a	Bin

3. Integrating	GRIM-Filter	into	a	Mapper
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter:	Checking	a	Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment
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4 5

1
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0
1
1 

1
0
0
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Get tokens

Match tokens to bitvector

Compare

20



Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors
2. Checking	a	Bin
3. Integrating	GRIM-Filter	into	a	Mapper
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Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors
2. Checking	a	Bin
3. Integrating	GRIM-Filter	into	a	Mapper
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Integrating	GRIM-Filter	into	a	Read	Mapper

GRIM-Filter:
Seed Location Checker

0001010     011010... ......

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010     011010... ......

020128 020131 414415... ... ... ...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131
reference 
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3
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Key	Properties	of	GRIM-Filter
1. Simple Operations:

q To check a given bin, find the sum of all bits corresponding to 
each token in the read

q Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM

284



3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing-in-Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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3D-Stacked	Memory

n 3D-stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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GRIM-Filter	in	3D-Stacked	DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter	in	3D-Stacked	DRAM

n Customized logic for accumulation and comparison 
per genome segment
q Low area overhead, simple implementation
q For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and 

comparators in logic layer
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Methodology
n Performance simulated using an in-house 3D-Stacked DRAM 

simulator

n Evaluate 10 real read data sets (From the 1000 Genomes 
Project)
q Each data set consists of 4 million reads of length 100

n Evaluate two key metrics
q Performance
q False negative rate

§ The fraction of locations that pass the filter but result in a mismatch

§ Compare against a state-of-the-art filter, FastHASH [Xin+, BMC 
Genomics 2013] when using mrFAST, but GRIM-Filter can be 
used with ANY read mapper
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GRIM-Filter	Performance
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2.1x average performance benefit
1.8x-3.7x performance benefit across real data sets
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GRIM-Filter	False	Negative	Rate
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6.0x average reduction in False Negative Rate
5.6x-6.4x False Negative reduction across real data sets
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GRIM-Filter utilizes more information available in the read to filter



Other	Results	in	the	Paper	

n Sensitivity of execution time and false negative rates to 
error tolerance of string matching

n Read mapper execution time breakdown

n Sensitivity studies on the filter
q Token Size
q Bin Size
q Error Tolerance
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1.	Motivation	and	Goal
2.	Background: Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory
5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter



Conclusion
We propose an in-memory filtering algorithm to accelerate end-to-end 
read mapping by reducing the number of required alignments

Key ideas:
n Introduce a new representation of coarse-grained segments of the 

reference genome 
n Use massively-parallel in-memory operations to identify read 

presence within each coarse-grained segment 

Key contributions and results:
n Customized filtering algorithm for 3D-Stacked DRAM
n Compared to the previous best filter

q We observed 1.8x-3.7x read mapping speedup
q We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper 
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LazyPIM Summary
• Cache Coherence is a major system challenge for PIM

– Conventional cache coherence makes PIM programming easy but loses 
a significant portion of PIM benefits

• Observation:
– Significant amount of sharing between PIM cores and CPU cores in 

many important data-intensive applications
– Efficient handling of coherence is critical to retain PIM benefits

• LazyPIM
– Key idea: use speculation to avoid coherence lookups during PIM core 

execution and compressed signatures to verify correctness after PIM 
core is done

– Improves performance by 19.8% and energy by 18% vs. best previous
– Comes within 4.4% and 9.8% of ideal PIM energy and performance

• We believe LazyPIM can enable new applications that benefit 
from fine-grained sharing between CPU and PIM



PIM Coherence
• A Major System Challenge for PIM: Coherence

4

Data Shared Data

CPU PIM

Cache Cache

PIMCPU

Need a coherence mechanism to 
ensure correctness!

PIM ThreadsCPU Threads



CPU PIM
Off-chip Channel

Coherence Traffic

Cache Cache

CPU PIM

PIM Coherence
• Potential solution: Conventional coherence protocols

– We can treat PIM cores as additional independent cores
– Use conventional coherence protocol to make them coherent with 

the CPUs

5

Generates a large amount of off-chip coherence traffic 

Conventional coherence is impractical: large number of 
coherence messages over off-chip channel

Simplifies PIM programming model  

Eliminates on average 72.4% of Ideal PIM energy improvement



Goal and Key Idea
• Our goal is to develop a cache coherence mechanism 

that:
1) Maintains the logical behavior of conventional cache 
coherence protocols to simplify PIM programming model
2) Retains the large performance and energy benefits of PIM

• Our key idea is 
1) Avoid coherence lookups during PIM core execution
2) Batch lookups in compressed signatures and use them to 
verify correctness after PIM core finishes

6



Background
Prior Approaches to PIM Coherence

7



Prior Approaches to PIM Coherence
• There are many recent proposals on PIM

– Primarily focus on the design of compute unit within the logic layer

• Prior works employ other approaches than conventional 
coherence protocol 
– Marking PIM-data as Non-cacheable

