P\&S Heterogeneous Systems

Parallel Patterns: Graph Search

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich
Fall 2021
16 December 2021

Parallel Patterns

Reduction Operation

- A reduction operation reduces a set of values to a single value
- Sum, Product, Minimum, Maximum are examples
- Properties of reduction
- Associativity
- Commutativity
- Identity value
- Reduction is a key primitive for parallel computing - E.g., MapReduce programming model

Divergence-Free Mapping (I)

- All active threads belong to the same warp

Divergence-Free Mapping (II)

- Program with high SIMD utilization
__shared__ float partialSum[]
unsigned int $t=$ threadIdx. x;
for(int stride $=$ blockDim.x; stride > 0 ; stride >> 1) \{
__syncthreads();

```
if (t < stride)
    partialSum[t] += partialSum[t + stride];
```

\}

Warp utilization is maximized

```
stride = 8
```


Histogram Computation

- Histogram is a frequently used computation for reducing the dimensionality and extracting notable features and patterns from large data sets
- Feature extraction for object recognition in images
- Fraud detection in credit card transactions
- Correlating heavenly object movements in astrophysics
- ...
- Basic histograms - for each element in the data set, use the value to identify a "bin" to increment
- Divide possible input value range into "bins"
- Associate a counter to each bin
- For each input element, examine its value and determine the bin it falls into and increment the counter for that bin

Parallel Histogram Computation: Iteration 2

- All threads move to the next section of the input
- Each thread moves to element threadID + \#threads

We need to use atomic operations

Histogram Privatization

- Privatization: Per-block sub-histograms in shared memory
- Threads use atomic operations in shared memory

Final histogram

Convolution Applications

- Convolution is a widely-used operation in signal processing, image processing, video processing, and computer vision
- Convolution applies a filter or mask or kernel* on each element of the input (e.g., a signal, an image, a frame) to obtain a new value, which is a weighted sum of a set of neighboring input elements
- Smoothing, sharpening, or blurring an image
- Finding edges in an image
- Removing noise, etc.
- Applications in machine learning and artificial intelligence - Convolutional Neural Networks (CNN or ConvNets)

[^0]
1D Convolution Example

- Commonly used for audio processing
- Mask size is usually an odd number of elements for symmetry (5 in this example)
- Calculation of P[2]:

Another Example of 2D Convolution

Implementing a Convolutional Layer with Matrix Multiplication

Prefix Sum (Scan)

- Prefix sum or scan is an operation that takes an input array and an associative operator,
- E.g., addition, multiplication, maximum, minimum
- And returns an output array that is the result of recursively applying the associative operator on the elements of the input array
- Input array $\left[\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right.$]
- Associative operator \oplus
- An output array $\left[y_{0}, y_{1}, \ldots, y_{n-1}\right]$ where
- Exclusive scan: $y_{i}=x_{0} \oplus x_{1} \oplus \ldots \oplus x_{i-1}$
- Inclusive scan: $y_{i}=x_{0} \oplus x_{1} \oplus \ldots \oplus x_{i}$

Hierarchical (Inclusive) Scan

Input	Block 0				Block 1				Block 2				Block 3			
	1	2	3	4	1	1	1	1	0	1	2	3	2	2	2	2

Per-block (Inclusive) Scan

Kogge-Stone Parallel (Inclusive) Scan

Sparse Matrices

A dense matrix is one where the majority of elements are not zero

A sparse matrix is one where many elements are zero
(many real world systems are sparse)

- Opportunities:
- Do not need to allocate space for zeros (save memory capacity)
- Do not need to load zeros (save memory bandwidth)
- Do not need to compute with zeros (save computation time)

SpMV/CSR

Parallelization

 approach: Assign one thread to loop over each input row sequentially and update corresponding output element

Graph Search

Dynamic Data Extraction

- The data to be processed in each phase of computation need to be dynamically determined and extracted from a bulk data structure
- Harder when the bulk data structure is not organized for massively parallel access, such as graphs
- Graph algorithms are popular examples that perform dynamic data extraction
- Widely used in EDA, NLZP, and large scale optimization applications
- We will use Breadth-First Search (BFS) as an example

Main Challenges of Dynamic Data Extraction

- Input data need to be organized for locality, coalescing, and contention avoidance as they are extracted during execution
- The amount of work and level of parallelism often grow and shrink during execution
- As more or less data is extracted during each phase
- Hard to efficiently fit into one GPU kernel configuration, without dynamic parallelism support (Kepler and beyond)
- Different kernel strategies fit different data sizes

