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In Our Previous Lecture…



n GPU programming frameworks provide an interface to 
express dynamic refinement algorithms in a more natural 
way
q Recall BFS

n Each node in the frontier has a different number of neighbors
n CUDA Dynamic Parallelism

q Important semantics when a kernel is launched from a kernel
q Performance considerations

Dynamic Parallelism
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Host Device

Previously, kernels could only be launched from the host (painful to program!)

Kernel Launch without Dynamic Parallelism
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Easier to write programs with dynamically discovered parallelism 

Host Device

Kernel Launch with Dynamic Parallelism
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Lecture on Dynamic Parallelism

6https://youtu.be/uzPkEQWaH4E

https://youtu.be/uzPkEQWaH4E


Asynchronous Data Transfers 
between CPU and GPU



Recall: CUDA Streams
n CUDA streams (command queues in OpenCL)
n Sequence of operations that are performed in order

q 1. Data transfer CPU-GPU
q 2. Kernel execution

n D input data instances, B blocks
n #Streams: (D / #Streams) data instances, (B / #Streams) blocks

q 3. Data transfer GPU-CPU

Copy data

Execute

Copy data

Execute

tT

tE
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Asynchronous Transfers between CPU & GPU
n Computation divided into #Streams

q D input data instances, B blocks
q #Streams

n D/#Streams data instances
n B/#Streams blocks

q Estimates

Copy data

Execute

Copy data

Execute

tT

tE

tE >= tT (dominant kernel) tT > tE (dominant transfers)
9

Default stream

Several streams

𝑡! +
𝑡"

#𝑆𝑡𝑟𝑒𝑎𝑚𝑠 𝑡" +
𝑡!

#𝑆𝑡𝑟𝑒𝑎𝑚𝑠



Overlap of Data Transfers and Kernel Execution

10

// Create streams
int number_of_streams = 32;
cudaStream_t stream[number_of_streams]; // Stream declaration
for(int i = 0; i < number_of_streams; ++i)

cudaStreamCreate(&stream[i]); // Stream creation

// CPU-GPU data transfers
for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size, 
cudaMemcpyHostToDevice, stream[i]);

// Kernel launches
for (int i = 0; i < number_of_streams; ++i)

MyKernel<<<num_blocks / number_of_streams, num_threads, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);

// GPU-CPU data transfers
for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size, 
cudaMemcpyDeviceToHost, stream[i]);

cudaThreadSynchronize(); // Explicit synchronization

// Destroy streams
for (int i = 0; i < number_of_streams; ++i)

cudaStreamDestroy(stream[i]); // Stream destruction

Code for devices that do not support concurrent data transfers

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

Check CUDA programming guide
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


n Applications with independent computation on different data 
instances can benefit from asynchronous transfers

n For instance, video processing

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is 

transferred to device

2 x b blocks compute 

on the chunk, while the 

second chunk is being 

transferred

Non-

streamed 

execution

Streamed 

execution

Execution time saved 

thanks to streams

Use Case: Video Processing

11Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012



n 256-bin histogram calculation 

Video Processing: Performance Results (I)

12Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012
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n RGB-to-grayscale conversion

Video Processing: Performance Results (II)

13Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

0 

10 

20 

30 

40 

50 

2
 

4
 

8
 

1
6
 

3
2
 

2
 

4
 

8
 

1
6
 

3
2
 

2
 

4
 

8
 

1
6
 

3
2
 

176 x 144 352 x 288 704 x 576 

Non-streamed 

Streamed 

Our performance model 

0 

5 

10 

15 

20 

25 

2
 

4
 

8
 

1
6
 

3
2
 

2
 

4
 

8
 

1
6
 

3
2
 

2
 

4
 

8
 

1
6
 

3
2
 

176 x 144 352 x 288 704 x 576 

Non-streamed 

Streamed 

Our performance model 

GeForce GTX 480 GeForce GTX 280 

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
) 

Number of streams 

Size of the frames 



Recommended Readings

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 18 - Programming 
a heterogeneous computing cluster, 
Section 18.5

14



Collaborative Computing



Recall: BFS on CPU or GPU?
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)
n New York City roads
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BFS: Collaborative Implementation (I)
n Choose CPU or GPU depending on frontier

n CPU threads or GPU kernel keep running while the 
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads
}
else{

// Launch GPU kernel
}

}

17



BFS: Collaborative Implementation (II)
n Experimental results

q NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)
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Lecture on Graph Search

