
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

16 December 2021

P&S Heterogeneous Systems
Parallel Patterns: Graph Search

Parallel Patterns

Reduction Operation
n A reduction operation reduces a set of values to a single

value
q Sum, Product, Minimum, Maximum are examples

n Properties of reduction
q Associativity
q Commutativity
q Identity value

n Reduction is a key primitive for parallel computing
q E.g., MapReduce programming model

Dean and Ghemawat, “MapReduce: Simplified Data Processing of Large Clusters,” OSDI 2004 3

Divergence-Free Mapping (I)
n All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

ite
ra

tio
ns

4Slide credit: Hwu & Kirk

…

Divergence-Free Mapping (II)
n Program with high SIMD utilization
__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}

5

stride = 16

stride = 8

stride = 4

A[0] A[1] A[N-1]Warp 0 Warp 1 Warp 2 Warp 3

Warp utilization
is maximized

Histogram Computation
n Histogram is a frequently used computation for reducing

the dimensionality and extracting notable features and
patterns from large data sets
q Feature extraction for object recognition in images
q Fraud detection in credit card transactions
q Correlating heavenly object movements in astrophysics
q …

n Basic histograms - for each element in the data set, use the
value to identify a “bin” to increment
q Divide possible input value range into “bins”
q Associate a counter to each bin
q For each input element, examine its value and determine the

bin it falls into and increment the counter for that bin

6
Slide credit: Hwu & Kirk

Parallel Histogram Computation: Iteration 2
n All threads move to the next section of the input

q Each thread moves to element threadID + #threads

I _ C A L C U L A T E _ A _ ATSIH RGO M

A
1

B C
1

D E F G H I
1

J K L M N O P Q R S T U V …

Thread 3Thread 2Thread 1Thread 0

_
1

We need to use atomic operations

7

2 2 1

Histogram Privatization
n Privatization: Per-block sub-histograms in shared memory

q Threads use atomic operations in shared memory
Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo

Global memory

Final histogram

Shared memory

8

Parallel reduction

Convolution Applications
n Convolution is a widely-used operation in signal processing,

image processing, video processing, and computer vision

n Convolution applies a filter or mask or kernel* on each
element of the input (e.g., a signal, an image, a frame) to
obtain a new value, which is a weighted sum of a set of
neighboring input elements
q Smoothing, sharpening, or blurring an image
q Finding edges in an image
q Removing noise, etc.

n Applications in machine learning and artificial intelligence
q Convolutional Neural Networks (CNN or ConvNets)

9* The term “kernel” may create confusion in the context of GPUs (recall a CUDA/GPU kernel is a function executed by a GPU)

1D Convolution Example
n Commonly used for audio processing
n Mask size is usually an odd number of elements for

symmetry (5 in this example)
n Calculation of P[2]:

10

3 8 15 16 15

N[0]

1 2 3 4 5 6 7

N[3]N[1] N[2] N[5]N[4] N[6]N

3 4 5 4 3
M[0] M[3]M[1] M[2] M[4]M

P
3 8 16 15 3 3

P[0] P[3]P[1] P[2] P[5]P[4] P[6]

57

Partial products

Sum

Slide credit: Hwu & Kirk

Another Example of 2D Convolution

Input
Layer CNN

filter

Output
Layer

11Slide credit: Hwu & Kirk

1 2 3 2 1
2 3 4 3 2
3 4 5 4 3
2 3 4 3 2
1 2 3 2 1

1 4 9 8 5

4 9 16 15 12

9 16 25 24 21

8 15 24 21 16

5 12 21 16 5

W

X Y

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 5 6

5 6 7 8 5 6 7

6 7 8 9 0 1 2

7 8 9 0 1 2 3

1 2 3 4 5

2 3 4 5 6

3 4 321 6 7

4 5 6 7 8

5 6 7 8 5

Partial products

Sum

Implementing a Convolutional Layer
with Matrix Multiplication

12

1 0 0 1 2 1 2 1 1 2 2 0
1 1 2 2 1 1 1 1 0 1 1 0

1 2 0
1 1 3
0 2 2

0 2 1
0 1 2
1 1 0

1 2 1
0 1 3
3 3 2

1 1
2 2

1 1
1 1

0 1
1 0

1 0
0 1

2 1
2 1

1 2
2 0

12 18

13 22

10 20

15 22

Output
Features

Y

Convolution
Filters

W

Input
Features

X

1
2
1
1

2
0
1
3

1
1
0
2

1
3
2
2

0
2
0
1

2
1
1
2

0
1
1
1

1
2
1
0

0
2
1

1
1
1
2

3
3
1
0

3
3
3
1

2

12 18 13 22

10 20 15 22

Output
Features

Y

Input
Features

X (unrolled)