Graph and Sparse Matrix are Closely Related

	0	1	2	3	4	5	6	7	8
0		1	1						
1				1	1				
2						1	1	1	
3					1				1
4						1			1
5							1		
6									1
7	1						1		
8									
Adjacency matrix									

Recall: Sparse Matrices are Widespread Today

Recommender Systems

- Collaborative Filtering

Graph Analytics

- PageRank
- Breadth First Search • Graph Neural Networks
- Betweenness

Centrality

Neural Networks

- Sparse DNNs

Recall: Compressed Sparse Row (CSR)

Store nonzeros of the same row adjacently and an index to the first element of each row

Value: | 1 | 7 | 5 | 3 | 9 | 2 | 8 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(Compressed) Edge Representation of a Graph

row pointers source[10]	0	2	4	7	9	11	12	13	15	15	CSR format				
column indices destination[15]	1	2	3	4	5	6	7	4	8	5	8	6	8	0	6
non-zero elements data[15]	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Breadth-First Search (BFS)

- To determine the minimal number of hops that is required to go from a source node to a destination node (or all destinations)

Breadth-First Search: Example

- Start with a source node
- Identify and mark all nodes that can be reached from the source node with 1 hop, 2 hops, 3 hops, ...

Initial Condition

Breadth-First Search - Initial Condition

Breadth-First Search - 1 Hop

First Frontier (level 1 nodes)

- 1, 2

Breadth-First Search -2 Hops

- First Frontier (level 1

nodes)
- 1, 2
- Second frontier (level 2 nodes)
- 3, 4, 5, 6, 7

Breadth-First Search - 3 Hops

- First Frontier (level 1
 nodes)
- 1,2
- Second frontier (level 2 nodes)
- 3, 4, 5, 6, 7
- Third frontier (Level 3 nodes)
- 8

Desirable Outcome

Breadth-First Search - Node 2 as Source

Breadth-First Search - Node 2 as Source

- First Frontier (level 1 nodes)
- 5, 6, 7
- Second frontier (level 2 nodes)
- 0,8
- Third frontier (Level 3 nodes)
- 1

BFS: Processing the Frontier (2nd Iteration)

BFS Use Example in VLSI CAD

- Maze Routing

- net terminal
blockage

Potential Pitfall of Parallel Algorithms

- Greatly accelerated n^{2} algorithm is still slower than an $\log (\mathrm{n})$ algorithm for large data sets
- Always need to keep an eye on fast sequential algorithm as the baseline

Node-Oriented Parallelization

- Each thread is dedicated to one node
- All nodes visited in all iterations
- Every thread examines neighbor nodes to determine if its node will be a frontier node in the next phase
- Complexity $\mathrm{O}(\mathrm{VL}+\mathrm{E})$ (Compared with $\mathrm{O}(\mathrm{V}+\mathrm{E})$)
- L is the number of levels
- Slower than the sequential version for large graphs
- Especially for sparsely connect graphs

0	1	2	3	4	5	6	7	8
0	1	2	3	4	5	6	7	8

Matrix-Based Parallelization

- Propagation is done through matrix-vector multiplication
- For sparsely connected graphs, the connectivity matrix will be a sparse matrix
- Complexity $\mathrm{O}(\mathrm{V}+\mathrm{EL})$ (compared with $\mathrm{O}(\mathrm{V}+\mathrm{E})$)
- Slower than sequential for large graphs

$$
\begin{aligned}
& \mathrm{s}\left[\begin{array}{l|ll}
0 & 1 & 0 \\
\mathrm{u} & 0 & 0 \\
\mathrm{v} \\
0 & 0 & 0
\end{array}\right] \times\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \begin{array}{l}
\mathrm{s} \\
\mathrm{u} \\
\mathrm{v}
\end{array} \\
& \quad \mathrm{~s} \quad \mathrm{u}
\end{aligned}
$$

Linear Algebraic Formulation

- Logical representation and adjacency matrix

- Vertex programming model

```
                        GraphMat Processing Model
1 For each Vertex V
    For each incoming edge \(E(U, V)\) from active vertex \(U\)
        Res \(\leftarrow\) Process_Edge ( \(\mathrm{E}_{\text {weight }}, \mathrm{U}_{\text {prop }},[\) Optional \(] V_{\text {prop }}\) )
        \(\mathrm{V}_{\text {temp }} \leftarrow\) Reduce \(\left(\mathrm{V}_{\text {temp }}\right.\), Res)
    End
    End
    For each Vertex \(V\),
    \(\mathrm{V}_{\text {prop }} \leftarrow\) Apply \(\left(\mathrm{V}_{\text {temp }}, \mathrm{V}_{\text {prop }}, \mathrm{V}_{\text {const }}\right)\)
    End
```

Fig. 1: Simplified GraphMat processing model. Note that this is slightly different from the original GraphMat [46] in that it integrates Send_Message with Apply.

