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Parallel Patterns



Reduction Operation
n A reduction operation reduces a set of values to a single 

value
q Sum, Product, Minimum, Maximum are examples

n Properties of reduction
q Associativity
q Commutativity
q Identity value

n Reduction is a key primitive for parallel computing
q E.g., MapReduce programming model

Dean and Ghemawat, “MapReduce: Simplified Data Processing of Large Clusters,” OSDI 2004 3



Divergence-Free Mapping (I)
n All active threads belong to the same warp
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Divergence-Free Mapping (II)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0;  stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}
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Warp utilization 
is maximized



Histogram Computation
n Histogram is a frequently used computation for reducing 

the dimensionality and extracting notable features and 
patterns from large data sets
q Feature extraction for object recognition in images
q Fraud detection in credit card transactions
q Correlating heavenly object movements in astrophysics
q …

n Basic histograms - for each element in the data set, use the 
value to identify a “bin” to increment
q Divide possible input value range into “bins”
q Associate a counter to each bin
q For each input element, examine its value and determine the 

bin it falls into and increment the counter for that bin

6
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Parallel Histogram Computation: Iteration 2
n All threads move to the next section of the input

q Each thread moves to element threadID + #threads
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We need to use atomic operations
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Histogram Privatization
n Privatization: Per-block sub-histograms in shared memory

q Threads use atomic operations in shared memory
Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo

Global memory

Final histogram

Shared memory
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Convolution Applications
n Convolution is a widely-used operation in signal processing, 

image processing, video processing, and computer vision

n Convolution applies a filter or mask or kernel* on each 
element of the input (e.g., a signal, an image, a frame) to 
obtain a new value, which is a weighted sum of a set of 
neighboring input elements
q Smoothing, sharpening, or blurring an image
q Finding edges in an image
q Removing noise, etc.

n Applications in machine learning and artificial intelligence
q Convolutional Neural Networks (CNN or ConvNets)

9* The term “kernel” may create confusion in the context of GPUs (recall a CUDA/GPU kernel is a function executed by a GPU)



1D Convolution Example
n Commonly used for audio processing
n Mask size is usually an odd number of elements for 

symmetry (5 in this example)
n Calculation of P[2]:
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Partial products

Sum
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Another Example of 2D Convolution

Input 
Layer CNN 

filter

Output 
Layer

11Slide credit: Hwu & Kirk
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Implementing a Convolutional Layer 
with Matrix Multiplication
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Prefix Sum (Scan)
n Prefix sum or scan is an operation that takes an input array 

and an associative operator,
q E.g., addition, multiplication, maximum, minimum

n And returns an output array that is the result of recursively 
applying the associative operator on the elements of the 
input array

n Input array [x0, x1, …, xn-1] 
n Associative operator ⊕

n An output array [y0, y1, …, yn-1] where
q Exclusive scan: yi = x0 ⊕ x1 ⊕ ... ⊕ xi-1
q Inclusive scan: yi = x0 ⊕ x1 ⊕ ... ⊕ xi

13



Per-block (Inclusive) Scan

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Hierarchical (Inclusive) Scan
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2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

Input Block 0 Block 1 Block 2 Block 3

10 4 6 8

10 4 6 8

10 14 20 28Scan Partial Sums

Output (Inclusive Scan)
3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Add

11 12 13 14 14 15 17 20 22 24 26 28

Inter-block synchronization
• Kernel termination and

• Scan on CPU, or
• Launch new scan kernel on GPU

• Atomic operations in global memory



Kogge-Stone Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Observation:
memory locations 

are reused

15
Slide credit: Izzat El Hajj



Sparse Matrices

n Opportunities:
q Do not need to allocate space for zeros (save memory 

capacity)
q Do not need to load zeros (save memory bandwidth)
q Do not need to compute with zeros (save computation time)

A dense matrix is one where the 
majority of elements are not zero

A sparse matrix is one where many 
elements are zero

(many real world systems are sparse)

Slide credit: Izzat El Hajj
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SpMV/CSR

1 7
5 3 9

2 8
6

0 2 5 7 8

0 1 0 2 3 1 2 3

1 7 5 3 9 2 8 6

Matrix:

RowPtrs:

Column:

Value:

