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Flynn’s Taxonomy of Computers
n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 

of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor
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SIMD ISA Extensions
n Single Instruction Multiple Data (SIMD) extension 

instructions
q Single instruction acts on multiple pieces of data at once
q Common application: graphics
q Perform short arithmetic operations (also called packed 

arithmetic)
n For example: add four 8-bit numbers
n Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a0

0781516232432 Bit position

$s0a1a2a3

b0 $s1b1b2b3

a0 + b0 $s2a1 + b1a2 + b2a3 + b3

+
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Intel Pentium MMX Operations
n Idea: One instruction operates on multiple data elements 

simultaneously
q À la array processing (yet much more limited)
q Designed with multimedia (graphics) operations in mind
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Peleg and Weiser, “MMX Technology
Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register
Opcode determines data type:
8 8-bit bytes
4 16-bit words
2 32-bit doublewords
1 64-bit quadword

Stride is always equal to 1.



MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image x on top of the background in image y

7Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.
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Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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MMX Example: Image Overlaying (II)

8Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image
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Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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Heterogeneous Computing Systems
n The end of Moore’s law created the need for heterogeneous 

systems
n More suitable devices for each type of workload
n Increased performance and energy efficiency
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Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.



Goals of this P&S Course
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P&S Heterogeneous Systems: Contents
n We will introduce the need for heterogeneity in current 

computing systems, in order to achieve high performance 
and energy efficiency

n You will get familiar with some of the different 
heterogeneous devices that are available in computing 
systems

n You will learn workload distribution and parallelization 
strategies that leverage heterogeneous devices

n You will work hands-on: analyzing workloads, programming 
heterogeneous architectures, proposing 
scheduling/offloading mechanisms, etc.
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NVIDIA A100 (2020)

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA A100 Core
GPU compute throughput:

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

13
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Cerebras’s Wafer Scale Engine (2019)

14

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip (2019)

n 400,000 cores 

NVIDIA TITAN V

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)
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Cerebras WSE-2               
2.6 Trillion transistors

46,225 mm2

Largest GPU               
54.2 Billion transistors

826 mm2

n The largest ML 
accelerator chip (2021)

n 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Google TPU Generation I (~2016)

16

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



Google TPU Generation II (2017)
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https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory 
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training 
and inference
vs only inference



Google TPU Generation III (2019)

18https://cloud.google.com/tpu/docs/system-architecture

32GB HBM per chip
vs 16GB HBM in TPU2

4 Matrix Units per chip
vs 2 Matrix Units in TPU2

90 TFLOPS per chip
vs 45 TFLOPS in TPU2



Google TPU Generation IV (2019)
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250 TFLOPS per chip in 2021
vs 90 TFLOPS in TPU3

1 ExaFLOPS per board

New ML applications (vs. TPU3):
• Computer vision
• Natural Language Processing (NLP)
• Recommender system
• Reinforcement learning that plays Go

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests



An Example Modern Systolic Array: TPU (II)

20

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.



An Example Modern Systolic Array: TPU (III)
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Xilinx Versal ACAP (2020) (I)

22

n Three compute engines inside the same chip

q Different workloads, different devices

https://www.xilinx.com/products/silicon-devices/acap/versal.html

https://www.xilinx.com/products/silicon-devices/acap/versal.html


Xilinx Versal ACAP (2020) (II)
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n Three compute engines inside the same chip
q Scalar cores, reconfigurable engines, vector processors

https://www.xilinx.com/products/silicon-devices/acap/versal.html

https://www.xilinx.com/products/silicon-devices/acap/versal.html


UPMEM Processing-in-DRAM Engine (2019)

24

n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/


Samsung AxDIMM (2021)
n DIMM-based PIM

q DLRM recommendation system

25

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



Key Takeaways
n This P&S is aimed at improving your

q Knowledge in Computer Architecture and Heterogeneous 

Systems

q Technical skills in programming heterogeneous architectures

q Critical thinking and analysis

q Interaction with a nice group of researchers

q Familiarity with key research directions

q Technical presentation of your project

26



Key Goal

(Learn how to) take advantage of 

existing heterogeneous devices

by programming them, 

analyzing workloads, proposing 
offloading/scheduling techniques…

27



Prerequisites of the Course
n Digital Design and Computer Architecture (or equivalent 

course)

n Familiarity with C/C++ programming
q FPGA implementation or GPU programming (desirable)

n Interest in 
q computer architectures and computing paradigms
q discovering why things do or do not work and solving 

problems
q making systems efficient and usable

28



Course Info: Who Are We? (I)
n Onur Mutlu

q Full Professor @ ETH Zurich ITET (INFK), since September 2015
q Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
q PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
q https://people.inf.ethz.ch/omutlu/
q omutlu@gmail.com (Best way to reach me)
q https://people.inf.ethz.ch/omutlu/projects.htm

n Research and Teaching in:
q Computer architecture, computer systems, hardware security, bioinformatics
q Memory and storage systems
q Hardware security, safety, predictability
q Fault tolerance
q Hardware/software cooperation
q Architectures for bioinformatics, health, medicine
q … 