• They no longer need to deal with coherence
– Coarse-grained coherence 

• Tracks coherence at a larger granularity than a single cache line
• Does not transfer permission while PIM is working
• No concurrent access from the CPU and PIM

8



Prior Approaches to PIM Coherence
• Prior works proposed coherence mechanisms assuming:

– Entire application could be offloaded to PIM core à Almost zero 
sharing between PIM and CPU 

– Only limited communication happens between CPU and PIM

12

Observation: These assumptions do not hold for many 
important data-intensive applications that benefit from PIM



Motivation
Applications with Data Sharing

13



Application Analysis for PIM
• An application benefits from PIM when we offload its

memory-intensive parts that:
– Generate a lot of data movement
– Have poor cache locality
– Contribute to a large portion of execution time

• Parts of the application that are compute-intensive or cache
friendly should remain on the CPU
– To benefit from larger and sophisticated cores with larger caches

14



Example: Hybrid In-Memory Database

15

Analytical Threads 
(PIM Friendly)

Transactional Threads
(CPU Friendly)

CPU PIM
Data Sharing

CPU PIM

Hybrid Database

1.93x Speedup
68% reduction in energy

Ideal PIM vs. CPU-only:



Applications with High Data Sharing
• Our application analysis shows that:

– Some portions of the applications perform better on CPUs
– These portions often access the same region of data as the PIM 

cores 

• Based on this observation, we can conclude that:
– There are important data-intensive applications that have strong 

potential for PIM and show significant data sharing between the 
CPU and PIM

16



Let’s see how prior approaches work for 
these applications

17



Non-Cacheable

18

Analytical Threads 
(PIM Friendly)

Transactional 
Threads

(CPU Friendly)

CPU PIM
Data Sharing

CPU PIM

Generates a large number of off-chip accesses
Significantly hurts CPU threads’ performance



Coarse-Grained Coherence
• Need to get coherence permission for the entire region

– Needs to flush every dirty data within that region to transfer 
permission
Unnecessarily flushes a large amount of
data in pointer-based data structure

• Does not allow concurrent accesses 
– Blocks CPUs accessing

PIM-data during PIM execution
Coarse-grained locks frequently 
cause thread serialization

19

CPU PIM
CPU PIM

Flush dirty data

Access to PIM data

CPU PIM
Time

STALL



Motivation: Summary
• Conventional cache coherence loses a significant portion of 

PIM benefits

• Prior works use other approaches to avoid those costs
– Their assumption: Zero or a limited amount of sharing

• We observe that those assumptions do not hold for a 
number of important data-intensive applications
– Using prior approaches eliminates a significant portion of PIM 

benefits 

• We want to get the best of both worlds
1) Maintain the logical behavior of conventional cache coherence 
2) Retain the large performance and energy benefits of PIM

20



LazyPIM
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Baseline PIM Architecture

22

CPU
DRAM

L1 Cache

Core
L1 Cache

Core

L1 Cache

Core
L1 Cache

Core
PIM 

Directory

…

…



Our Proposal

• LazyPIM:
– Lets PIM cores use speculation to avoid coherence lookups 

during execution
– Uses compressed signatures to batch the lookups and verify

correctness after the PIM core completes

23

No coherence 
check/update

Signature

Speculative 
execution

PIMCPU

Verify Correctness



LazyPIM High-level Operation

24

4) Send PIM Signatures

3) PIM portion 
execution

5) Conflict Check

CPU PIM

2) Offload PIM kernel

1) CPU portion 
execution

CPU portion 
Concurrent 
execution

6) Commit or Rollback

PIM 
Signature

CPU 
SignaturePIM 
Signature

No Coherence



How LazyPIM Avoids Pitfalls of Prior Approaches
• Conventional Coherence (Fine-grained)

• Coarse-grained Coherence

• Non-Cacheable

25

Generates a large amount of off-chip coherence traffic for every miss

Unnecessarily flushes a large amount of data

A large number of off-chip accesses hurting CPU threads’ performance

LazyPIM only sends a compressed signature after PIM cores finishes

Causes Thread Serialization
LazyPIM performs only the necessary flushes

LazyPIM enables concurrent execution of the CPUs and PIM cores 

LazyPIM allows CPU threads to use caches



How we define conflicts in LazyPIM?
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Conflicts
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CPU 1 PIMCPU 0

Ti
m

e

1) Offload PIM kernel

2) Send PIM signatures

Conflict Detection
CPUs flush A,C

Conflict Detection
No Conflict

3) Roll back PIM
Restart kernel

Rd (A)
Wr (B)
Rd (C)

Rd (A)
Wr (B)
Rd (C)4) Send PIM signatures

5) Commit PIM data

Rd (B)

Wr (B)

Wr (C)

Wr (A)

1) PIM Read and Processor Write: Conflict

2) Processor Read and PIM Write: No Conflict

3) Processor Write and PIM Write: No Conflict



Architecture Support

28



LazyPIM Architecture

29

PIM Core

L1 Cache

PIMReadSET

PIMWriteSET

ostCPU
DRAM

CPU

CPUWriteSE
TCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

• How does LazyPIM support speculative execution?

