P&S Heterogeneous Systems

Collaborative Computing

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021
6 January 2022

In Our Previous Lecture...

Dynamic Parallelism

GPU programming frameworks provide an interface to
express dynamic refinement algorithms in @ more natural
way

o Recall BFS
Each node in the frontier has a different humber of neighbors

CUDA Dynamic Parallelism
o Important semantics when a kernel is launched from a kernel
o Performance considerations

Kernel LLaunch without Dynamic Parallelism

Host Device

)

masslissTsglsssglssagslas sglisg’sslss sglss sglssaslasaglsg ng
MU R R R R R R AR R R R R
MU R R R R R R AR AR R R R

e e e s e s s s s e s s e e e e s e e e

aassllissaglessglssaglasng|inasslss aglas aglas ng’
MU R R R R R R AR AR AR
MU R R R R R R AR AR AR
[[| | et [| | e [| | i [| | S [| | S [~ | | (Pt [Sy | | [yt [Wiy | | [y [y |

)

Previously, kernels could only be launched from the host (painful to program!)

Kernel Launch with Dynamic Parallelism

Host Device

|

|
‘me' ' me'llmm!mm’ ‘mm' ' mm! ‘mm!mm’! am' ' me'llmm ' me'llem mm’
VAR R R LR R || || || | || | AU AR R
AR R R LR R I| I| I| I| I| I| I o |0 Rt
[Wb | e et | Sl | [[W | [l [ey P et | B e P] | e i)

N -

mersall EeTsglsgag! merssll |Earsglss oy saraslissssll IEeTag’
(ANVRRN LURR AR AR MR T R e AR |
1| L M MM IR R R AR |
[Syt [Wy | [yt [Wyl | | Sy [yl | [Syt [Wy | e et e e J (St yet® | | B [=)

)

Easier to write programs with dynamically discovered parallelism

Lecture on Dynamic Parallelism

Block Granularity Aggregation (II)

Juan GomezL..,

Original Kernel

_agg (param arrays, gD array, bD array
calculate index of parent thread (original kernel index) .
load from param arrays
load actual gridDim/blockDim from gD/bD arrays
calculate actual blockld
if(threadldx < actual blockDim) {
I (with kernel launches transformed and with @ = sum@30

Transformed Kernel
ll Aeereea o.| £

gck-gran

Heterogeneous Systems Course: Meeting 12: Dynamic Parallelism (Fall 2021)

287 views * Streamed live on Dec 22, 2021 75 18 CJ DISLIKE ,> SHARE =+ SAVE
@ Onur Mutlu'Lectures SUBSCRIBED Q
&> 21.5K subscribers -

Project & Seminar, ETH Ziirich, Fall 2021
Hands-on Acceleration on Heterogeneous Computing Systems (
https://safari.ethz.ch/projects_and_s...)

https://youtu.be/uzPKEQWaH4E

https://youtu.be/uzPkEQWaH4E

Asynchronous Data Transters

between CPU and GPU

Recall: CUDA Streams

= CUDA streams (command queues in OpenCL)
= Sequence of operations that are performed in order

Q

Q

1. Data transfer CPU-GPU

2. Kernel execution

= D input data instances, B blocks

= #Streams: (D / #Streams) data instances, (B / #Streams) blocks
3. Data transfer GPU-CPU

- ir >
g

Copy data
- |
Execute _

copyiaa [NN NN
Execute I I I

Asynchronous Transfers between CPU & GPU

= Computation divided into #Streams
o D input data instances, B blocks

o #Streams
= D/#Streams data instances
= B/#Streams blocks

- >
copydate t
Default stream - E >
Execute I
coyiara [N NN
Several streams
Execute I I I
] tr lr
o Estimates tg + tr +
#Streams #Streams

tr >= tr (dominant kernel) tr > tr (dominant transfers)

9

Overlap of Data Transfers and Kernel Execution

Code for devices that do not support concurrent data transfers

int number of streams = ;
cudaStream t stream[number of streams];
(int 1 = 0; 1 < number of streams; ++i)

cudaStreamCreate(&stream[i]);

(int i = 0; i < number of streams; ++i)
cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size, size,
, stream[i]);

(int i = 0; i < number of streams; ++i)
MyKernel<<<num blocks / number of streams, num threads, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);

(int i = 0; i < number of streams; ++i)
cudaMemcpyAsync (hostPtr + i * size, outputDevPtr + i * size, size,
, stream[i]);

cudaDeviceSynchronize();

(int i = 0; i < number of streams; ++i) Check CUDA programming guide

cudaStreamDestroy (Stream[1]) 7 https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,” 10
JPDC, 2012

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Use Case: Video Processing

Applications with independent computation on different data
instances can benefit from asynchronous transfers

For instance, video processing

Non- A sequence of 6 frames is transferred to device

streamed
execution
u((((((((e

6 x b blocks compute on the seguence of frames
OO e (L

(((L

DRI

A
E[S(a{a(a[s(s([s| [a({s

Eiiania] Rk EhhEp] EEs

5 [i 1 o i | o 1 1 1 o o S i e i Oooj0doddodod

Streamed A chunk of 2 frames is
execution transferred to device

(L Ly (L Ly

ooododoodo

2 x b blocks compute
on the chunk, while the
second chunk is being

Execution time saved

Ll Lefeeegy
ENRENNNNE] ESREEEES

thanks to streams

\/

Rl

Oododddoo|ddddoodog

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”

JPDC, 2012

11

Video Processing: Performance Results (I)

= 256-bin histogram calculation

N
o

Execution time (ms)
= o

30 12
‘ GeForce GTX 280
25 - =0=Non-streamed 10
=Streamed
—Our performance model 4408
— 8
6
4
5 /. = 2
__.,./%
PL el e 0

~

AN/ 0|©O N T AN| |0 © N AN/ OO N T
—| M| © ™M © ™| ©

~

| ==Non-streamed o

GeForce GTX 480

- Streamed 2
— Our performance model

~

AN/ OO N T AN| |0 © N AN OO N T
—| ™M © ~— ™M © ™| ©

176 x 144 352 x 288 704 x 576 176 x 144 352 x 288 704 x 576
Number of streams
Size of the frames
Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,” 12

JPDC, 2012

Video Processing: Performance Results (I1)

= RGB-to-grayscale conversion

50

40 - ~¥-Streamed

I GeForce GTX 280

=0=Non-streamed

GeForce GTX 480

=0=Non-streamed

25‘

20 - “#-Streamed

— Our performance model 63% — Our performance model 189/
m &°
E
o 30 - 15
£
[
e}
3 20 10
Q
x
L
Qo v v >
10 .\-_r(n 5 o s
- | |
A g = 4 F.:!)A
0 0
NH m‘m‘m‘ N‘ v‘w‘m‘m‘ NH w‘@‘w NH w‘m‘ N‘ N‘ q‘m‘ @M N‘v‘w‘@‘m
- ™M ~— | ™M - ™ - ™ — | ™M - ™M
176 x 144 352 x 288 704 x 576 176 x 144 352 x 288 704 x 576
Number of streams
Size of the frames
Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,” 13

JPDC, 2012

Recommended Readings

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
o Chapter 18 - Programming
a heterogeneous computing cluster,
Section 18.5

5 THIR‘” EDITION % \ el
Programmn_ng Mass:.vely
Parallel Processors N
v 2

ﬁHands on Af)prf ;

b
M & | Sy
s 3\

14

Collaborative Computing

Recall: BFS on CPU or GPU?