29

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm


Course Info: Who Are We? (II)
n Lead Supervisor:

q Dr. Juan Gómez Luna

n Supervisors:
q Dr. Mohammed Alser
q Dr. Behzad Salami
q Dr. Gagandeep Singh

n Get to know us and our research
q https://safari.ethz.ch/safari-group/

30

https://safari.ethz.ch/safari-group/


38+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/


SAFARI Newsletter January 2021 Edition
n https://safari.ethz.ch/safari-newsletter-january-2021/

32

https://safari.ethz.ch/safari-newsletter-january-2021/


SAFARI Live Seminars (I)

https://safari.ethz.ch/safari-seminar-series/

https://safari.ethz.ch/safari-seminar-series/


SAFARI Live Seminars (II)

https://youtu.be/XIfPHtvA9rw

https://youtu.be/XIfPHtvA9rw


Research Focus: Computer architecture, HW/SW, bioinformatics
• Memory and storage (DRAM, flash, emerging), interconnects
• Heterogeneous & parallel systems, GPUs, systems for data analytics
• System/architecture interaction, new execution models, new interfaces
• Energy efficiency, fault tolerance, hardware security, performance 
• Genome sequence analysis & assembly algorithms and architectures
• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas

35



Course Info: How About You?

n Let us know your background, interests

n Why did you join this P&S?

36



Course Requirements and Expectations
n Attendance required for all meetings

n Study the learning materials

n Each student will carry out a hands-on project
q Build, implement, code, and design with close engagement from 

the supervisors

n Participation 
q Ask questions, contribute thoughts/ideas
q Read relevant papers

We will help in all projects! 
If your work is really good, you may get it published!

37



Course Website

n https://safari.ethz.ch/projects_and_seminars/doku.php?id=
heterogeneous_systems

n Useful information about the course

n Check your email frequently for announcements

n We also have Moodle for Q&A

38

https://safari.ethz.ch/projects_and_seminars/doku.php?id=heterogeneous_systems


Meeting 1
n Required materials:

1. An introduction to SIMD processors and GPUs (Dr. Juan Gomez Luna, lecture).
(PDF) (PPT)
Video

2. An introduction to GPUs and heterogeneous programming (Dr. Juan Gomez Luna, lecture).
(PDF) (PPT)
Video

n Recommended materials:
3. Programming heterogeneous collaborative systems (Dr. Juan Gomez Luna, lecture):
(PDF) (PPT)
https://youtu.be/uhQjXbNo6Cc?t=3040

4. Juan Gomez-Luna, Izzat El Hajj, Li-Wen Chang, Victor Garcia-Flores, Simon Garcia de Gonzalo, Thomas B. Jablin, Antonio J. Peña and Wen-mei Hwu,
"Chai: Collaborative Heterogeneous Applications for Integrated-architectures"
Proceedings of the 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa, California, April 2017.
https://chai-benchmarks.github.io
https://github.com/chai-benchmarks/chai

5. Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]

6. Mohammed Alser, Taha Shahroodi, Juan Gomez Luna, Can Alkan, and Onur Mutlu,
"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 26 December 2020.
[Source Code] [Online link at Bioinformatics Journal]

7. Real Processing-in-DRAM with UPMEM (Dr. Juan Gomez Luna, lecture, Fall 2020).
(PDF) (PPT)Video
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https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture24-simdandgpu-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture24-simdandgpu-afterlecture.pptx
http://www.youtube.com/watch?v=hOeIkAYraTE
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pptx
http://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture14-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture14-afterlecture.pptx
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https://chai-benchmarks.github.io/assets/ispass17.pdf
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
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http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
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https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=upmem-2020-10-30.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=upmem-2020-10-30.pptx
http://www.youtube.com/watch?v=Sscy1Wrr22A


Meeting 2 (October 14th)
n We will announce the projects and will give you some 

description about them

n We will give you a chance to select a project

n Then, we will have 1-1 meetings to match your interests, 
skills, and background with a suitable project

n It is important that you study the learning materials before 
our next meeting!
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Next Meetings
n Individual meetings with your mentor/s

n Tutorials and short talks
q GPU/FPGA programming
q Recent research works

n Presentation of your work
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Exploiting Data Parallelism:
SIMD Processors and GPUs



Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor
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Recall: MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image x on top of the background in image y

44Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.
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Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements (PEs), i.e., execution units

n Time-space duality

q Array processor: Instruction operates on multiple data 
elements at the same time using different spaces (PEs)

q Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space (PE)
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



NVIDIA A100 Core
GPU compute throughput:

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

47
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Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

48Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

49
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Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 50



Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

51Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Heterogeneous Computing Systems
n The end of Moore’s law created the need for heterogeneous 

systems
n More suitable devices for each type of workload
n Increased performance and energy efficiency
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https://chai-benchmarks.github.io

Chai Benchmark Suite 
n Heterogeneous execution on CPU, GPU, FPGA
n Collaboration patterns

q 8 data partitioning benchmarks
q 3 coarse-grain task partitioning benchmarks
q 3 fine-grain task partitioning benchmarks

n Discrete (D) and Unified (U) versions
n Chai versions

q CUDA and OpenCL for CPU+GPU
q OpenCL for CPU+FPGA
q CUDA-Sim for Gem5-GPU

53Gómez-Luna+, “Chai: Collaborative Heterogenous Applications for Integrated Architectures,” ISPASS 2017.
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