Convolution
Filters

W’

Ѱ

Slide credit: Reproduced from Hwu & Kirk

Prefix Sum (Scan)
n Prefix sum or scan is an operation that takes an input array

and an associative operator,
q E.g., addition, multiplication, maximum, minimum

n And returns an output array that is the result of recursively
applying the associative operator on the elements of the
input array

n Input array [x0, x1, …, xn-1]
n Associative operator ⊕

n An output array [y0, y1, …, yn-1] where
q Exclusive scan: yi = x0 ⊕ x1 ⊕ ... ⊕ xi-1
q Inclusive scan: yi = x0 ⊕ x1 ⊕ ... ⊕ xi

13

Per-block (Inclusive) Scan

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Hierarchical (Inclusive) Scan

14

2 3 4 1 1 1 1 0 1 2 3 2 2 21 2

Input Block 0 Block 1 Block 2 Block 3

10 4 6 8

10 4 6 8

10 14 20 28Scan Partial Sums

Output (Inclusive Scan)
3 6 10 11 12 13 14 14 15 17 20 22 24 261 28

3 6 10 1 2 3 4 0 1 3 6 2 4 61 8

Add

11 12 13 14 14 15 17 20 22 24 26 28

Inter-block synchronization
• Kernel termination and

• Scan on CPU, or
• Launch new scan kernel on GPU

• Atomic operations in global memory

Kogge-Stone Parallel (Inclusive) Scan

x0 x1 x2 x3 x4 x5 x6 x7

x0 x0..x1 x1..x2 x2..x3 x3..x4 x4..x5 x5..x6 x6..x7

x0 x0..x1 x0..x2 x0..x3 x1..x4 x2..x5 x3..x6 x4..x7

x0 x0..x1 x0..x2 x0..x3 x0..x4 x0..x5 x0..x6 x0..x7

Observation:
memory locations

are reused

15
Slide credit: Izzat El Hajj

Sparse Matrices

n Opportunities:
q Do not need to allocate space for zeros (save memory

capacity)
q Do not need to load zeros (save memory bandwidth)
q Do not need to compute with zeros (save computation time)

A dense matrix is one where the
majority of elements are not zero

A sparse matrix is one where many
elements are zero

(many real world systems are sparse)

Slide credit: Izzat El Hajj
16

SpMV/CSR

1 7
5 3 9

2 8
6

0 2 5 7 8

0 1 0 2 3 1 2 3

1 7 5 3 9 2 8 6

Matrix:

RowPtrs:

Column:

Value:

× =
Parallelization

approach:
Assign one thread to
loop over each input
row sequentially and
update corresponding

output element

Slide credit: Izzat El Hajj
17

Graph Search

Dynamic Data Extraction
n The data to be processed in each phase of computation

need to be dynamically determined and extracted from a
bulk data structure
q Harder when the bulk data structure is not organized for

massively parallel access, such as graphs

n Graph algorithms are popular examples that perform
dynamic data extraction
q Widely used in EDA, NLZP, and large scale optimization

applications
q We will use Breadth-First Search (BFS) as an example

19Slide credit: Hwu & Kirk

Main Challenges of Dynamic Data Extraction
n Input data need to be organized for locality, coalescing,

and contention avoidance as they are extracted during
execution

n The amount of work and level of parallelism often grow and
shrink during execution
q As more or less data is extracted during each phase
q Hard to efficiently fit into one GPU kernel configuration,

without dynamic parallelism support (Kepler and beyond)
q Different kernel strategies fit different data sizes

20Slide credit: Hwu & Kirk

0

1

2

3

4

5

6
7

8

1 1
1 1

1 1 1
1 1

1 1
1

1
1 1

0
1

3
2

3

4
5
6
7

0 1 2 4 5 6 7

8

8

Graph and Sparse Matrix are Closely Related

Adjacency matrix

21Slide credit: Hwu & Kirk

Recommender Systems Graph Analytics Neural Networks

• Collaborative Filtering
• PageRank
• Breadth First Search
• Betweenness

Centrality

• Sparse DNNs
• Graph Neural Networks

Recall: Sparse Matrices are Widespread Today

22

Recall: Compressed Sparse Row (CSR)