= Motivation
o Small-sized frontiers underutilize GPU resources

= NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)
= New York City roads

3.0]] 15000

2.0 N N 10000

10.0 50000
NNNNY
50 ESSSCPU (4 threads) 45000
- CGPU (4x256 threads) -
g 80 -+ 40000 o
= N \ =—Frontier size E
g 70 / 35000 O
G
-.‘: —
c 6.0 1 30000 @
-O Q-
g 5.0 N [25000 8
S .0 N 20000 £
S 4
S / S
a0 H
© o
5 >
2 <C

1.0 - —N N :g\ 5000
0.0 - —oN L ; m 0
v

Frontiers

BFS: Collaborative Implementation (I)
Choose CPU or GPU depending on frontier

(frontier size != 0){

(frontier size <) {

CPU threads or GPU kernel keep running while the
condition is satisfied

17

BFS: Collaborative Implementation (II)

= Experimental results
o NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)

15%
NY
Graph

Lecture on Graph Search

BES: Processing the Frontier 2 ieration)

Juan GomezL...|

3

v EEEEEDEEE
o (LTI elrIae])]s s Lo]e]

(edges é ENEAENEETEE] |5 By

p_frontier

24:187/1:24:50

Heterogeneous Systems Course: Meeting 11: Parallel Patterns: Graph Search (Fall 2021)

621 views * Streamed live on Dec 16, 2021 75 23 CJ DISLIKE > SHARE =+ SAVE
@ Onur Mutlu‘Lectures SUBSCRIBED ﬂ
&> 21.5K subscribers -

Project & Seminar, ETH Ziirich, Fall 2021
Hands-on Acceleration on Heterogeneous Computing Systems (
https://safari.ethz.ch/projects_and_s...)

https://youtu.be/950nUeUuOGg 19

https://youtu.be/95OnUeUuOGg

Unitied Memory

Memory Allocation and Data Transfers

Traditional approach to device allocation, CPU-GPU transfer,
and GPU-CPU transfer

o0 cudaMalloc();
o0 cudaMemcpy () ;

Naturally matches systems with discrete GPUs

malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice);

malloc(output, ...);
cudaMalloc(d_output, ...);

gpu_kernel<<<blocks, threads>>> (d output, d input, ...);
cudaDeviceSynchronize();

cudaMemcpy (output, d output, ..., DeviceToHost);

21

Unitied Memory

= Unified Virtual Address space
o Same virtual address space across host and device

= CUDA 6.0: Unified memory
= CUDA 8.0 + Pascal: GPU page faults

CUDA 6 Unified Memory Pascal Unified Memory

Pascal

GPU CPU

$:

Unified Memory

$:

ified Memory

(Limited to GPU Memory Size) (Limited to System Memory Size)

22

Heterogeneous System Architecture

= HSA extends the unified memory space beyond GPUs
o DSPs, DMA engines, cryptoengines, and other accelerators

Physical Integration

H H H cufcufcufcu oPU
GPU
- cu cu cu cu
11 1 oo ?H..M.
System Memory GPU Memory
(Coherent) (Non-Coherent)

Legacy GPU compute on SOCs

Legacy GPU compute on discrete GPU cards

CPU § CPU CPU § CU Cu Cu Cu DSP @ DSP
1 2 B N 1 2 3 M 1 2

Unified Coherent Memory

An HSA enabled SOC featuring multiple processors beyond CPU

Hwu (editor), “Heterogeneous System Architecture: A New Compute Platform Infrastructure,” 2016 23

Unitied Memory: Memory Management

Easier programming with Unified Memory
o cudaMallocManaged();

malloc(input, ...);
cudaMallocManaged(d input, ...);
memcpy(d_input, input, ...);

cudaMallocManaged(d output, ...);
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

cudaDeviceSynchronize();

No need for double allocation or explicit data transfers

Naturally matches physically integrated devices (e.g., CPU and
GPU in the same chip) or devices with the same physical memory
(e.g., CPU and GPU in the same package)

o But it can also be implemented for discrete GPUs
24

Unitied Memory: Kernel Time

= IBM Power8 with NVIDIA Pascal GPU

o D: Discrete (or traditional, without unified memory)
o U: Unified memory

4.0

(]
35 Kernel

3.0

2.5

2.0

oo]llllllll‘ I
olulolulolulolulolulolulol

[Eny
(2}

=
o

o
(6]

Execution Time (normalized)

BS HSTO HSTI RSCD PAD TRNS
No Atomics Atomics for Computation Atomics for Synchronization
No cross-device Cross-device communication may heavily
communication burden kernel performance

25

Unitied Memory: Total Execution Time

= IBM Power8 with NVIDIA Pascal GPU

o D: Discrete (or traditional, without unified memory)
o U: Unified memory

__350 B Copy Back
he)
& 300 B Copy To Device
©
€ 250 BKernel
2
— 20.0
£
= 15.0
S
2 10.0
3
5 .
- 0.0 H = e e . I . I . =
o ul/o v olu | olu|Dolul/Do|lul Db U
BS | HSTO | HSTI | RSCD PAD SC TRNS |
No Atomics Atomics for Computation Atomics for Synchronization |

Unified memory can hide data transfers with kernel execution

26

How to Implement
Collaborative Computing
Applications?

Collaborative Computing Applications

Case studies using CPU and GPU

Kernel launches are asynchronous
o CPU can work while waits for GPU to finish
o Traditionally, this is the most efficient way to exploit heterogeneity

malloc(input, ...);
cudaMalloc(d _input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice);

malloc(output, ...);
cudaMalloc(d_output, ...);

gpu_kernel<<<blocks, threads>>> (d output, d input, ...);

// CPU can do things here
cudaDeviceSynchronize();

cudaMemcpy (output, d output, ..., DeviceToHost);

28

Fine-Grained Collaboration

= Fine-grained collaboration becomes possible with unified
memory (post Kepler/Maxwell architecture)

= Pascal/Volta/Turing/Ampere Unified Memory (& HSA)
a CPU-GPU memory coherence
o System-wide atomic operations

cudaMallocManaged(input, ...);
cudaMallocManaged(output, ...);
gpu_kernel<<<blocks, threads>>> (output, input, ...);

output[x] = input[y];

output[x+1l].fetch add(1l);

29

CUDA 8.0 and Later

= Unified memory
cudaMallocManaged(&h in, in size);
= System-wide atomics

old = atomicAdd system(&h out[x], inc);

30

OpenCL 2.0 and Later

= Shared virtual memory

XYZ * h in = (XYZ *)clSVMAlloc(

ocl.clContext, CL MEM SVM FINE GRAIN BUFFER, in size, 0);

= More flags:

CL_MEM READ WRITE

CL_MEM_SVM ATOMICS

= C+411 atomic operations

(memory scope all svm devices)

old atomic fetch add(&h out[x], inc);

31

C++AMP (HCC)

= Unified memory space (HSA)

XYZ *h in = (XYZ *)malloc(in size);
s C+411 atomic operations

(memory scope all svm devices)

o Platform atomics (HSA)

old = atomic fetch add(&h out[x], inc);

32

Collaborative Patterns

Traditional Program Structure

data-parallel tasks

|

1000 -

\

(7))
7

'OC
£ @ 9
o = ®©
> & © N
2 N
—_ O C
© o 2
c w5
: s g
o ©w
()]
(73]

Program Structure

Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

34

Collaborative Patterns: Data Partitioning

data-parallel tasks Device 1! Device 2

il

|

TR

2

8 85

o o C

i 1]

= = '

& : :
Program Structure Data Partitioning

Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

35

Collaborative Patterns: Task Partitioning (I)

Device 1: Device 2

i

data-parallel tasks

|

1000 -

\

Q2

@ 85

'g /‘%ﬁ .
n o C :
I ¢ £

S 5

2 3 &

@

Program Structure Coarse-grained Task Partitioning

Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017 36

Collaborative Patterns: Task Partitioning (II)

Device 1 : Device 2

|
data-parallel tasks D_D__L]

| 1 D‘U : :I:

W,

)
0
o <
g g S
o <
> — © N I
7 N
— O.)C)
® o 9 |:|J:| I
= 25 lj"’f--~
CD iﬂuuﬂﬂﬂﬂ H & I:I I].
) Q > == .
o © v R B
@ -]
n . :