19https://youtu.be/95OnUeUuOGg

https://youtu.be/95OnUeUuOGg


Unified Memory



// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);

Memory Allocation and Data Transfers
n Traditional approach to device allocation, CPU-GPU transfer, 

and GPU-CPU transfer
q cudaMalloc();
q cudaMemcpy();

n Naturally matches systems with discrete GPUs

21



n Unified Virtual Address space
q Same virtual address space across host and device

n CUDA 6.0: Unified memory
n CUDA 8.0 + Pascal: GPU page faults

Unified Memory (I)

22



Unified Memory (II)
n Easier programming with Unified Memory

q cudaMallocManaged();

n No need for double allocation or explicit data transfers
n Naturally matches physically integrated devices (e.g., CPU and 

GPU in the same chip) or devices with the same physical memory 
(e.g., CPU and GPU in the same package)
q But it can also be implemented for discrete GPUs

23

// Allocate input
malloc(input, ...);
cudaMallocManaged(d_input, ...);
memcpy(d_input, input, ...); // Copy to managed memory

// Allocate output
cudaMallocManaged(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();



Unified Memory: Kernel Time
n IBM Power8 with NVIDIA Pascal GPU

q D: Discrete (or traditional, without unified memory)
q U: Unified memory

24
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Unified Memory: Total Execution Time
n IBM Power8 with NVIDIA Pascal GPU

q D: Discrete (or traditional, without unified memory)
q U: Unified memory
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How to Implement
Collaborative Computing 

Applications?



n Case studies using CPU and GPU
n Kernel launches are asynchronous

q CPU can work while waits for GPU to finish
q Traditionally, this is the most efficient way to exploit heterogeneity

// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// CPU can do things here

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);

Collaborative Computing Applications

27



n Fine-grained heterogeneity becomes possible with unified 
memory (post Kepler/Maxwell architecture)

n Pascal/Volta/Turing/Ampere Unified Memory
q CPU-GPU memory coherence
q System-wide atomic operations

// Allocate input
cudaMallocManaged(input, ...);

// Allocate output
cudaMallocManaged(output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (output, input, ...);

// CPU can do things here
output[x] = input[y];

output[x+1].fetch_add(1);

Fine-Grained Heterogeneity

28



CUDA 8.0 and Later
n Unified memory

cudaMallocManaged(&h_in, in_size);

n System-wide atomics

old = atomicAdd_system(&h_out[x], inc);

29



OpenCL 2.0 and Later
n Shared virtual memory

XYZ * h_in = (XYZ *)clSVMAlloc(

ocl.clContext, CL_MEM_SVM_FINE_GRAIN_BUFFER, in_size, 0);

n More flags:
CL_MEM_READ_WRITE

CL_MEM_SVM_ATOMICS

n C++11 atomic operations 
(memory_scope_all_svm_devices)
old = atomic_fetch_add(&h_out[x], inc);

30



C++AMP (HCC)
n Unified memory space (HSA)

XYZ *h_in = (XYZ *)malloc(in_size);

n C++11 atomic operations 
(memory_scope_all_svm_devices)

q Platform atomics (HSA)

old = atomic_fetch_add(&h_out[x], inc);

31



Collaborative Patterns
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33Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017
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Collaborative Patterns: Data Partitioning

34Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017
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35Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017
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36Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017



Analytical Modeling
n 𝑁: Number of data parallel tasks in the application

n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker

n 𝑡!,#%: Execution time of sub-task 𝑖 by a Device 2 worker

n 𝑤#$: Number of available Device 1 workers

n 𝑤#%: Number of available Device 2 workers

n 𝛽: Distribution and aggregation overhead factor

n 𝛼: Fraction of data parallel tasks assigned to Device 1

n 𝑆#$ and 𝑆#% are, respectively, the set of subtasks executed 
in Device 1 and Device 2

37Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 
ICPE 2019



Analytical Model: Data Partitioning

Data partitioning

The total execution time is

𝑡data, total = 𝛽data , max
𝛼𝑁∑! 𝑡!,#$

𝑤#$
,
1 − 𝛼 𝑁∑! 𝑡!,#%

𝑤#%

Fixing all the variables except 𝛼, the optimal 𝛼 (global minimum point) is

𝛼∗ = 5
∑! 𝑡!,#%
𝑤#%

∑! 𝑡!,#$
𝑤#$

+
∑! 𝑡!,#%
𝑤#%

Workloads of Device 1 and Device 2 workers are balanced

… …
Device 1 Device 2

Data partitioning

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 
ICPE 2019

n 𝑁: Number of data parallel tasks in the application
n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker
n 𝑡!,#%: Execution time of sub-task 𝑖 by a Device 2 worker
n 𝑤#$: Number of available Device 1 workers
n 𝑤#%: Number of available Device 2 workers
n 𝛽: Distribution and aggregation overhead factor
n 𝛼: Fraction of data parallel tasks assigned to Device 1

Total D1 execution time 
(sequential execution)

Total D2 execution time 
(sequential execution)

38



Analytical Model: Fine-Grained Task Part.