× =
Parallelization 

approach:
Assign one thread to 
loop over each input 
row sequentially and 
update corresponding 

output element

Slide credit: Izzat El Hajj
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Graph Search



Dynamic Data Extraction
n The data to be processed in each phase of computation 

need to be dynamically determined and extracted from a 
bulk data structure
q Harder when the bulk data structure is not organized for 

massively parallel access, such as graphs

n Graph algorithms are popular examples that perform 
dynamic data extraction
q Widely used in EDA, NLZP, and large scale optimization 

applications
q We will use Breadth-First Search (BFS) as an example

19Slide credit: Hwu & Kirk



Main Challenges of Dynamic Data Extraction
n Input data need to be organized for locality, coalescing, 

and contention avoidance as they are extracted during 
execution

n The amount of work and level of parallelism often grow and 
shrink during execution
q As more or less data is extracted during each phase
q Hard to efficiently fit into one GPU kernel configuration, 

without dynamic parallelism support (Kepler and beyond)
q Different kernel strategies fit different data sizes

20Slide credit: Hwu & Kirk
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Recommender Systems Graph Analytics Neural Networks

• Collaborative Filtering
• PageRank
• Breadth First Search 
• Betweenness 

Centrality

• Sparse DNNs
• Graph Neural Networks

Recall: Sparse Matrices are Widespread Today 

22



Recall: Compressed Sparse Row (CSR)

Store nonzeros of the 
same row adjacently 
and an index to the 
first element of each 

row

Slide credit: Izzat El Hajj
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Breadth-First Search (BFS)
n To determine the minimal number of hops

that is required to go from a source node
to a destination node (or all destinations)

25Slide credit: Hwu & Kirk
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Breadth-First Search: Example 

Initial Condition

n Start with a source node
n Identify and mark all nodes that can be reached from the 

source node with 1 hop, 2 hops, 3 hops, …

26Slide credit: Hwu & Kirk
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n First Frontier (level 1 
nodes)
q 1, 2
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n First Frontier (level 1 
nodes)
q 1, 2

n Second frontier (level 2 
nodes)
q 3, 4, 5, 6, 7
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Desirable Outcome

n First Frontier (level 1 
nodes)
q 1, 2

n Second frontier (level 2 
nodes)
q 3, 4, 5, 6, 7

n Third frontier (Level 3 
nodes)
q 8

n …



Breadth-First Search – Node 2 as Source
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BFS Use Example in VLSI CAD
n Maze Routing

blockage
net terminal

34Slide credit: Hwu & Kirk

Luo et al., "An Effective GPU Implementation of Breadth-First Search," DAC 2010



Potential Pitfall of Parallel Algorithms 
n Greatly accelerated n2 algorithm is still slower than an nlog(n) algorithm 

for large data sets
n Always need to keep an eye on fast sequential algorithm as the 

baseline
R

un
ni

ng
 T

im
e

Problem Size

35Slide credit: Hwu & Kirk



Node-Oriented Parallelization
n Each thread is dedicated to one node

q All nodes visited in all iterations
q Every thread examines neighbor nodes to determine if its node will 

be a frontier node in the next phase
q Complexity O(VL+E)  (Compared with O(V+E)) 

n L is the number of levels
q Slower than the sequential version for large graphs

n Especially for sparsely connect graphs

36Slide credit: Hwu & Kirk
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Harish et al., "Accelerating Large Graph Algorithms on the GPU using CUDA,” HiPC 2007



Matrix-Based Parallelization
n Propagation is done through matrix-vector multiplication

q For sparsely connected graphs, the connectivity matrix will be a 
sparse matrix

n Complexity O(V+EL)  (compared with O(V+E))
q Slower than sequential for large graphs
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Deng et al., "Taming Irregular EDA applications on GPUs,” ICCAD 2009



Linear Algebraic Formulation
n Logical representation and adjacency matrix

n Vertex programming model

38

(2)

(1) Sundaram et al., " GraphMat: High Performance Graph Analytics Made Productive," PVLDB 2015
(2) Ham et al., "Graphicionado: A High-Performance and Energy-Efficient Accelerator for Graph Analytics," MICRO 2016

(1)