Program Structure Fine-grained Task
Partitioning

Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017 37

Analytical Modeling

N: Number of data parallel tasks in the application

t; p1+ Execution time of sub-task i by a Device 1 worker
t; p2+ Execution time of sub-task i by a Device 2 worker
wp1: Number of available Device 1 workers

wp,: Number of available Device 2 workers

B Distribution and aggregation overhead factor

a. Fraction of data parallel tasks assigned to Device 1

Sp1 and Sp, are, respectively, the set of subtasks/tasks

executed in Device 1 and Device 2

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 38
ICPE 2019

Analytical Model: Data Partitioning

N: Number of data parallel tasks in the application Data partitioning
t; p1. Execution time of sub-task i by a Device 1 worker : | :
t; p2: Execution time of sub-task i by a Device 2 worker Device 1 Device 2

|
wp1: Number of available Device 1 workers |
wp,: Number of available Device 2 workers '
B: Distribution and aggregation overhead factor :
| .
2 ‘
|

a: Fraction of data parallel tasks assigned to Device 1

Data pa I'tlthI‘III‘Ig Total D1 execution time Total D2 execution time
(sequential execution) (sequential execution)

The total execution time is

alN Y tipq (1 —a)N Y, ti.DZ)

t = - max ,
data, total data < Wp1 Wpo

Fixing all the variables except «, the optimal « (global minimum point) is

i} Ziti,D2/<Ziti,D1 Ziti,D2>
a = +

Wp2 Wp1 Wp2

Workloads of Device 1 and Device 2 workers are balanced

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 39
ICPE 2019

Analytical Model: Fine-Grained Task Part.

N: Number of data parallel tasks in the application Fine-grained task partitioning
t; p1. Execution time of sub-task i by a Device 1 worker - | :
t; p2: Execution time of sub-task i by a Device 2 worker Device 1 I Device 2

wp1: Number of available Device 1 workers |:| |:| |

wp,: Number of available Device 2 workers D‘ ‘-IL-—--

B: Distribution and aggregation overhead factor DU"‘""I‘I .
Sp1 and Sp, are, respectively, the set of subtasks executed -} i

in Device 1 and Device 2 : |~I"I l I

Fine-grained task partitioning D.D_.' .

—
i —
- —

The total execution time is ' .

2iesp, tip1 2iesp, ti,DZ)

t = PiackN - max()
task, total task Wp1 Wpo

(Assume sub-tasks are very fine-grained)

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 4()
ICPE 2019

Analytical Model: Coarse-Grained Task Part.

N: Number of data parallel tasks in the application Coarse-grained task partitioning

t; p1. Execution time of sub-task i by a Device 1 worker : I :

t; p2: Execution time of sub-task i by a Device 2 worker Device 1 Device 2
wp,: Number of available Device 2 workers

B: Distribution and aggregation overhead factor

|
wp1: Number of available Device 1 workers :
|
|
Sp1 and Sp, are, respectively, the set of tasks executed in |
Device 1 and Device 2 I
|
|
l .
| y
|
|
|
|
|
|

Coarse-grained task partitioning

The total execution time is H H

diesp, tip1 N 2ieSp, ti,DZ)

: BN (
task, total task W1 Wpo

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 41
ICPE 2019

Data Partitioning

Histogram without Unified Memory

= Traditional approach: Separate CPU and GPU histograms

are merged at the end

Block Block Block Block
0 1 2 3
\V,

[ofofo]o] ... [o]o] [o]oo]o] ... [0]0]
fo]o]o]o] ... [o]0]

malloc(CPU image);

cudaMalloc (GPU image);

cudaMemcpy (GPU image, CPU image, ...,
HosttoDevice);

malloc(CPU histogram);

memset (CPU histogram, 0);

cudaMalloc (GPU histogram);

cudaMemset (GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaMemcpy (GPU histogram, DeviceToHost);

// Launch CPU threads for merging

43

Histogram with Unitied Memory (I)

= Traditional approach: Separate CPU and GPU histograms
are merged at the end

malloc(CPU image);
cudaMallocManaged(GPU image);
memcpy (GPU image, CPU image, ...);

malloc (CPU histogram);

memset (CPU histogram, 0);
cudaMallocManaged (GPU histogram);
cudaMemset (GPU histogram, 0);

Block Block Block Block / / Launch CPU threads
0 1 2 3
// Launch GPU kernel
\V,

cudaDeviceSynchronize();

// Launch CPU threads for merging

[ofofo]o] ... [o]o] [o]oo]o] ... [0]0]

~ .

fo]o]o]o] ... [o]0]

Histogram with Unified Memory (II)

= System-wide atomic operations: One single histogram

malloc (CPU image);
cudaMallocManaged(GPU image);
memcpy (GPU image, CPU image, ...);

cudaMallocManaged(Histogram) ;
cudaMemset (Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd system)

45

Bézier Surtaces (1)

Bézier surface: 4x4 net of control points

Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," 1JPP, 2018

46

Bézier Surtfaces (1I)

Parametric non-rational formulation
o Bernstein polynomials
o Bi-cubic surface m=n=3

S(u,v) = » > Pi;iBim(u)Bjn(v), (1)

i=0 j=0

B; m(u) = (m) (1 — u)(m_i)ui, (2)

Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," 1JPP, 2018 47

Bézier Surtaces: Static Distribution (I)

Collaborative implementation
o Tiles calculated by GPU blocks or CPU threads

o Static distribution

2
S§ |
0’9] ®] [
¢ ® ¢ ® . 3D Surface point processed
- - = - - = in CPU
4 * 4 4 . 3D Surface point processed
‘ B s
[® [[°
ﬁﬂ[’T—J Tile of surface points processed
[) in CPU
ﬁﬂ[’T—J Tile of surface points processed
. . .] wm apPU
. o [h e *he
ST

Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," 1JPP, 2018

48

Bézier Surfaces: Static Distribution (II)
Without Unified Memory

malloc(control points, ...);

generate cp(control points);

cudaMalloc(d control points, ...);

cudaMemcpy(d_control points, control points, ..., HostToDevice);

malloc(surface, ...);
cudaMalloc(d_surface, ...);

std::thread main thread (run cpu threads, control points, surface, ...);
gpu_kernel<<<blocks, threads>>> (d_surface, d_control points, ...);

main thread.join();
cudaDeviceSynchronize();

cudaMemcpy (&surface[end of cpu part], d _surface, ..., DeviceToHost);

49

Bézier Surtaces: Static Distribution (111

= Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU
cores + 2 GPU cores)

o Bezier surface: 300x300, 4x4 control points

o %Tiles to CPU
a 17% speedup over GPU only

90.0

80.0

Execution time (ms)
w H u [e)] ~
S o© o o© o
o o o o o

)
o
o

o
o

0.00 0.05 0.10 0.15 0.20 0.25 0.30
%Tiles to CPU

0.35

0.40

0.45

0.50

50

Bézier Surfaces with Unified Memory

= With Unified Memory

malloc(control points, ...);

generate cp(control points);

cudaMalloc(d_control points, ...);

cudaMemcpy(d_control points, control points, ..., HostToDevice);

cudaMallocManaged(surface, ...);
std::thread main_thread (run_cpu threads, control points, surface, ...);
gpu_kernel<<<blocks, threads>>> (surface, d control points, ...);

main thread.join();
cudaDeviceSynchronize();

51

Bézier Surfaces: Dynamic Distribution

Static vs. dynamic implementation

(a) Static Distribution (b) Dynamic Distribution
Y Xy, ' . Xy,
Sgoll] Al Sigll ' : '
T) - . A h ~ 3D Surface point processed
0 . . in CPU
lE_ — E — h — W h[h[W[) — h[| !JJ 3D Surface point processed
ol o ol o . ol o oo oo e 1o in GPU
T[T Bl s (s Bl] s Bl s T
f A i f i i | f i i f i i f i i f e Wﬂ\r Tile of surface points processed
. . . - - . . . : : ﬁmﬂEJ in CPU
. ’ Wﬂ\r Tile of surface points processed
9] mcpu
ST ST

o Pascal/Volta/Turing/Ampere Unified Memory: system-wide atomic

operations

(){
(threadIdx.x == 0)
my tile = atomicAdd _system(tile num, 1);

__syncthreads();

(my_tile >= number of tiles) break;