[^1]
Mapping Vertex Programs to SpMV

Example: Single Source Shortest Path (SSSP)

SEND_MESSAGE : message := vertex_distance
PROCESS_MESSAGE : result := message + edge_value
REDUCE : result := min(result, operand)
APPLY : vertex_distance $=\min ($ result, vertex_distance)
Generalized SpMV:
Replace mul with add and add with min

Need a More General Technique

- To efficiently handle most graph types
- Use more specialized formulation when appropriate as an optimization
- Efficient queue-based parallel algorithms
- Hierarchical scalable queue implementation
- Hierarchical kernel arrangements

An Initial Attempt

- Manage the queue structure
- Complexity: O(V+E)
a Dequeue in parallel
- Each frontier node is a thread
- Enqueue in sequence using atomic operations
- Poor coalescing
- Poor scalability

- No speedup

Parallel Insert-Compact Queues

- Parallel enqueue with compaction cost
- Not suitable for light-node problems

(Output) Privatization

- Avoid contention by aggregating updates locally
- Requires storage resources to keep copies of data structures

Recall: Histogram Privatization

- Privatization: Per-block sub-histograms in shared memory
- Threads use atomic operations in shared memory

Final histogram

Basic Ideas

- Each thread processes one or more frontier nodes and inserts new frontier nodes into its private queues
- Find a location in the global queue for each new frontier node
- Build queue of next frontier hierarchically

Two-level Hierarchy

- Block queue (b-queue)
- Inserted by all threads in a block
- Resides in Shared Memory
- Global queue (g-queue)
- Inserted only when a block completes
- Problem:
- Collision on b-queues
- Threads in the same block can cause heavy contention

Hierarchical Queue Management

- Advantage and limitation
- The technique can be applied to any inherently sequential data structure
- As long as the exact global ordering between queue contents is not required for correctness or optimality (more of a list)
- The b-queues are limited by the capacity of shared memory
- If we know the upper limit of the degree, we can adjust the number of threads per block accordingly
- Overflow mechanism to ensure robustness

Kernel Arrangement

- Creating global barriers needs frequent kernel launches
- Too much overhead
- Solutions:
- Partially use GPU-synchronization
- Multi-layer Kernel Arrangement
- Dynamic Parallelism
- Persistent threads with global barriers

Hierarchical Kernel Arrangement

- Customize kernels based on the size of frontiers
- Use fast barrier synchronization when the frontier is small

Kernel 1: Intra-block Synchronization

Kernel 2: Kernel re-launch

[^2]
Kernel Arrangement (I)

- Kernel 1: small-sized frontiers
- Only launch one block
- Use \qquad syncthreads();
- Propagate through multiple levels
- Only b-queue
- No g-queue during propagation
- Save global memory access
- Very fast

Kernel Arrangement (II)

- Kernel 2: big-sized frontiers
- Use kernel re-launch to implement synchronization
- The kernel launch overhead is acceptable considering the time to propagate a huge frontier
- Or, one can use dynamic parallelism to launch new kernels from kernel 1 when the number of nodes in the frontier grows beyond a threshold
- Dynamic parallelism can also help with load balancing

Hierarchical Kernel Arrangement

- Customize kernels based on the size of frontiers
- Use fast barrier synchronization when the frontier is small

Kernel 1: Intra-block Synchronization

Kernel 2: Kernel re-launch

[^3]
Persistent Thread Blocks

- Combine Kernel 1 and Kernel 2
- We can avoid kernel re-launch
- We need to use persistent thread blocks
- Kernel 2 launches (frontier_size / block_size) blocks
- Persistent blocks: up to (number_SMs x max_blocks_SM)

Atomic-based Block Synchronization (I)

Code (simplified)

```
// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
while(frontier_size != 0){
    for(node = gtid; node < frontier_size; node += blockDim.x * gridDim.x){
        // Visit neighbors
        // Enqueue in output queue if needed (global or local queue)
    }
    // Update frontier_size
    // Global synchronization
}
```


Atomic-based Block Synchronization (II)

- Global synchronization (simplified)
- At the end of each iteration

```
const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
frontier++;
if(tid == 0){
    atomicAdd(ptr_threads_end, 1); // Thread block finishes iteration
}
if(gtid == 0) {
    while(atomicAdd(ptr_threads_end, 0) != gridDim.x){;} // Wait until all blocks finish
    atomicExch(ptr_threads_end, 0); // Reset
    atomicAdd(ptr_threads_r_run, 1); // Count iteration
}
if(tid == 0 && gtid != 0){
    while(atomicAdd(ptr_threads_run, 0) < frontier){;} // Wait until ptr_threads_run is updated
}
__syncthreads(); // Rest of threads wait here
```


Segmentation in Medical Image Analysis (I)

- Segmentation is used to obtain the area of an organ, a tumor, etc.