Fine-grained task partitioning

The total execution time is

𝑡task, total = 𝛽task𝑁 , max
∑!∈(!" 𝑡!,#$

𝑤#$
,
∑!∈&!# 𝑡!,#'

𝑤#'

Device 1 Device 2
…

…

…

Fine-grained task partitioning

(Assume sub-tasks are very fine-grained)

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 
ICPE 2019

39

n 𝑁: Number of data parallel tasks in the application
n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker
n 𝑡!,#': Execution time of sub-task 𝑖 by a Device 2 worker
n 𝑤#$: Number of available Device 1 workers
n 𝑤#': Number of available Device 2 workers
n 𝛽: Distribution and aggregation overhead factor
n 𝑆#$ and 𝑆#' are, respectively, the set of subtasks executed 

in Device 1 and Device 2



Analytical Model: Coarse-Grained Task Part.

Coarse-grained task partitioning

The total execution time is

𝑡task, total = 𝛽task𝑁 ,
∑!∈&!" 𝑡!,#$

𝑤#$
+
∑!∈&!# 𝑡!,#'

𝑤#'

…

…

Device 1 Device 2
Coarse-grained task partitioning

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 
ICPE 2019
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n 𝑁: Number of data parallel tasks in the application
n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker
n 𝑡!,#': Execution time of sub-task 𝑖 by a Device 2 worker
n 𝑤#$: Number of available Device 1 workers
n 𝑤#': Number of available Device 2 workers
n 𝛽: Distribution and aggregation overhead factor
n 𝑆#$ and 𝑆#' are, respectively, the set of subtasks executed 

in Device 1 and Device 2



Data Partitioning



SM#0 SM#1CPU 
core#0

Block 
0

Block 
1

Block 
2

Block 
3

CPU 
core#1

CPU 
core#2

CPU 
core#3

0 0 0 0 0 0... 0 0 0 0 0 0...

0 0 0 0 0 0...

malloc(CPU image);
cudaMalloc(GPU image);
cudaMemcpy(GPU image, CPU image, ...,

Host to Device);
malloc(CPU histogram);
memset(CPU histogram, 0);
cudaMalloc(GPU histogram);
cudaMemset(GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaMemcpy(GPU histogram, DeviceToHost);

// Launch CPU threads for merging

Histogram without Unified Memory
n Traditional approach: Separate CPU and GPU histograms 

are merged at the end

42



SM#0 SM#1CPU 
core#0

Block 
0

Block 
1

Block 
2

Block 
3

CPU 
core#1

CPU 
core#2

CPU 
core#3

0 0 0 0 0 0... 0 0 0 0 0 0...

0 0 0 0 0 0...

malloc(CPU image);
cudaMallocManaged(GPU image);
memcpy(GPU image, CPU image, ...);

malloc(CPU histogram);
memset(CPU histogram, 0);
cudaMallocManaged(GPU histogram);
cudaMemset(GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaDeviceSynchronize();

// Launch CPU threads for merging

Histogram with Unified Memory (I)
n Traditional approach: Separate CPU and GPU histograms 

are merged at the end

43



cudaMallocManaged(Histogram);
cudaMemset(Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd_system)SM#0 SM#1CPU 

core#0

Block 
0

Block 
1

Block 
2

Block 
3

CPU 
core#1

CPU 
core#2

CPU 
core#3

0 0 0 0 0 0...

Histogram with Unified Memory (II)
n System-wide atomic operations: One single histogram

44



Y

X

Z

Bézier Surfaces (I)
n Bézier surface: 4x4 net of control points

45Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," IJPP, 2018



2 Journal Title XX(X)

In the last decade, strategies to parallelize the evaluation⇤

of Bézier surfaces have been developed (Section 3).
These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications
(conversion of continuous surfaces to discrete triangle
meshes). Furthermore, these strategies are often limited to
the computing of bi-cubic Bézier patches widely used in
rendering and animation.