}
Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," 1JPP, 2018 52

Benefits of Collaboration: Bézier Surfaces

= AMD Kaveri (4 CPU cores + 8 GPU cores)
o Data partitioning improves performance

4096
1024
256

Execution Time (/m5s)
= O
N N @) JNTAN

—o— 12x12 (300x300) S 07D
...... - 8x8 (300x300) ST & &
- - - 4x4 (300x300)

Bézier Surfaces
(up to 47% improvement over GPU only)

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 53

Padding (I)

= Matrix padding
o Memory alignment
o Transposition of near-square matrices

Padding

= Traditionally, it can only be performed out-of-place

54

Padding (II)

= Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU
cores + 2 GPU cores)

o Matrix size: 4000x4000, padding = 1
a 29% speedup over GPU only

Execution time (ms)

120

100

(0]
o

60

40

20

e

/

G\s~

cw

000 0.05 010 015 020 025 030 035 040 045 0.50 055 0.60
%CPU workload

55

In-Place Padding

= Pascal/Volta/Turing/Ampere Unified Memory
i Flags

Coherent
memory

17 |18

20

21 |22

23

24

26

27

28

29

31

32

33

34

20 |21

18

1 \
=~ 20|21 |22 23|24

GPU temporary
location

27 |28 |29

~ |30 (3132 33|34| | CPU temporary

// location

Adjacent synchronization:

22

23

24

CPU and GPU

26

27

28

29

31

32

33

34

In-place implementation will

be possible

56

Benefits of Collaboration: Padding

= AMD Kaveri (4 CPU cores + 8 GPU cores)
o Optimal number of devices is not always the maximum

18.0
16.0 |

1000x999
#6000x5999

» 140
< M 12000x11999
S 120 + #
o 12. B GPU-STREAM
£ 10.0
8.0 -
6.0 -
4.0 +
20 +

0.0 -
+0CPU | +1CPU |+2cpu | +4CPU | +0CPU | +1CPU | +2CPU |+4cpu | Copy | Mul | Add | Triad |

t

Throughp

8WG(64WI) 16WG(64WI) GPU-STREAM

Execution configuration
(GPU work-groups + CPU threads)

Gbémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

57

Stream Compaction (1)

Stream compaction or filtering
o Saving memory storage in sparse data

o Similar to padding, but local reduction result (non-zero
element count) is propagated

Stream compaction

Input 2 1 3 10(O0 1 314|002 1

Predicate: Element >0

Output | 2 1 3 1 34| 2 1

58

Stream Compaction (II)

= Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU
cores + 2 GPU cores)

o Array size: 2 MB, filtered items = 50%
a 25% speedup over GPU only

Execution time (ms)

14

12

[y
o

0o

(e}

S

N

o

/Z’E]

/

_ _ - E//
| — | —

T

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
%CPU workload

59

Benefits of Collaboration: Stream Comp.

= AMD Kaveri (4 CPU cores + 8 GPU cores)
o Data partitioning improves performance

Q\) Q\)
’\S”\S"

N N N N
AR,

X X X
S LS

Stream Compaction
(up to 82% improvement over GPU only)

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

60

Coarse-Grained Task Partitioning

Breadth-First Search

= Small-sized and big-sized frontiers

o Top-down approach
o Kernel 1 and Kernel 2

= Atomic-based block synchronization
a Avoids kernel re-launch

= Very small frontiers
o Underutilize GPU resources

= Collaborative implementation

62

Recall: BFS on CPU or GPU?

= Motivation

o Small-sized frontiers underutilize GPU resources
NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)

New York City roads

Average execution time (ms)

10.0

9.0

8.0

ESSSCPU (4 threads)
C=JGPU (4x256 threads)

- Frontier size

N

N N
N N N o S N ©
& & £ F & P

S A S A A
o

) AN N

Frontiers

50000

- 45000

-+ 40000

35000
30000
25000
20000
15000
10000
5000

Average nodes per frontier

63

BFS: Collaborative Implementation

= Choose the most appropriate device

small frontiers
processed on

CPU N
——-4——-./—

64

Collaborative Implementation without UM

= Without Unified Memory (UM)
o Explicit memory copies

while(frontier size != 0){

if(frontier size < LIMIT){

}
else{
// Copy from host to device (queues and synchronization variables)
// Copy from device to host (queues and synchronization variables)
}

65

Collaborative Implementation with UM (I)

= Unified Memory
0o cudaMallocManaged();
o Easier programming
a No explicit memory copies

while(frontier size != 0){

i1f(frontier size < LIMIT){

}

else{
// Launch GPU kernel for every frontier (kernel termination and relaunch)

cudaDeviceSynchronize();

66

on and Relaunch

1nati

Kernel Termi

BES

= AMD Kaveri (4 CPU cores + 8 GPU cores)

o High overhead of kernel relaunch makes CPU+GPU

collaboration impractical

si[ed [auid) NdD
o wn o [Te) o wn o
< o o o~ o~ i —

n o

i ZTSndoITNddT
95zndolNdIT
8zTndolIndot

$9Ndo1TNdIT
L NdOT

¢1SNd9| [NddT
959¢Nd9| INdIT
8¢INdS| INdJ¢

USA

CTR

¥ ¥9Nd91[NdOC

[
» NdOC
¢T1SNd9| INdd¢

95¢Nd9| [NdIT

[C—INormalized execution time

—8—GPU kernel calls

8¢1Nd9| INdJT 2
79NdS|1NdJ¢

¢1SNd9| INddT
95¢Nd9O| INdd¢
8ZINdS| [NdIT

9Nd9|1NdJ¢
» NdOC

¢T1SNd9O| [NdJ¢

w

95¢Nd9| INdJT

%]
87INdd[INddT =
¥9ndd[[NddT
y NdIZ

¢1SNd9| INddT

95¢Nd9| NdJ¢

)
8zInddlInddz &

ﬂ% ¥9ndo 1 TNddC

» NdOT

C& ¢TSNd9| INddT

95¢ndd[nddT
8ZINdO[[NddT Z
%9ndo[TNddT

» NdOT -
71SNdS[1NddT

9szndolInddT >
87INdo[[nddz =

¥9NdO|NdI¢

» NdOT
¢TSNd9| INdJ3T

mmNDn_o NndJ¢ <

wNHDn_o nddz o

' ¥9NdOITNdIT
. y (DT

NHmDn_o NndJ¢

1 95¢ndo[TnddT

l \

coL

| 82TNdD[TNdIT
| ¥9ndolTnddT
» Nz
| Z1sndd[TnddT
1 95¢Zndd[TNdIT
1 82TNdD[TNdIT
| ¥9NddITNddT
ynddz

BAY

1 Z1SNdo[TnddT
1 95ZndO[TNddT

NYR

| 8¢TNdO[TNddT

1 ¥9NdD[1NddT
y NdDC

C¢T1SNd9| INdJ¢
9S¢Ndd|INddT s
8¢INd9|INddT
¥9NdS|1NdJ¢

» NdOC

¢TSNd9| INddT

95zndd[ndde
87TtNdd[[nddTt -
¥9ndo[TNdIT

» NdOC
T

CPU/GPU configuration

Graph

67

Hwu (editor), “Heterogeneous System Architecture: A New Compute Platform Infrastructure,” 2016

Recall: Persistent Thread Blocks

Combine Kernel 1 and Kernel 2
We can avoid kernel re-launch

We need to use persistent thread blocks
o Kernel 2 launches (frontier_size / block_size) blocks
o Persistent blocks: up to (number_SMs x max_blocks_SM)

1
'ﬂoc F
1=

tﬂ%&%ﬁé o

Block o _:QLE;!(|

4 L4 — 4. :

SM#0 SM#1 SM#0 SM#1
Block Block Block Block Block Block Block Block
0 1 2 3 0 1 2 3
Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block m-2 Block m-1 Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block2 Block 3
| Il | [l 1] | | |
| 1 I I | 1 || I I | | I 1 | 1 || I
0 1 2 3 4 5 L m-2 m-1 0 1 2 3 4 5 e m-2 m-1

68

Atomic-based Block Synchronization (I)