Mapping Vertex Programs to SpMV
n Example: Single Source Shortest Path (SSSP)
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Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.
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Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.
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Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.
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Sundaram et al., "GraphMat: High Performance Graph Analytics Made Productive," PVLDB 2015

Generalized SpMV: 
Replace mul with add and add with min



Need a More General Technique
n To efficiently handle most graph types

n Use more specialized formulation when appropriate as an 
optimization

n Efficient queue-based parallel algorithms
q Hierarchical scalable queue implementation
q Hierarchical kernel arrangements

40Slide credit: Hwu & Kirk



An Initial Attempt
n Manage the queue structure

q Complexity: O(V+E)
q Dequeue in parallel
q Each frontier node is a thread
q Enqueue in sequence using atomic operations

n Poor coalescing
n Poor scalability

q No speedup
Parallel dequeue

41Slide credit: Hwu & Kirk
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Parallel Insert-Compact Queues
n Parallel enqueue with compaction cost
n Not suitable for light-node problems

v t x

u y
Compact

yu- - - -
Propagate

42Slide credit: Hwu & Kirk

v t x

u y

Lauterbach et al., “Fast BVH Construction on GPUs,” Computer Graphics Forum 2009



(Output) Privatization
n Avoid contention by 

aggregating updates 
locally

n Requires storage 
resources to keep 
copies of data 
structures

Private
Results

Local
Results

Global
Results

43Slide credit: Hwu & Kirk



Recall: Histogram Privatization
n Privatization: Per-block sub-histograms in shared memory

q Threads use atomic operations in shared memory
Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo

Global memory

Final histogram

Shared memory
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Basic Ideas
n Each thread processes one or more frontier nodes and 

inserts new frontier nodes into its private queues
n Find a location in the global queue for each new frontier 

node
n Build queue of next frontier hierarchically

hLocal queues

Global queue

q1 q2 q3

Index = offset of q2 (#node in q1) + index in q2

a b c g i jLocal

Global h

45Slide credit: Hwu & Kirk



Two-level Hierarchy

n Block queue (b-queue)
q Inserted by all threads in a 

block
q Resides in Shared Memory

n Global queue (g-queue)
q Inserted only when a block 

completes 
n Problem:

q Collision on b-queues
q Threads in the same block 

can cause heavy contention

g-queue

b-queue

Global Mem

Shared Mem

46Slide credit: Hwu & Kirk



Hierarchical Queue Management
n Advantage and limitation

q The technique can be applied to any inherently sequential 
data structure

q As long as the exact global ordering between queue contents 
is not required for correctness or optimality (more of a list)

q The b-queues are limited by the capacity of shared memory
n If we know the upper limit of the degree, we can adjust the 

number of threads per block accordingly
n Overflow mechanism to ensure robustness

47Slide credit: Hwu & Kirk



Kernel Arrangement

n Creating global barriers needs 
frequent kernel launches

n Too much overhead
n Solutions:

q Partially use GPU-synchronization
q Multi-layer Kernel Arrangement
q Dynamic Parallelism
q Persistent threads with global 

barriers

2

5 6 7

8 0

Kernel call

Kernel call

Kernel call
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Hierarchical Kernel Arrangement
n Customize kernels based on the size of frontiers
n Use fast barrier synchronization when the frontier is small

Kernel 1: Intra-block Synchronization

Kernel 2: Kernel re-launch

One-level parallel propagation (i.e., iteration)

49Slide credit: Hwu & Kirk



Kernel Arrangement (I)

Work Threads Dummy Threads

b-queue

b-queue

Propagate

Level i

Level i+1

Level i+2

n Kernel 1: small-sized frontiers 
q Only launch one block
q Use __syncthreads();
q Propagate through multiple 

levels
q Only b-queue

n No g-queue during 
propagation 

n Save global memory access
n Very fast

50Slide credit: Hwu & Kirk



Kernel Arrangement (II)
n Kernel 2: big-sized frontiers

q Use kernel re-launch to implement synchronization
q The kernel launch overhead is acceptable considering the time 

to propagate a huge frontier

n Or, one can use dynamic parallelism to launch new kernels 
from kernel 1 when the number of nodes in the frontier 
grows beyond a threshold
q Dynamic parallelism can also help with load balancing