Generalized parallel strategies going beyond bi-cubic
schemes, together with techniques to map the paralleliza-
tion efficiently onto different hardware platforms, have
consequently the potential to make an impact in the perfor-
mance of not only computer-graphics, but a broader range
of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier
tensor-product surfaces that can be employed not only
in rendering applications—where bi-cubic Bézier surfaces
are predominant—but also in applications requiring high-
degree surfaces.

The main contribution of this work is twofold. On
one hand, we propose a multi-level evaluation (MLE)
method for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The
use of this method can be further applied to other
formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces. On other hand, we
propose different techniques to map MLE onto different
hardware platforms, including central processing units
(CPU), discrete and integrated graphics processing units
(GPU) as well as mobile integrated GPUs—these latter
ones being poorly explored in the literature. As the latest
trends in computing move towards hybrid systems (more
than one kind of processor present), we also propose CPU-
GPU cooperation mechanisms, including the exploitation
of heterogeneous computing systems (HCS) models with
different properties. In addition, we review and classify
the most important works in the literature concerned with
the optimization and acceleration of computation of Bézier
surfaces. These works are then classified (Table 1) attending
to the underlying Bézier formulation, the maximum degree
evaluated, the optimization strategy, the implementation
technology and whether rendering was the main purpose.

The rest of the paper is organized as follows. Section 2
provides fundamental mathematical background on Bézier
surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the
computation of Bézier surfaces. In Section 4 the proposed
method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto
different computing platforms, including CPUs, GPUs
and HCSs. In Section 6, our experiments and results are

described. These results and the most relevant findings
are discussed in Section 7. Finally, in Section 8, some
concluding remarks are presented.

2 Background
In this section, a brief description of Bézier surfaces is
provided. A deeper description of this type of surfaces and
its properties can be found in Piegl and Tiller (1997). For
simplicity and clarity reasons, in this work, the focus is on
the use of the parametric non-rational formulation of Bézier
surfaces. However, the methods presented in this paper are
generalizable to other Bézier tensor-product formulations
(e.g., rational formulations or higher order tensors).

Mathematically, non-rational Bézier tensor-product sur-
faces S : R2 ! R3 are defined as:

S(u, v) =
mX

i=0

nX

j=0

Pi,jBi,m(u)Bj,n(v), (1)

where u, v 2 [0, 1] form the parametric space of the
surface and Pi,j are control points. The m and n values
determine the degree of the Bernstein polynomials Bi,m(u)
and Bj,n(v) used as basis functions. These polynomials are
generically defined as:

Bi,m(u) =

✓
m

i

◆
(1� u)(m�i)ui, (2)

with 0  i  m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific

literature is the bi-cubic surface (m = n = 3). An example
of this type of surface together with its control points is
shown in Figure 1. Bézier surfaces can also be expressed
in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control
points. This matrix is given by:

P =

2

6664

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n
...

...
. . .

...
Pm,0 Pm,1 . . . Pm,n

3

7775
.

.
The vectors U and VT are polynomial spaces of degree

m and n, associated to the parameterization directions u
and v respectively. Generically, these basis vectors take
the form T(t) = [t↵, t↵�1, ..., t0], where ↵ is the degree of

⇤In the line of other related works, we use the term evaluation to refer to
computation.

Prepared using sagej.cls

2 Journal Title XX(X)

In the last decade, strategies to parallelize the evaluation⇤

of Bézier surfaces have been developed (Section 3).
These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications
(conversion of continuous surfaces to discrete triangle
meshes). Furthermore, these strategies are often limited to
the computing of bi-cubic Bézier patches widely used in
rendering and animation.

Generalized parallel strategies going beyond bi-cubic
schemes, together with techniques to map the paralleliza-
tion efficiently onto different hardware platforms, have
consequently the potential to make an impact in the perfor-
mance of not only computer-graphics, but a broader range
of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier
tensor-product surfaces that can be employed not only
in rendering applications—where bi-cubic Bézier surfaces
are predominant—but also in applications requiring high-
degree surfaces.