• How does LazyPIM implement signatures?

• How does LazyPIM handle conflicts?



Speculative Execution
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET
PIMWriteSET

PIM Core
L1 Cache

• One-bit flag per cache line to mark all data updates as speculative

Speculative write bits

Tracking speculative updates



Speculative Execution
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET
PIMWriteSET

CPUWriteSETCPUWriteSET

PIMReadSET
PIMWriteSET

• The PIMReadSet and PIMWriteSet are updated 
for every read and write by the PIM core 

• The CPU records all dirty cache lines and writes in 
the PIM data region in the CPUWriteSet

Tracking potential conflicts

Tracking memory accesses



Signature Implementation
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET

PIMWriteSET

CPUWriteSETCPUWriteSET

PIMReadSET

PIMWriteSET

Address

…
1 1 00 0 1 11 0 0 01

hk-1h1h0
…

Bloom filter based signature has two major benefits:
• Allows us to easily perform conflict detection

• Allows for a large number of addresses to be stored within 
a fixed-length register 



Handling Conflicts
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CPU

CPUWriteSETCPUWriteSET

Shared LLC

Conflict 
Detection

L1 Cache

PIM Core
L1 Cache

PIMReadSET
PIMWriteSET
PIMReadSet

CPUWriteSet
Conflict 

Detection

PIMReadSetCPUWriteSet

Conflict

AND

If conflict happens:
• The CPU flushes the dirty cache lines that 

match addresses in the PIMReadSet

• PIM core invalidates all speculative cache 
lines

• Signatures are erased and PIM core restarts
execution

If no conflicts:
• Any clean cache lines in the CPU that match an 

address in the PIMWriteSet are invalidated

• PIM core commits speculative updates



Evaluation
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Evaluation Methodology
• Simulator

– Gem5 full system simulator

• System Configuration:
– Processor

• 4-16 Cores, 8 wide issue, 2GHz Frequency
• L1 I/D Cache: 64KB private, 4-way associative, 64B Block
• L2 Cache: 2MB shared, 8-way associative, 64B Blocks
• Cache Coherence Protocol: MESI

– PIM
• 4-16 Cores, 1 wide issue, 2GHz Frequency
• L1 I/D Cache: 64KB private, 4-way associative, 64B Block
• Cache Coherence Protocol: MESI

– 3D-stacked Memory
• One 4GB Cube, 16 Vaults per cube
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Applications
• Ligra

– Lightweight multithreaded graph processing for shared memory system
– We used three Ligra graph applications

• PageRank
• Radii 
• Connected Components

– Input graphs constructed from real-world network datasets:
• arXiV General Relativity (5K nodes, 14K edges)
• peer-to- peer Gnutella25 (22K nodes, 54K edges). 
• Enron email communication network (36K nodes, 183K edges)

• IMDB
– In-house prototype of an in-memory database (IMDB)
– Capable of running both transactional queries and analytical queries on the same

database tables (HTAP workload)
– 32K transactions, 128/256 analytical queries

36
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Speedup with 16 Threads

CG and NC eliminate the entire benefit 
of Ideal-PIM execution

FG loses a significant portion of 
Ideal-PIM’s improvement

LazyPIM consistently retains most of Ideal-PIM’s 
benefits, coming within 9.8% of the Ideal-PIM 

performance
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2.7x 2.2x 2.1x 2.1x 2.0x 2.1x 2.0x 1.8x 2.1x 1.4x

Energy with 16 threads

• NC suffers greatly from the large number of accesses to DRAM
• Interconnect and DRAM energy increase by 3.1x and 4.5x

CG and FG loses a significant portion of benefits because of 
large number of writebacks and off-chip coherence messages
LazyPIM significantly reduces energy consumption 

and comes within 4.4% of Ideal-PIM



Conclusion
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Conclusion
• Cache Coherence is a major system challenge for PIM

– Conventional cache coherence makes PIM programming easy but loses 
a significant portion of PIM benefits

• Observation:
– Significant amount of sharing between PIM cores and CPU cores in 

many important data-intensive applications
– Efficient handling of coherence is critical to retain PIM benefits

• LazyPIM
– Key idea: use speculation to avoid coherence lookups during PIM core 

execution and compressed signatures to verify correctness after PIM 
core is done

– Improves performance by 19.8% and energy by 18% vs. best previous
– Comes within 4.4% and 9.8% of ideal PIM energy and performance

• We believe LazyPIM can enable new applications that benefit 
from fine-grained sharing between CPU and PIM
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