51Slide credit: Hwu & Kirk



Hierarchical Kernel Arrangement
n Customize kernels based on the size of frontiers
n Use fast barrier synchronization when the frontier is small

Kernel 1: Intra-block Synchronization

Kernel 2: Kernel re-launch

One-level parallel propagation (i.e., iteration)

52Slide credit: Hwu & Kirk



Persistent Thread Blocks
n Combine Kernel 1 and Kernel 2
n We can avoid kernel re-launch
n We need to use persistent thread blocks

q Kernel 2 launches (frontier_size / block_size) blocks
q Persistent blocks: up to (number_SMs x max_blocks_SM)

SM#0 SM#1

Block 
0

Block 
1

Block 
2

Block 
3

Block 
2nBlock 

2nBlock 
2nBlock 

2nBlock 
4

SM#0 SM#1

Block 
0

Block 
1

Block 
2

Block 
3

Block 
2nBlock 

2nBlock 
2nBlock 

2nBlock 
4

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block m-2 Block m-1

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3
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Atomic-based Block Synchronization (I)
n Code (simplified)

// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while(frontier_size != 0){

for(node = gtid; node < frontier_size; node += blockDim.x * gridDim.x){

// Visit neighbors
// Enqueue in output queue if needed (global or local queue)

}

// Update frontier_size

// Global synchronization
}
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Atomic-based Block Synchronization (II)
n Global synchronization (simplified)

q At the end of each iteration
const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
...

frontier++;

if(tid == 0){
atomicAdd(ptr_threads_end, 1);  // Thread block finishes iteration

}

if(gtid == 0){
while(atomicAdd(ptr_threads_end, 0) != gridDim.x){;}  // Wait until all blocks finish

atomicExch(ptr_threads_end, 0); // Reset
atomicAdd(ptr_threads_run, 1);  // Count iteration

}

if(tid == 0 && gtid != 0){
while(atomicAdd(ptr_threads_run, 0) < frontier){;}  // Wait until ptr_threads_run is updated

}

__syncthreads();  // Rest of threads wait here

...
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Segmentation in Medical Image Analysis (I)
n Segmentation is used to obtain the area of an organ, a 

tumor, etc.

56Satpute et al., “Fast Parallel Vessel Segmentation,” CMPB 2020
Satpute et al., “GPU Acceleration of Liver Enhancement for Tumor Segmentation,” CMPB 2020
Satpute et al., “Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation,” CBM 2020



Segmentation in Medical Image Analysis (II)
n Seeded region growing is an algorithm for segmentation

q Dynamic data extraction as the region grows

57Satpute et al., “Fast Parallel Vessel Segmentation,” CMPB 2020
Satpute et al., “GPU Acceleration of Liver Enhancement for Tumor Segmentation,” CMPB 2020
Satpute et al., “Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation,” CBM 2020
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Region Growing with Kernel Termination and Relaunch
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GPUCPU

SRG 
Kernel

Yes

Set a 
Seed

Launch 
Kernel

Terminate 
Kernel

Can 
Region 
Grow? 

IBS

No

Stop

Start

IBS-Inter Block 
Synchronization

Slide credit: Nitin Satpute

Region Growing with Inter-Block Synchronization

59



Inter-Block Synchronization for Image Segmentation

60

Satpute et al., “Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation,” CBM 2020. 
https://doi.org/10.1016/j.compbiomed.2020.103930

Satpute et al., “Fast Parallel Vessel Segmentation,” CMPB 2020. https://doi.org/10.1016/j.cmpb.2020.105430

Satpute et al., “GPU Acceleration of Liver Enhancement for Tumor Segmentation,” CMPB 2020. https://doi.org/10.1016/j.cmpb.2019.105285

https://doi.org/10.1016/j.compbiomed.2020.103930
https://doi.org/10.1016/j.cmpb.2020.105430
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CPU or GPU?
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
n New York City roads
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Collaborative Implementation (I)
n Choose CPU or GPU depending on frontier

n CPU threads or GPU kernel keep running while the 
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads
}
else{

// Launch GPU kernel
}

}
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Collaborative Implementation (II)
n Experimental results
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Recommended Readings

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 12 - Parallel patterns: 
graph search
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