The main contribution of this work is twofold. On
one hand, we propose a multi-level evaluation (MLE)
method for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The
use of this method can be further applied to other
formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces. On other hand, we
propose different techniques to map MLE onto different
hardware platforms, including central processing units
(CPU), discrete and integrated graphics processing units
(GPU) as well as mobile integrated GPUs—these latter
ones being poorly explored in the literature. As the latest
trends in computing move towards hybrid systems (more
than one kind of processor present), we also propose CPU-
GPU cooperation mechanisms, including the exploitation
of heterogeneous computing systems (HCS) models with
different properties. In addition, we review and classify
the most important works in the literature concerned with
the optimization and acceleration of computation of Bézier
surfaces. These works are then classified (Table 1) attending
to the underlying Bézier formulation, the maximum degree
evaluated, the optimization strategy, the implementation
technology and whether rendering was the main purpose.

The rest of the paper is organized as follows. Section 2
provides fundamental mathematical background on Bézier
surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the
computation of Bézier surfaces. In Section 4 the proposed
method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto
different computing platforms, including CPUs, GPUs
and HCSs. In Section 6, our experiments and results are

described. These results and the most relevant findings
are discussed in Section 7. Finally, in Section 8, some
concluding remarks are presented.

2 Background
In this section, a brief description of Bézier surfaces is
provided. A deeper description of this type of surfaces and
its properties can be found in Piegl and Tiller (1997). For
simplicity and clarity reasons, in this work, the focus is on
the use of the parametric non-rational formulation of Bézier
surfaces. However, the methods presented in this paper are
generalizable to other Bézier tensor-product formulations
(e.g., rational formulations or higher order tensors).

Mathematically, non-rational Bézier tensor-product sur-
faces S : R2 ! R3 are defined as:

S(u, v) =
mX

i=0

nX

j=0

Pi,jBi,m(u)Bj,n(v), (1)

where u, v 2 [0, 1] form the parametric space of the
surface and Pi,j are control points. The m and n values
determine the degree of the Bernstein polynomials Bi,m(u)
and Bj,n(v) used as basis functions. These polynomials are
generically defined as:

Bi,m(u) =

✓
m

i

◆
(1� u)(m�i)ui, (2)

with 0  i  m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific

literature is the bi-cubic surface (m = n = 3). An example
of this type of surface together with its control points is
shown in Figure 1. Bézier surfaces can also be expressed
in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control
points. This matrix is given by:

P =

2

6664

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n
...

...
. . .

...
Pm,0 Pm,1 . . . Pm,n

3

7775
.

.
The vectors U and VT are polynomial spaces of degree

m and n, associated to the parameterization directions u
and v respectively. Generically, these basis vectors take
the form T(t) = [t↵, t↵�1, ..., t0], where ↵ is the degree of

⇤In the line of other related works, we use the term evaluation to refer to
computation.

Prepared using sagej.cls

Bézier Surfaces (II)
n Parametric non-rational formulation

q Bernstein polynomials
q Bi-cubic surface m = n = 3
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Bézier Surfaces: Static Distribution (I)
n Collaborative implementation

q Tiles calculated by GPU blocks or CPU threads
q Static distribution
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// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
malloc(surface, ...);
cudaMalloc(d_surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

// Copy gpu part of surface to host memory
cudaMemcpy(&surface[end_of_cpu_part], d_surface, ..., DeviceToHost);

n Without Unified Memory

Bézier Surfaces: Static Distribution (II)
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n Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU 
cores + 2 GPU cores)
q Bezier surface: 300x300, 4x4 control points
q %Tiles to CPU
q 17% speedup over GPU only
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Bézier Surfaces: Static Distribution (III)
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// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
cudaMallocManaged(surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

Bézier Surfaces with Unified Memory
n With Unified Memory
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n Static vs. dynamic implementation

q Pascal/Volta/Turing/Ampere Unified Memory: system-wide atomic 
operations

(a) Static Distribution
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z

Tile of surface points processed

in CPU

Tile of surface points processed

in GPU

3D Surface point processed

in GPU

3D Surface point processed

in CPU

while(true){
if(threadIdx.x == 0)

my_tile = atomicAdd_system(tile_num, 1);  // my_tile in shared memory; tile_num in UM

__syncthreads();  // Synchronization

if(my_tile >= number_of_tiles) break;  // Break when all tiles processed
...
}

Bézier Surfaces: Dynamic Distribution
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Benefits of Collaboration: Bézier Surfaces
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q Data partitioning improves performance
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n Matrix padding
q Memory alignment
q Transposition of near-square matrices

n Traditionally, it can only be performed out-of-place
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n Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU 
cores + 2 GPU cores)
q Matrix size: 4000x4000, padding = 1
q 29% speedup over GPU only
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Benefits of Collaboration: Padding
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q Optimal number of devices is not always the maximum
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2 1 3 0 0 1 3 4 0 0 2 1