= Code (simplified)

const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
while(frontier size != 0){

for(node = gtid; node < frontier size; node += blockDim.x * gridDim.x){

// Global synchronization

69

Atomic-based Block Synchronization (II)

Global synchronization (simplified)
o At the end of each iteration

const int tid = threadIdx.x;

const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads run, 0);
atomicExch(ptr_threads end, 0);

int frontier = 0;

frontier++;

(tid == 0){
atomicAdd(ptr threads end, 1);
}
(gtid == 0){
(atomicAdd(ptr threads end, 0) != gridDim.x){;}
atomicExch(ptr_threads end, 0);
atomicAdd(ptr_ threads run, 1);
}
(tid == && gtid != 0){
(atomicAdd(ptr threads run, 0) < frontier){;}
}

__syncthreads();

BFS: Collaborative Implementation (II)

= Choose CPU or GPU depending on frontier

while(frontier size != 0){
1f(frontier size < LIMIT){

}

else{

// Launch GPU kernel (keep running while frontier size >= LIMIT)

cudaDeviceSynchronize();

}
}

= CPU threads or GPU kernel keep running while the
condition is satisfied

71

BFS: Collaborative Implementation (I1I)

= Experimental results
o NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)

15%

NY
Graph

BAY

Collaborative Implementation with UM (II)

= Pascal/Volta/Turing/Ampere Unified Memory & HSA
o CPU/GPU coherence
o System-wide atomic operations
a No need to re-launch kernel or CPU threads
a Possibility of CPU and GPU working on the same frontier

while(frontier size != 0){
1f(frontier size < LIMIT){

// Launch CPU threads (compute when frontier size < LIMIT)

}

else{

// Launch GPU kernel (compute when frontier size >= LIMIT)

}
}

cudaDeviceSynchronize();

73

Benefits of Collaboration: BES

= AMD Kaveri (4 CPU cores + 8 GPU cores)

o The collaborative implementation (with system-wide atomics)
is up to 39% faster than the GPU only version

Normalized execution time

1.2

=
o
y

o
%

o
o

1
IS

©
)

EBGPU E2CPU||GPUG4 E2CPU||GPU128 [@2CPU||GPU256 [2CPU||GPU512 M2CPU

0.0 +EB

T

V) |

NE CAL w CTR USA

Graph

Hwu (editor), “Heterogeneous System Architecture: A New Compute Platform Infrastructure,” 2016 74

Benefits of Collaboration: SSSP

= AMD Kaveri (4 CPU cores + 8 GPU cores)
o SSSP performs more computation than BFS

’g 524288

~ 65536

) O\O—_‘o\c o0—o0—o0

E 8192 . .

- 1024 el

S 128

()

x PP DX O
N N D
& &

Single Source Shortest Path
(up to 22% improvement over GPU only)

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

75

Fine-Grained Task Partitioning

Egomotion Compensation and Moving Objects

Detection (1)
Hexapod robot OSCAR
o Rescue scenarios
o Strong egomotion on uneven terrains
Algorithm
o Random Sample Consensus (RANSAC): F-o-F model

Vector clustering

—_— e e e T— — — — — e ————————

Local (Region B
(i e Hlsto ram maxima BlisGilie, rowin
= RANSA on kernel 9 kernel g 9
' ow K | F-o-F calculatlon kernel kernel Y
Optical flow vectors Sine _ J
Current array (egomotion model | | &~ —————————— — - — - — — — — Bounding
frame estimation) JJ L e o — boxes
Next L(Compensatlo f Region) |
frame Vand differencing NPP Erode growing
kernel kernel
Fra_me_ differencing
Gdémez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011 77

Egomotion Compensation and Moving Objects
Detection (1I)

Fast moving object in strong egomotion scenario detected by vector clustering

Gomez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011 78

RANSAC: SISD and SIMD Phases
RANSAC (Fischler+, 1981)

(iteration <) {
Fitting stage (Compute F-o-F model)
Evaluation stage (Count outliers)
Comparison to best model

Check if best model is good enough and iteration >= MIN ITER

o Fitting stage picks two flow vectors

random.ly |)
o Evaluation generates motion L =

vectors from F-o-F model, and — =

compares them to real flow vectors — -~

Gdémez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011 79

Collaborative Implementation

= Randomly picked vectors: Iterations are independent
o We assign one iteration to one CPU thread and one GPU block

lteration O Iteration 1 lteration 2
CPU GPU CPU GPU CPU GPU
thread block thread block thread block

80

Collaborative Patterns

data-parallel tasks
A
[

<ﬁﬂﬂﬂﬂﬂ g
pTTS

Program Structure

coarse-grained
synchronization

sequential sub-tasks

Device 1 : Device 2

T

TR

Data Partitioning

Device 1 :

Device 2

i
i

i

Coarse-grained Task Partitioning

Device 1 ' Device 2

DD.l :

DJI}II
‘" |]

DD |
DJII_] [l

——

Fine-gralned Task
Partitioning

Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

81

Chai Benchmark Suite

= Collaborative Heterogeneous Applications for Integrated
architectures

= Heterogeneous execution on CPU, GPU, FPGA I I I I I

= Collaboration patterns
o 8 data partitioning benchmarks

o 3 coarse-grain task partitioning benchmarks
o 3 fine-grain task partitioning benchmarks

= Discrete (D) and Unified (U) versions
o CUDA, OpenCL, and C++AMP for CPU+GPU

o OpenCL for CPU+FPGA
o CUDA-SIim for Gem5-GPU

https://chai-benchmarks.github.io

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 82

Chai Benchmarks

Collaboration Short | Benchmark
Pattern Name
BS Bézier Surface
CEDD | Canny Edge Detection
HSTI | Image Histogram (Input Partitioning)
Data Partitioning II;I:]'gO gllggien(:hstogrdm (Output Partitioning)
RSCD | Random Sample Consensus
SC Stream Compaction
TRNS | In-place Transposition
Fine- RSCT | Random Sample Consensus
3 TQ Task Queue System (Synthetic)
Task grain TQH Task Queue System (Histogram)
Partitioning saise BES Breadth-First Search
g CEDT | Canny Edge Detection
e SSSP | Single-Source Shortest Path

Versions:

= OpenCL-U
= OpenCL-D
= CUDA-U

= CUDA-D

= CUDA-U-Sim
= CUDA-D-Sim
= C++AMP

Gomez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 83

Chai: Diversity of Benchmarks (I)

Diversity of partitioning, usage of system-wide atomics, load
balancing, and concurrency

DATA PARTITIONING

sonchmarcPoitoning | Parioned Svenide N Lot

BS Fine Output None Yes
CEDD Coarse Input, Output None Yes
HSTI Fine Input Compute No
HSTO Fine Output None No
PAD Fine Input, Output Sync Yes
RSCD Medium Output Compute Yes

SC Fine Input, Output Sync No
TRNS Medium erput, Output Sync No

FINE-GRAIN TASK PARTITIONING

Benchmark [SysAttinr:‘-i\::v;de) Load Balance
RSCT Sync, Compute Yes
TQ Sync No
TQH N Sync AA No

COARSE-GRAIN TASK PARTITIONING

System-wide

Benchmark Atomics Partitioning | Concurrency
BFS Sync, Compute Iterative No
CEDT Sync Non-iterative Yes
SSSP Sync, Compute Iterative j| No

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

84

Chai: Diversity of Benchmarks (II)

LEGEND: 1§80 Occupancy

VALUBusy MemUnitBusy

s @

VALUUtilization — CacheHit
BS CEDD (gaussian)

QA

CEDD (sobel) CEDD (non-max) CEDD (hysteresis)

» B

m CPU mGPU

PAD D

W

ONDIPOCCON D

TRNS RSCT

A /
KR W

CEDT (gaussian) CEDT (sobel)

)
SSSP

System-wide Atomics
(ops / thousand cycles)