Store nonzeros of the
same row adjacently
and an index to the
first element of each

row

Slide credit: Izzat El Hajj

1 7
5 3 9

2 8
6

0 2 5 7 8

0 1 0 2 3 1 2 3

1 7 5 3 9 2 8 6

Matrix:

RowPtrs:

Column:

Value:

23

0

1

2

3

4

5

6
7

8

1 1
1 1

1 1 1
1 1

1 1
1

1
1 1

0
1

3
2

3

4
5
6
7

0 1 2 4 5 6 7

8

8

(Compressed) Edge Representation of a Graph

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1non-zero elements
data[15]

1 2 3 4 5 6 7 4 8 5 8 6 8 0 6column indices
destination[15]

0 2 4 7 9 11 12 13 15 15row pointers
source[10] CSR format

24Slide credit: Hwu & Kirk

Breadth-First Search (BFS)
n To determine the minimal number of hops

that is required to go from a source node
to a destination node (or all destinations)

25Slide credit: Hwu & Kirk

0

1

2

3

4

5

6
7

8

1
3

2

2

2

2

2

1
0

Desirable Outcome

0

1

2

3

4

5

6
7

8

-1
-1

-1

-1

-1

-1

-1

-1
0

Breadth-First Search: Example

Initial Condition

n Start with a source node
n Identify and mark all nodes that can be reached from the

source node with 1 hop, 2 hops, 3 hops, …

26Slide credit: Hwu & Kirk

0

1

2

3

4

5

6
7

8

-1
-1

-1

-1

-1

-1

-1

-1
0

Breadth-First Search – Initial Condition

27Slide credit: Hwu & Kirk

0

1

2

3

4

5

6
7

8

1
-1

-1

-1

-1

-1

-1

1
0

Breadth-First Search – 1 Hop

28Slide credit: Hwu & Kirk

n First Frontier (level 1
nodes)
q 1, 2

0

1

2

3

4

5

6
7

8

1
-1

2

2

2

2

2

1
0

Breadth-First Search – 2 Hops

29Slide credit: Hwu & Kirk

n First Frontier (level 1
nodes)
q 1, 2

n Second frontier (level 2
nodes)
q 3, 4, 5, 6, 7

0

1

2

3

4

5

6
7

8

1
3

2

2

2

2

2

1
0

Breadth-First Search – 3 Hops

30Slide credit: Hwu & Kirk

Desirable Outcome

n First Frontier (level 1
nodes)
q 1, 2

n Second frontier (level 2
nodes)
q 3, 4, 5, 6, 7

n Third frontier (Level 3
nodes)
q 8

n …

Breadth-First Search – Node 2 as Source

0

1

2

3

4

5

6
7

8

31Slide credit: Hwu & Kirk

0

1

2

3

4

5

6
7

8

3
2

4

1

4

1

1

02

Breadth-First Search – Node 2 as Source
n First Frontier (level 1

nodes)
q 5, 6, 7

n Second frontier (level 2
nodes)
q 0, 8

n Third frontier (Level 3
nodes)
q 1

n …

32Slide credit: Hwu & Kirk

1 2 3 4 5 6 7 4 8 5 8 6 8 0 6

0 2 4 7 9 11 12 13 15 15

0 8

label

dest

source
(edges)

p_frontier

2 -1 0 -1 -1 1 1 1 2

3

BFS: Processing the Frontier (2nd Iteration)

0

1

2

3

4

5

6
7

8

3
2

4

1

4

1

1

02

0 2

1 2

3

15 15

0

33Slide credit: Hwu & Kirk

BFS Use Example in VLSI CAD
n Maze Routing

blockage
net terminal

34Slide credit: Hwu & Kirk

Luo et al., "An Effective GPU Implementation of Breadth-First Search," DAC 2010

Potential Pitfall of Parallel Algorithms
n Greatly accelerated n2 algorithm is still slower than an nlog(n) algorithm

for large data sets
n Always need to keep an eye on fast sequential algorithm as the

baseline
R

un
ni

ng
 T

im
e

Problem Size

35Slide credit: Hwu & Kirk

Node-Oriented Parallelization
n Each thread is dedicated to one node

q All nodes visited in all iterations
q Every thread examines neighbor nodes to determine if its node will

be a frontier node in the next phase
q Complexity O(VL+E) (Compared with O(V+E))

n L is the number of levels
q Slower than the sequential version for large graphs

n Especially for sparsely connect graphs

36Slide credit: Hwu & Kirk

5 6 7

8 0

80 1 2 3 4 5 6 7

80 1 2 3 4 5 6 7

5 6 7

80

Harish et al., "Accelerating Large Graph Algorithms on the GPU using CUDA,” HiPC 2007