1. Vessel Segmentation

2. Liver Segmentation

Segmentation in Medical Image Analysis (II)

- Seeded region growing is an algorithm for segmentation
- Dynamic data extraction as the region grows

Figure: Seeded Region Growing (SRG)

Region Growing with Kernel Termination and Relaunch

Region Growing with Inter-Block Synchronization

Inter-Block Synchronization for Image Segmentation

Fast parallel vessel segmentation

Nitin Satpute ${ }^{\text {a,* }}$, Rabia Naseem ${ }^{\text {b }}$, Rafael Palomar ${ }^{\text {c }}$, Orestis Zachariadis ${ }^{\text {a }}$, Juan Gómez-Luna ${ }^{\text {d }}$, Faouzi Alaya Cheikh ${ }^{\text {b }}$, Joaquín Olivares ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Electronic and Computer Engineering, Universidad de Córdoba, Spain
${ }^{\mathrm{b}}$ Norwegian Colour and Visual Computing Lab, Norwegian University of Science and Technology, Norway
${ }^{\text {c }}$ The Intervention Centre, Oslo University Hospital, Norway
${ }^{\mathrm{d}}$ Department of Computer Science, ETH Zurich, Switzerland

Satpute et al., "Fast Parallel Vessel Segmentation," CMPB 2020. https://doi.org/10.1016/j.cmpb.2020.105430

GPU acceleration of liver enhancement for tumor segmentation

Nitin Satpute ${ }^{\text {a, },}$, Rabia Naseem ${ }^{\text {b }}$, Egidijus Pelanis ${ }^{\text {c,d }}$, Juan Gómez-Luna ${ }^{\mathrm{e}}$,

${ }^{\text {a }}$ Department of Electronic and Computer Engineering, Universidad de Córdoba, Spain
${ }^{\mathrm{b}}$ Norwegian Colour and Visual Computing Lab, Norwegian University of Science and Technology, Norway
${ }^{\text {c }}$ The Intervention Centre, Oslo University Hospital, Oslo, Norway
${ }^{\mathrm{d}}$ The Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
${ }^{\mathrm{e}}$ Department of Computer Science, ETH Zurich, Switzerland
${ }^{\mathrm{f}}$ The Department of Informatics, The Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
Satpute et al., "GPU Acceleration of Liver Enhancement for Tumor Segmentation," CMPB 2020. https://doi.org/10.1016/j.cmpb.2019.105285

Accelerating Chan-Vese model with cross-modality guided contrast enhancement for liver segmentation

Nitin Satpute ${ }^{\text {a,* }}$, Juan Gómez-Luna ${ }^{\text {b }}$, Joaquín Olivares ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Electronic and Computer Engineering, Universidad de Córdoba, Spain
${ }^{\mathrm{b}}$ Department of Computer Science, ETH Zurich, Switzerland
Satpute et al., "Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation," CBM 2020.
https://doi.org/10.1016/j.compbiomed.2020.103930

CPU or GPU?

- Motivation

- Small-sized frontiers underutilize GPU resources
- NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
- New York City roads

Collaborative Implementation (I)

- Choose CPU or GPU depending on frontier

```
// Host code
while(frontier_size != 0){
    if(frontier_size < LIMIT){
        // Launch CPU threads
    }
    else{
        // Launch GPU kernel
    }
}
```

- CPU threads or GPU kernel keep running while the condition is satisfied

Collaborative Implementation (II)

- Experimental results

Recommended Readings

- Hwu and Kirk, "Programming Massively Parallel Processors," Third Edition, 2017
- Chapter 12 - Parallel patterns: graph search

P\&S Heterogeneous Systems

Parallel Patterns: Graph Search

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich
Fall 2021
16 December 2021

[^0]: * The term "kernel" may create confusion in the context of GPUs (recall a CUDA/GPU kernel is a function executed by a GPU)

[^1]: (1) Sundaram et al., " GraphMat: High Performance Graph Analytics Made Productive," PVLDB 2015
 (2) Ham et al., "Graphicionado: A High-Performance and Energy-Efficient Accelerator for Graph Analytics," MICRO 2016

[^2]: WN
 One-level parallel propagation (i.e., iteration)

[^3]: WN
 One-level parallel propagation (i.e., iteration)