BS
CEDD m
HSTI m—
HSTO |

PAD ==
RSCD =

SC m
TRNS mm—
RSCT mm

TQ

Varying intensity in use of system-wide atomics
Diverse execution profiles

Gomez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 85

Benefits of Unified Memory: Kernel Time

H Kernel
1.6 Comparable (same kernels, Unified kernels can Unified kernels
?1 4 system-wide atomics make exploit more avoid kernel
g‘) 1'2 Unified sometimes slower) paraIIeIism launch olverhead
—_— \
8 1
§ 0.8
£0.6
0 04
£02 i 11
her | |
E DuDUDUDUDUDUDUTDUWU DUDUDU DUDUDU
whd
3 BS CEDD HSTIHSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP
)
b Fine-grain Coarse-grain
Data Partitioning Task Partitioning

AMD Kaveri (4 CPU cores + 8 GPU cores), OpenCL

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 86

Benefits of Unified Memory: Data Transters

mKernel ©OCopy Back & Merge m®Copy To Device

Unified versions avoid copy overhead
1

bubuDUuUDUDUDUDUDU DuUDUDU DUuUDUDU
BS CEDD HSTIHSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP

—t b

COoo0o HEHE
ONDODO—HND®

Execution Time (normalized)

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

AMD Kaveri (4 CPU cores + 8 GPU cores), OpenCL

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 87

Benetits of Unified Memory: Allocation

mKernel O Copy Back & Merge mCopy To Device 1 Allocation

SVM allocation
- seems to take longer
(. l

[1
r- - [—-
P! I—| [1
P :| - I: 1
= e — 1 -

(I ': 1 r- [|: :—' - -

[[! 1 Pt 1 --

1 [1 - 1 1 ! 1

1 1 1 1 1

1 [1 [1 1

| | | 1 | 1

[P! [L '

[V! (] yrod Y

L.] (] [-

[N P! [['

' ! 11 |

1 — 1

| 1! Ll

1 | 1

! 1

[
[

bubuDUuUDUDUDUDUDU DuUDUDU DUuUDUDU
BS CEDD HSTIHSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP

—t b

COoo0o HEHE
ONDODO—HND®

Fine-grain Coarse-grain

Execution Time (normalized)

Data Partitioning Task Partitioning

AMD Kaveri (4 CPU cores + 8 GPU cores), OpenCL

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 88

Comparison C++AMP vs. OpenCL-U

S
U

o

4.37 11.93 8.08
1:2.5
()]
whd
()}
& 2
(=}
whd
9 1.5
IE
E) m OpenCL-U
o
g O C++AMP
Q
=
"]
Q
()]
Q
()]

O L O L0 &L O A& LR LSS
S < S O K 4 S
é&&@@é’ SG T SCL S

Goémez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 89

Heterogeneous System Architecture

= Wen-mei W. Hwu (editor), “Heterogeneous System

Architecture: A New Compute Platform Infrastructure,”
2016

o Chapter 8 — Application
use cases: Platform atomics

HETEROGENEOUS

SYSTEM ARCHITECTURE

A NEW COMPUTE PLATFORM
INFRASTRUCTURE

90

Background: Traditional 1/O Technology

Device Driver
Storage Area

Virt Addr
Variables

Variables

Input
Data

Input
Data

Output
Data

3 versions of the data (not coherent).
1000s of instructions in the device driver.

Typical I/O Model Flow:| Total ~13us for data prep

300 Instructions 10,000 Instructions Application 3,000 Instructions 1,000 Instructions
1,000 Instructions
/ Dependent, but \ /
7.9|JS Equal to below 4.9|JS

Dionysios Diamantopoulos, IBM Research — Zurich, COOL Chips 2018

CAPI/OpenCAPI Overview

= CAPI/CAPI2 (Coherent Accelerator Processor Interface)
= OpenCAPI

Virt Addr

W0 1000

POWERS POWERS POWERS

POWERS
Core

Core Core

Flow with a CAPI Model: Total 0.36us

400 Instructions

0.3us

Application 100 Instructions
Dependent, but

Equal to above 0.06ps

POWERS - POWERS Processor

Dionysios Diamantopoulos, IBM Research — Zurich, COOL Chips 2018

=)}

2

Collaborative Computing on CPU+FPGA

= Traditionally, accelerators
(GPUs, FPGAs, etc.) have
been used as offload engines

Intel® Xeon® CPU

= Heterogeneous architectures Software Framework
moving towards tighter

integration
a Unified memory
o System-wide atomics

Integrated FPGA

Hardware Framework

= Tighter integration allows
fine-grained collaboration

HSSI

Multi Chip Package

Key challenge: iden_tify the best Intel Xeon + FPGA Integrated Platform (MCP)
CPU-FPGA collaboration strategy

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 93
ICPE 2019

Intel OpenCL SDK for FPGA

= Intel OpenCL SDK for FPGA is used to compile and
synthesize host executable and FPGA design

Host Code

clEnqueueWriteBuffer
clEnqueueNDRange
clEnqueueReadBuffer

OpenCL™ Accelerator Code

__kernel void sum
(__global float *a,
__global float *b,
__global float *y)

{
int gid = get_global_id(0);
ylgid] = a[gid] + b[gid];

}

Standard

Intel® FPGA
Offline
Compiler

gcc Verilog

Compiler

(Quartus'Prime
Design Software

Accelerator

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"

ICPE 2019

94

CPU+FPGA Ewvaluation Platforms

_ Platform A Platform B

FPGA Board Terasic DE5-Net Nallatech 510T
Intel Stratix V GX Intel Arria 10 GX

On-Board 4 GB (DDR3) 8 GB (DDR4)
Memory

Intel Xeon E3-1240 v3 Intel Xeon E5-2650 v3
Host Memory 8 GB (DDR3) 96 GB (DDR4)
Interface PCIe gen3.0 x8 PCIe gen3.0 x8

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"
ICPE 2019

Benefits of Collaboration on FPGA (I)

1.2

D 1w Similar 0 Dldle
—1.0 - - improvement O Copy
v from data and] m Combpute
E 0.8 - task partitioning P
Case Study: c 0.6 - ———
Canny E_dge S04 -
Detection 02 -
x U.
LL
0.0 -
clF| IclFl clF| |clF clF| [clF| IclF clF
CPU| |FPGA| |Data| |Task| |CPU| |FPGAl |Data| |Task
Single device| |Collaborative| |Single device| |Collaborative
Stratix V Arria 10
Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017 96

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," ICPE 2019

Benefits of Collaboration on FPGA (II)

45 —a— Data Partitioning (Stratix V)
——Task Partitioning (Stratix V)
40 - -+ - Data Partitioning (Arria 10) et
«n 35 - - -Task Partitioning (Arria 10) -7
- IR o
—’ ‘\‘\ "
Case Study: @ 30 - -
Random i= 25
Sample 5§20 -
Consensus 515 - Task partitioning
D exploits disparity in '[
T 10 - nature of tasks '
5 _
O [[[[[[[[[[1
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
%CPU
Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017 97

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," ICPE 2019

Chai on CPU-FPGA Systems (1)

Sitao Huang, Li-Wen Chang, 1zzat El Hajj, Simon Garcia De Gonzalo, Juan
Gomez-Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan
Milojicic, Onur Mutlu, Deming Chen, and Wen-mei Hwu,

'Analysis and Modeling of Collaborative Execution Strategies for
Heterogeneous CPU-FPGA Architectures”

Proceedings of the 10th ACM/SPEC International Conference on Performance
Engineering (ICPE), Mumbai, India, April 2019.