Matrix-Based Parallelization
n Propagation is done through matrix-vector multiplication

q For sparsely connected graphs, the connectivity matrix will be a
sparse matrix

n Complexity O(V+EL) (compared with O(V+E))
q Slower than sequential for large graphs

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é
´
ú
ú
ú

û

ù

ê
ê
ê

ë

é

0
1
0

0
0
1

000
100
010s

u

v

s
u

v

s

u

v

s

u

v
s u v

37Slide credit: Hwu & Kirk

Deng et al., "Taming Irregular EDA applications on GPUs,” ICCAD 2009

Linear Algebraic Formulation
n Logical representation and adjacency matrix

n Vertex programming model

38

(2)

(1) Sundaram et al., " GraphMat: High Performance Graph Analytics Made Productive," PVLDB 2015
(2) Ham et al., "Graphicionado: A High-Performance and Energy-Efficient Accelerator for Graph Analytics," MICRO 2016

(1)

Mapping Vertex Programs to SpMV
n Example: Single Source Shortest Path (SSSP)

39

்

B A

C D

E1

2

1 3

4

2 2

(a) (b)

SEND_MESSAGE�:message�ؔ�vertex_distance
PROCESS_MESSAGE�: result�ؔmessage�+�edge_value
REDUCE�: result�ؔmin(result,�operand)
APPLY�: vertex_distance =�min(result,�vertex_distance)

(c)

.

.

.

λ
λ
λ
λ
λ

ூ௧
�

Ͳ
λ
λ
λ
λ

െ െ െ െ Ͷ
ͳ െ െ െ െ
͵ ͳ െ െ െ
ʹ െ ʹ െ െ
െ െ െ ʹ െ

ǡ

Ͳ
െ
െ
െ
െ

௦௦
௦௦

ା
ோௗ௨

െ
ͳ
͵
ʹ
െ

െ
ͳ
͵
ʹ
െ

ǡ

Ͳ
λ
λ
λ
λ

௬

Ͳ
ͳ
͵
ʹ
λ

Iteration�
0

െ െ െ െ Ͷ
ͳ െ െ െ െ
͵ ͳ െ െ െ
ʹ െ ʹ െ െ
െ െ െ ʹ െ

ǡ

െ
ͳ
͵
ʹ
െ

௦௦
௦௦

ା
ோௗ௨

െ
െ
ʹ
ͷ
Ͷ

െ
െ
ʹ
ͷ
Ͷ

ǡ

Ͳ
ͳ
͵
ʹ
λ

௬

Ͳ
ͳ
ʹ
ʹ
Ͷ

Iteration�
1

ܵ݁݊݀�
݁݃ܽݏݏ݁݉

ܵ݁݊݀�
݁݃ܽݏݏ݁݉

B A

C D

E1

2

1 3

4

2 2

B A

C D

E1

2

1 3

4

2 2

B A

C D

E1

2

1 3

4

2 2

Ͳ λλ

λλ

Ͳ λͳ

ʹ͵

Ͳ Ͷͳ

ʹʹ

(d)

reduced
values

previous
distances

updated
distances

Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.

1218

்

B A

C D

E1

2

1 3

4

2 2

(a) (b)

SEND_MESSAGE�:message�ؔ�vertex_distance
PROCESS_MESSAGE�: result�ؔmessage�+�edge_value
REDUCE�: result�ؔmin(result,�operand)
APPLY�: vertex_distance =�min(result,�vertex_distance)

(c)

.

.

.