[Slides (pptx) (pdf)]

[Chai CPU-FPGA Benchmark Suite]

Analysis and Modeling of Collaborative Execution Strategies
for Heterogeneous CPU-FPGA Architectures

Sitao Huang Li-Wen Chang” Izzat El Hajj

ECE, UIUC Microsoft ECE, UIUC

shuang91@illinois.edu liwen.chang@microsoft.com elhajj2@illinois.edu
Simon Garcia De Gonzalo Juan Gémez-Luna Sai Rahul Chalamalasetti

CS, UIuC CS, ETH Zurich Hewlett Packard Labs

gredgnz2@illinois.edu juang@ethz.ch sairahul.chalamalasetti@hpe.com
Mohamed El-Hadedy Dejan Milojicic Onur Mutlu
ECE, Cal Poly Pomona Hewlett Packard Labs CS, ETH Zurich
mealy@cpp.edu dejan.milojicic@hpe.com omutlu@ethz.ch
Deming Chen Wen-mei Hwu
ECE, UIUC ECE, UIUC
dchen@illinois.edu w-hwu@illinois.edu

98

https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19.pdf
https://icpe2019.spec.org/
https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19-talk.pdf
https://github.com/chai-benchmarks/chai-fpga

Chat on CPU-FPGA Systems (1I)

Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gomez-Luna, Nan Guan, Qingxu
Deng, Wei Zhang, and Onur Mutlu,

"Boyi: A Systematic Framework for Automatically Deciding the Right
Execution Model of OpenCL Applications on FPGAs"

Proceedings of the 28th International Symposium on Field-Programmable Gate
Arrays (FPGA), Seaside, CA, USA, February 2020.

[Slides (pptx) (pdf)]

Boyi: A Systematic Framework for Automatically Deciding the
Right Execution Model of OpenCL Applications on FPGAs

Jiantong Jiang!* Zeke Wang?* Xue Liu'* Juan Gémez-Luna?®
Nan Guan® Qingxu Deng! Wei Zhang* Onur Mutlu?

! Department of Computer Science and Engineering, Northeastern University, China
2 ETH Ziirich, Switzerland
3 Department of Computing, Hong Kong Polytechnic University, Hong Kong
4 Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

99

https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20.pdf
http://isfpga.org/
https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20-talk.pdf

CAPI/OpenCAPI Overview

= CAPI/CAPI2 (Coherent Accelerator Processor Interface)
= OpenCAPI

Virt Addr

1A A 0

POWERS
Core

Flow with a CAPI Model:

Total 0.36us

400 Instructions

Application
POWERS - POWERS Processor

100 Instructions
Dependent, but
0.3us

Equal to above 0.06ps
Dionysios Diamantopoulos, IBM Research — Zurich, COOL Chips 2018

100

Evaluation Setup for Weather Acceleration

A Al

Bl

Source: AlphaData

Source: IBM
POWER9 AC922 HBM-based AD9H7
board
= Host System = FPGA board
IBM POWER9-16 core (64-threads) Xilinx Virtex® Ultrascale+™ XCVU37P-2

Singh+, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling," FPL 2020 101

NERO Application Framework

NERO communicates to

COSMO APl | libCXL
Host over CAPI COSMR?OVSEI:THER Host POWER Coherent Accelerator
(COherent Accelerator System Processor Proxy (CAPP)

Processor Interface)
COSMO APThandles = o e PO STa
offioading jobs to NERO . IR Sl
SNAP (Storage, Network, |[BEFEAEral svar [OVEEERRION

the COSMO API

and Analytics N : i ~ —
Programming) allows for [sob || stream | [oy owa e e ||
seamless integration of ;[Manager | [Scheduler Pariioned on-ciip Memory | |

' — B

HBM Memory Controller

’j i $% $ %

HBM2 Stack 1 HBM2 Stack 2

https://github.com/open-power/snap

Singh+, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling," FPL 2020 102

https://github.com/open-power/snap

Accelerating Climate Modeling (1)

= Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,

'NERO: A Near High-Bandwidth Memory Stencil Accelerator for

Weather Prediction Modeling"”
Proceedings of the 30th International Conference on Field-Programmable Logic

and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling
Gagandeep Singh®?¢ Dionysios Diamantopoulos® Christoph Hagleitner® Juan Gémez-Luna®

Sander Stuijk? Onur Mutlu® Henk Corporaal®
9Eindhoven University of Technology bETH Ziirich ‘IBM Research Europe, Zurich

103

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Accelerating Climate Modeling (II)

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive

Applications”
IEEE Micro (IEEE MICRO), 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos’ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology Y IBM Research Europe

104

https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

Collaborative Computing: Key Takeaways

Possibility of having several devices collaborating on the
same workload

And having the most appropriate cores for each workload,
exploiting heterogeneity

Easier programming with Unified Memory or Shared Virtual
Memory

CPU-GPU memory coherence and system-wide atomic
operations since NVIDIA Pascal and HSA

o Fine-grain collaboration

105

Heterogeneous Systems Course (Fall 2021)

= Short weekly lectures

= Hands-on projects

= More suitable devices for each type of workioad
« Increased performance nergy efficiency

Onur Mutlu Lectures

Trace: * start

f SAFARI Project & Seminars Courses (Fall

1S 2021)

Recent Changes Media Manager Sitemap

Home
Projects

SoftMC
Ramulator

SSD Simulator

Heterogeneous Systems Course: Meeting 1: Hands-on Acceleration on
Hetero. Computing Systems (Fall21)

Heterog 1s Sy
architecture (Fall21)

Onur Mutlu Lectures

Livestream - P&S Hands-on
Acceleration on 3
Heterogeneous Computing
Systems (Fall 2021)

2021)

Onur Mutlu Lectures

Course: Meeting 2: SIMD p ors and GPU

Heterogeneous Systems Course: Meeting 3: GPU Software Hierarchy (Fall

Heter 1s Sy

)

L 2021)

_m Onur Mutlu Lectures

10 videos + 566 views * Updated 6 days ago 4

=+ X; A)

Course: Meeting 4: GPU Memory Hierarchy (Fall

Heterc 1S

Yy

@ Onur Mutlu SUBSCRIBED Il = m Onur Mutlu Lectures

%) Lectures

r=eTEE

L. (Fall2021)

+.. Heterogeneous Systems Course:

Course: Meeting 5: GPU Perfc
Considerations (Fall 2021)

: Meeting 6: Parallel Patterns: Reduction

6

Onur Mutlu Lectures

Heterog 1s Sy Course:
7 (Fall 2021)

Onur Mutlu Lectures

Heterogeneous Systems Course:
8 (Fall 2021)

ing 7: Parallel Patterns: Histogram

: Meeting 8: Parallel Patterns: Convolution

https://youtube.com/playlist?list=PL5Q2s0XY2Zi OwkTgEyA6tk3UsoPBH737

Accelerating Genomics
Mobile Genomics
Processing-in-Memory
Heterogeneous Systems

_systems

heterogeneous_systems
Table of Contents

Hands-on Acceleration on Heterogeneous

Hands-on Acceleration on

Computing Systems el o
Edit Course Description
Course Description Mentors
Lecture Video Playlist on
The increasing difficulty of scaling the performance and efficiency of YouTube

Fall 2021 Meetings/Schedule
Learning Materials
Assignments

CPUs every year has created the need for turning computers into
heterogeneous systems, i.e., systems composed of multiple types of
processors that can suit better different types of workloads or parts of
them. More than a decade ago, Graphics Processing Units (GPUs)
became general-purpose parallel processors, in order to make their outstanding processing capabilities
available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Artificial Intelligence, which took unrealistic training times before the use of GPUs. Field-
Programmable Gate Arrays (FPGAs) are another example computing device that can deliver impressive
benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of
specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing
architectures (i.e., placing compute capabilities near or inside memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many
challenges to tackle, for example:

= Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from

important fields such as bioinformatics, machine learning, graph processing, medical imaging,

personalized medicine, robotics, virtual reality, etc.

Scheduling techniques for heterogeneous systems with different general-purpose processors and

accelerators, e.g., kernel offloading, memory scheduling, etc.

= Workload characterization and programming tools that enable easier and more efficient use of
heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture
projects for heterogeneous systems, this is your P&S. You will have the opportunity to program
heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
algorithmic changes to important applications to better leverage the compute power of heterogeneous
systems, understand different workloads and identify the most suitable device for their execution, design
optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance
reported for a given important application.

Prerequisites of the course:

Digital Design and Computer Architecture (or equivalent course).
Familiarity with C/C++ programming and strong coding skills.

Interest in future computer architectures and computing paradigms.
Interest in discovering why things do or do not work and solving problems
Interest in making systems efficient and usable

The course is conducted in English.