λ
λ
λ
λ
λ

ூ௧
�

Ͳ
λ
λ
λ
λ

െ െ െ െ Ͷ
ͳ െ െ െ െ
͵ ͳ െ െ െ
ʹ െ ʹ െ െ
െ െ െ ʹ െ

ǡ

Ͳ
െ
െ
െ
െ

௦௦
௦௦

ା
ோௗ௨

െ
ͳ
͵
ʹ
െ

െ
ͳ
͵
ʹ
െ

ǡ

Ͳ
λ
λ
λ
λ

௬

Ͳ
ͳ
͵
ʹ
λ

Iteration�
0

െ െ െ െ Ͷ
ͳ െ െ െ െ
͵ ͳ െ െ െ
ʹ െ ʹ െ െ
െ െ െ ʹ െ

ǡ

െ
ͳ
͵
ʹ
െ

௦௦
௦௦

ା
ோௗ௨

െ
െ
ʹ
ͷ
Ͷ

െ
െ
ʹ
ͷ
Ͷ

ǡ

Ͳ
ͳ
͵
ʹ
λ

௬

Ͳ
ͳ
ʹ
ʹ
Ͷ

Iteration�
1

ܵ݁݊݀�
݁݃ܽݏݏ݁݉

ܵ݁݊݀�
݁݃ܽݏݏ݁݉

B A

C D

E1

2

1 3

4

2 2

B A

C D

E1

2

1 3

4

2 2

B A

C D

E1

2

1 3

4

2 2

Ͳ λλ

λλ

Ͳ λͳ

ʹ͵

Ͳ Ͷͳ

ʹʹ

(d)

reduced
values

previous
distances

updated
distances

Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.

1218

்

B A

C D

E1

2

1 3

4

2 2

(a) (b)

SEND_MESSAGE�:message�ؔ�vertex_distance
PROCESS_MESSAGE�: result�ؔmessage�+�edge_value
REDUCE�: result�ؔmin(result,�operand)
APPLY�: vertex_distance =�min(result,�vertex_distance)

(c)

.

.

.

λ
λ
λ
λ
λ

ூ௧
�

Ͳ
λ
λ
λ
λ

െ െ െ െ Ͷ
ͳ െ െ െ െ
͵ ͳ െ െ െ
ʹ െ ʹ െ െ
െ െ െ ʹ െ

ǡ

Ͳ
െ
െ
െ
െ

௦௦
௦௦

ା
ோௗ௨

െ
ͳ
͵
ʹ
െ

െ
ͳ
͵
ʹ
െ

ǡ

Ͳ
λ
λ
λ
λ

௬

Ͳ
ͳ
͵
ʹ
λ

Iteration�
0

െ െ െ െ Ͷ
ͳ െ െ െ െ
͵ ͳ െ െ െ
ʹ െ ʹ െ െ
െ െ െ ʹ െ

ǡ

െ
ͳ
͵
ʹ
െ

௦௦
௦௦

ା
ோௗ௨

െ
െ
ʹ
ͷ
Ͷ

െ
െ
ʹ
ͷ
Ͷ

ǡ

Ͳ
ͳ
͵
ʹ
λ

௬

Ͳ
ͳ
ʹ
ʹ
Ͷ

Iteration�
1

ܵ݁݊݀�
݁݃ܽݏݏ݁݉

ܵ݁݊݀�
݁݃ܽݏݏ݁݉

B A

C D

E1

2

1 3

4

2 2

B A

C D

E1

2

1 3

4

2 2

B A

C D

E1

2

1 3

4

2 2

Ͳ λλ

λλ

Ͳ λͳ

ʹ͵

Ͳ Ͷͳ

ʹʹ

(d)

reduced
values

previous
distances

updated
distances

Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.

1218

Sundaram et al., "GraphMat: High Performance Graph Analytics Made Productive," PVLDB 2015

Generalized SpMV:
Replace mul with add and add with min

Need a More General Technique
n To efficiently handle most graph types

n Use more specialized formulation when appropriate as an
optimization

n Efficient queue-based parallel algorithms
q Hierarchical scalable queue implementation
q Hierarchical kernel arrangements

40Slide credit: Hwu & Kirk

An Initial Attempt
n Manage the queue structure

q Complexity: O(V+E)
q Dequeue in parallel
q Each frontier node is a thread
q Enqueue in sequence using atomic operations

n Poor coalescing
n Poor scalability

q No speedup
Parallel dequeue

41Slide credit: Hwu & Kirk

5 6 7

8 0

5 6 708

Atomic operations0 8

Parallel Insert-Compact Queues
n Parallel enqueue with compaction cost
n Not suitable for light-node problems

v t x

u y
Compact

yu- - - -
Propagate

42Slide credit: Hwu & Kirk

v t x

u y

Lauterbach et al., “Fast BVH Construction on GPUs,” Computer Graphics Forum 2009

(Output) Privatization
n Avoid contention by

aggregating updates
locally

n Requires storage
resources to keep
copies of data
structures

Private
Results

Local
Results

Global
Results

43Slide credit: Hwu & Kirk

Recall: Histogram Privatization
n Privatization: Per-block sub-histograms in shared memory

q Threads use atomic operations in shared memory
Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