The course has two main parts:
1. Short weekly lectures on GPU and heterogeneous programming.
2. Hands-on project: Each student develops his/her own project.

https://safari.ethz.ch/projects and seminars/fall2021/doku.php?id

=heterogeneous_systems

106

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

Processing-in-Memory Course (Fall 2021)

= Short weekly lectures <

SAFARI Project & Seminars Courses (Fall 2021)

Recent Changes Media Manager Sitemap

Trace: * heterogeneous_systems * processing_in_memory

= Hands-on projects

Projects

= SoftMC
= Ramulator
= Accelerating Genomics

= Mnhila Rannamine

Py ing in Memory Course: Meeting 1: Exploring the PIM Paradigm for Future
Systems - Fall'21

Onur Mutlu Lectures

A Modern Primer on Processing in Memory 1

Ovar Mt Sasgata Ghose™. Luns®, Rachats Ausavarusgninunt

Processing in Memory Course: M; g 2: Real Id PIM archi - Fall'21

Onur Mutlu Lectures

21
PLAY ALL

Livestream - P&S Exploring

the Processing-in-Memory 3
Paradigm for Future

Computing Systems (Fall

2021) 4

13 videos + 591 views * Last updated on Dec 23,
2021

=+ I))) oon

Processing in Memory Course: Meeting 3: Real-world PIM architectures Il - Fall'21

Onur Mutlu Lectures

Processing in Memory Course: Meeting 4: Real-world PIM architectures Il -
Fall'21

Onur Mutlu Lectures

Processing in Memory Course: Meeting 5: Real-world PIM architectures IV -
Fall'21

Onur Mutlu Lectures

Processing in Memory Course: Meeting 6: End-to-end Framework for Processing-

@ OnurMutly g pscriBep N
using-Memory - Fall'21

&) Lectures

Onur Mutlu Lectures

| Processing in Memory Course: M
Bottlenecks - Fall'21

ing 7: How to Data N it

Onur Mutlu Lectures

Processing in Memory Course: Meeting 8: Programming PIM Architectures -
Fall'21

Onur Mutlu Lectures

Processina in Memorv Course: Meetina 9: Benchmarkina and Workload

https://youtube.com/playlist?list=PL5Q2s0XY2Zi-841fUYYUK9EsXKhQKRPyX

processing_in_memory

Table of Contents

Exploring the Processing-in-Memory Paradigm for Future Exoloring the P o

z Xploring the Processing-in-

Computing Systems Edit Memory Paradigm for Future
Computing Systems

Course Description
Course Description

Data movement between the memory units and the compute units of current Mentors

computing systems is a major performance and energy bottleneck. From Lecture Video Playlist on
large-scale servers to mobile devices, data movement costs dominate YouTube

computation costs in terms of both performance and energy consumption. For Fall 2021

example, data movement between the main memory and the processing cores Meetings/Schedule
accounts for 62% of the total system energy in consumer applications. As a Leamning Materials
result, the data movement bottleneck is a huge burden that greatly limits the Assignments

energy efficiency and performance of modern computing systems. This
phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data
movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing,
databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These
workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low
arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main
memory size. The computation in these workloads cannot usually compensate for the data movement costs. In
order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric
design, where all computation takes place in the compute units, to a more data-centric design where processing
elements are placed closer to or inside where the data resides. This paradigm of computing is known as
Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent “the next
big thing” in Computer Architecture. You will work hands-on with the first real-world PIM architecture, will explore
different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM
systems. Projects in this course span software and hardware as well as the software/hardware interface. You can
potentially work on developing and optimizing new workloads for the first real-world PIM hardware or explore new
PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

Prerequisites of the course:

Digital Design and Computer Architecture (or equivalent course).

= Familiarity with C/C++ programming.

Interest in future computer architectures and computing paradigms.

= Interest in discovering why things do or do not work and solving problems
= Interest in making systems efficient and usable

The course is conducted in English.
The course has two main parts:

1. Short lectures on different aspects of processing-in-memory.
2. Hands-on project: Each student develops his/her own project.

https://safari.ethz.ch/projects and seminars/fall2021/doku.php?id

=processing _in_memory

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

More P&S Courses: SSDs, Memory, Bioinformatics

Understanding and Improving Modern DRAM Performance, Reliability,
and Security with Hands-On Experiments

Designing and Evaluating Memory Systems and Modern Software
Workloads with Ramulator

Accelerating Genome Analysis with FPGAs, GPUs, and New Execution
Paradigms

Genome Sequencing on Mobile Devices

Understanding and Designing Modern NAND Flash-Based Solid-State
Drives (SSDs)

/ SAFARI Project & Seminars Courses (Fall
%m 2021) Recent Changes Media Manager Sitemap

Trace: - processing_in_memory - heterogeneous_systems - start

Projects . =
- SAFARI Projects & Seminars Courses (Fall 2021)
i:::elljel?atmg Gonomics Welcome to the wiki for Project and Seminar courses SAFARI offers.

Mobile Genomics

Processing-in-Memory Courses we offer:
Hetero, geneous Systems
SSD Simulator

Understanding and Improving Modern DRAM Performance, Reliability, and Security with Hands-On
Experiments

Designing and Evaluating Memory Systems and Modern Software Workloads with Ramulator
Accelerating Genome Analysis with FPGAs, GPUs, and New Execution Paradigms

Genome Sequencing on Mobile Devices

Exploring the Processing-in-Memory Paradigm for Future Computing Systems

httDS:/ / safari .ech-Ch/ projects and_seminars/ ity ooy e o O
fall2021/doku.php?id=start

108

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=start

More Resources: Onur Mutlu Lectures

All P&S courses

Digital Design and CompArch course
Advanced CompArch course

Seminar in CompArch

Onur Mutlu Lectures SUBSCRIBED [
21.5K subscribers

HOME VIDEOS PLAYLISTS COMMUNITY CHANNELS ABOUT Q

All playlists v

Created playlists

G

= Amodem 50 & 3 complcated

A Modern Primer on P "’, i gi,"‘ t] o, W contolers, O
e i
[N
Li -P&S (Fall Li - P&S Hands-on Li -P&S ingthe Li -P&S il Li - P&S Genome P&S Modern SSDs (Fall 2021)
2021) A ionon F ing-in-M ry Paradig.. Genome Analysis with FPGAs,... Sequencing on Mobile Devices... ey FuLL PLAYLIST
VIEW FULL PLAYLIST Updated today VIEW FULL PLAYLIST VIEW FULL PLAYLIST VIEW FULL PLAYLIST

VIEW FULL PLAYLIST

First Course in Computer Architecture & Digital Design 2021-2013

| Design of Digi

Lecture 1: Introduct
How Comput]
(from the gro

e

Prains Doun 0y e
Livestream - Digital Design and Digital Design & Computer Design of Digital Circuits - ETH Design of Digital Circuits - ETH Digital Circuits and Computer Spring 2015 -- Computer
C i -ETH.. i - ETH Ziirich (Spri... Ziirich - Spring 2019 Ziirich - Spring 2018 Architecture - ETH Zurich -... Architecture Lectures -- Carneg...
Onur Mutlu Lectures Onur Mutlu Lectures O MOt R TreS TR Ml et Tes Onur Mutlu Lectures Camegie Mellon Computer Architecture

VIEW FULL PLAYLIST VIEW FULL PLAYLIST VIEW FULL PLAYLIST VIEW FULL PLAYLIST VIEW FULL PLAYLIST VIEW FULL PLAYLIST

Courses 2021-2012

ML acclerstor: 260 v, 6 b o,
00 GRLOPS GPU, 12 AR 2.2 G

+ Two redundant chips orbetor

Processing in ORAM Engine -
Icloces standard DIMM modul (L bt i e et
number of DPU processors oo

Replaces standard DI

-FTH Fall 2015 - 740 Comnutar

https://www.youtube.com/c/OnurMutluLectures/playlists 109

https://www.youtube.com/c/OnurMutluLectures/playlists

P&S Heterogeneous Systems

Collaborative Computing

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021
6 January 2022