Block 0 Block 1

Block 2 Block 3

b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3 b0 b1 b2 b3

b0 b1 b2 b3

Block 0’s sub-histo Block 1’s sub-histo Block 2’s sub-histo Block 3’s sub-histo

Global memory

Final histogram

Shared memory

44

Parallel reduction

Basic Ideas
n Each thread processes one or more frontier nodes and

inserts new frontier nodes into its private queues
n Find a location in the global queue for each new frontier

node
n Build queue of next frontier hierarchically

hLocal queues

Global queue

q1 q2 q3

Index = offset of q2 (#node in q1) + index in q2

a b c g i jLocal

Global h

45Slide credit: Hwu & Kirk

Two-level Hierarchy

n Block queue (b-queue)
q Inserted by all threads in a

block
q Resides in Shared Memory

n Global queue (g-queue)
q Inserted only when a block

completes
n Problem:

q Collision on b-queues
q Threads in the same block

can cause heavy contention

g-queue

b-queue

Global Mem

Shared Mem

46Slide credit: Hwu & Kirk

Hierarchical Queue Management
n Advantage and limitation

q The technique can be applied to any inherently sequential
data structure

q As long as the exact global ordering between queue contents
is not required for correctness or optimality (more of a list)

q The b-queues are limited by the capacity of shared memory
n If we know the upper limit of the degree, we can adjust the

number of threads per block accordingly
n Overflow mechanism to ensure robustness

47Slide credit: Hwu & Kirk

Kernel Arrangement

n Creating global barriers needs
frequent kernel launches

n Too much overhead
n Solutions:

q Partially use GPU-synchronization
q Multi-layer Kernel Arrangement
q Dynamic Parallelism
q Persistent threads with global

barriers

2

5 6 7

8 0

Kernel call

Kernel call

Kernel call

48Slide credit: Hwu & Kirk

0

1

2

3

4

5

6
7

8

3
2

4

1

4

1

1

02

Hierarchical Kernel Arrangement
n Customize kernels based on the size of frontiers
n Use fast barrier synchronization when the frontier is small

Kernel 1: Intra-block Synchronization

Kernel 2: Kernel re-launch

One-level parallel propagation (i.e., iteration)

49Slide credit: Hwu & Kirk

Kernel Arrangement (I)

Work Threads Dummy Threads

b-queue

b-queue

Propagate

Level i

Level i+1

Level i+2

n Kernel 1: small-sized frontiers
q Only launch one block
q Use __syncthreads();
q Propagate through multiple

levels
q Only b-queue

n No g-queue during
propagation

n Save global memory access
n Very fast

50Slide credit: Hwu & Kirk

Kernel Arrangement (II)
n Kernel 2: big-sized frontiers

q Use kernel re-launch to implement synchronization
q The kernel launch overhead is acceptable considering the time

to propagate a huge frontier

n Or, one can use dynamic parallelism to launch new kernels
from kernel 1 when the number of nodes in the frontier
grows beyond a threshold
q Dynamic parallelism can also help with load balancing

51Slide credit: Hwu & Kirk

Hierarchical Kernel Arrangement
n Customize kernels based on the size of frontiers
n Use fast barrier synchronization when the frontier is small

Kernel 1: Intra-block Synchronization

Kernel 2: Kernel re-launch

One-level parallel propagation (i.e., iteration)

52Slide credit: Hwu & Kirk

Persistent Thread Blocks
n Combine Kernel 1 and Kernel 2
n We can avoid kernel re-launch
n We need to use persistent thread blocks

q Kernel 2 launches (frontier_size / block_size) blocks
q Persistent blocks: up to (number_SMs x max_blocks_SM)

SM#0 SM#1

Block
0

Block
1

Block
2

Block
3

Block
2nBlock

2nBlock
2nBlock

2nBlock
4

SM#0 SM#1

Block
0

Block
1

Block
2

Block
3

Block
2nBlock

2nBlock
2nBlock

2nBlock
4

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block m-2 Block m-1

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3

53

Atomic-based Block Synchronization (I)
n Code (simplified)

// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while(frontier_size != 0){

for(node = gtid; node < frontier_size; node += blockDim.x * gridDim.x){

// Visit neighbors
// Enqueue in output queue if needed (global or local queue)

}

// Update frontier_size

// Global synchronization
}

54

Atomic-based Block Synchronization (II)
n Global synchronization (simplified)

q At the end of each iteration
const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
...

frontier++;

if(tid == 0){
atomicAdd(ptr_threads_end, 1); // Thread block finishes iteration

}

if(gtid == 0){
while(atomicAdd(ptr_threads_end, 0) != gridDim.x){;} // Wait until all blocks finish

atomicExch(ptr_threads_end, 0); // Reset
atomicAdd(ptr_threads_run, 1); // Count iteration

}

if(tid == 0 && gtid != 0){
while(atomicAdd(ptr_threads_run, 0) < frontier){;} // Wait until ptr_threads_run is updated

}

__syncthreads(); // Rest of threads wait here

...

55

Segmentation in Medical Image Analysis (I)
n Segmentation is used to obtain the area of an organ, a

tumor, etc.

56Satpute et al., “Fast Parallel Vessel Segmentation,” CMPB 2020
Satpute et al., “GPU Acceleration of Liver Enhancement for Tumor Segmentation,” CMPB 2020
Satpute et al., “Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation,” CBM 2020

Segmentation in Medical Image Analysis (II)
n Seeded region growing is an algorithm for segmentation

q Dynamic data extraction as the region grows

57Satpute et al., “Fast Parallel Vessel Segmentation,” CMPB 2020
Satpute et al., “GPU Acceleration of Liver Enhancement for Tumor Segmentation,” CMPB 2020
Satpute et al., “Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation,” CBM 2020

CPU GPU

SRG
Kernel

Yes
Stop

No
Launch
Kernel

Terminate
Kernel

Can
Region
Grow?

Set a Seed

Start

Slide credit: Nitin Satpute

Region Growing with Kernel Termination and Relaunch

58

GPUCPU

SRG
Kernel

Yes

Set a
Seed

Launch
Kernel

Terminate
Kernel

Can
Region
Grow?

IBS

No

Stop

Start

IBS-Inter Block
Synchronization

Slide credit: Nitin Satpute

Region Growing with Inter-Block Synchronization

59

Inter-Block Synchronization for Image Segmentation

60

Satpute et al., “Accelerating Chan-Vese Model with Cross-modality Guided Contrast Enhancement for Liver Segmentation,” CBM 2020.
https://doi.org/10.1016/j.compbiomed.2020.103930

Satpute et al., “Fast Parallel Vessel Segmentation,” CMPB 2020. https://doi.org/10.1016/j.cmpb.2020.105430

Satpute et al., “GPU Acceleration of Liver Enhancement for Tumor Segmentation,” CMPB 2020. https://doi.org/10.1016/j.cmpb.2019.105285

https://doi.org/10.1016/j.compbiomed.2020.103930
https://doi.org/10.1016/j.cmpb.2020.105430
https://doi.org/10.1016/j.cmpb.2019.105285

CPU or GPU?
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
n New York City roads

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

9.0	

10.0	

1-1
00
	

10
1-2
00
	

20
1-3
00
	

30
1-4
00
	

40
1-5
00
	

50
1-6
00
	

60
1-7
00
	

70
1-8
00
	

80
1-9
00
	

90
1-1
00
0	

10
01
-11
00
	

11
01
-11
96
	

Av
er
ag
e	
no

de
s	p

er
	fr
on

:e
r	

Av
er
ag
e	
ex
ec
u:

on
	:
m
e	
(m

s)
	

Fron:ers	

CPU	(4	threads)	

GPU	(4x256	threads)	

Fron:er	size	

61

Collaborative Implementation (I)
n Choose CPU or GPU depending on frontier

n CPU threads or GPU kernel keep running while the
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads
}
else{

// Launch GPU kernel
}

}

62

Collaborative Implementation (II)
n Experimental results

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

NY	 BAY	

N
or
m
al
ize

d	
ex
ec
u9

on
	9
m
e	

Graph	

CPU	

CPU||GPU	

GPU	

15%

63

Recommended Readings

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 12 - Parallel patterns:
graph search

64

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

16 December 2021

P&S Heterogeneous Systems
Parallel Patterns: Graph Search