2 1 3 1 3 4 2 1

Predicate: Element > 0

Input

Output

Stream compaction

Stream Compaction (I)
n Stream compaction or filtering

q Saving memory storage in sparse data
q Similar to padding, but local reduction result (non-zero 

element count) is propagated

57



0	

2	

4	

6	

8	

10	

12	

14	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	 0.55	 0.60	

Ex
ec
u0

on
	0
m
e	
(m

s)
	

%CPU	workload	

Stream Compaction (II)
n Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU 

cores + 2 GPU cores) 
q Array size: 2 MB, filtered items = 50%
q 25% speedup over GPU only
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Benefits of Collaboration: Stream Comp.
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q Data partitioning improves performance
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Coarse-Grained Task Partitioning



Breadth-First Search
n Small-sized and big-sized frontiers

q Top-down approach
q Kernel 1 and Kernel 2

n Atomic-based block synchronization
q Avoids kernel re-launch

n Very small frontiers 
q Underutilize GPU resources

n Collaborative implementation
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Recall: Persistent Thread Blocks
n Combine Kernel 1 and Kernel 2
n We can avoid kernel re-launch
n We need to use persistent thread blocks

q Kernel 2 launches (frontier_size / block_size) blocks
q Persistent blocks: up to (number_SMs x max_blocks_SM)
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Atomic-based Block Synchronization (I)
n Code (simplified)

// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while(frontier_size != 0){

for(node = gtid; node < frontier_size; node += blockDim.x * gridDim.x){

// Visit neighbors
// Enqueue in output queue if needed (global or local queue)

}

// Update frontier_size

// Global synchronization
}
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Atomic-based Block Synchronization (II)
n Global synchronization (simplified)

q At the end of each iteration
const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
...

frontier++;

if(tid == 0){
atomicAdd(ptr_threads_end, 1);  // Thread block finishes iteration

}

if(gtid == 0){
while(atomicAdd(ptr_threads_end, 0) != gridDim.x){;}  // Wait until all blocks finish

atomicExch(ptr_threads_end, 0); // Reset
atomicAdd(ptr_threads_run, 1);  // Count iteration

}

if(tid == 0 && gtid != 0){
while(atomicAdd(ptr_threads_run, 0) < frontier){;}  // Wait until ptr_threads_run is updated

}

__syncthreads();  // Rest of threads wait here

...
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Recall: BFS on CPU or GPU?
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
n New York City roads
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BFS: Collaborative Implementation (I)
n Choose the most appropriate device

CPU GPU

small frontiers 
processed on 

CPU

large frontiers 
processed on 

GPU
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BFS: Collaborative Implementation (II)
n Choose CPU or GPU depending on frontier

n CPU threads or GPU kernel keep running while the 
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads
}
else{

// Launch GPU kernel
}

}
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BFS: Collaborative Implementation (III)
n Experimental results

q NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)
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// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Copy from host to device (queues and synchronization variables)

// Launch GPU kernel

// Copy from device to host (queues and synchronization variables)

}

}

Collaborative Implementation without UM
n Without Unified Memory (UM)

q Explicit memory copies
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// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Launch GPU kernel

cudaDeviceSynchronize();

}

}

Collaborative Implementation with UM (I)
n Unified Memory

q cudaMallocManaged();

q Easier programming
q No explicit memory copies
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Collaborative Implementation with UM (II)
n Pascal/Volta/Turing/Ampere Unified Memory

q CPU/GPU coherence
q System-wide atomic operations
q No need to re-launch kernel or CPU threads
q Possibility of CPU and GPU working on the same frontier
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Benefits of Collaboration: SSSP
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q SSSP performs more computation than BFS
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(up to 22% improvement over GPU only)
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Fine-Grained Task Partitioning
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legs are free to reach new foot placements or manipulate

a payload, which makes this structure suitable for a rescue

robot. Motion on uneven terrains produce strong egomotion

and various methods have already been proposed for image

stabilization on mobile robots. A method based on morpho-

logical filtering for a pan/tilt camera was proposed in [3]

while [4] proposed a method for motion detection in the

presence of egomotion and to achieve high detection rate

a tracking mechanism using pattern recognition, is utilized.

Similarly [5] proposed an approach which uses tracking of

randomly selected features, assuming that the object occupies

less than half of the frame area. When the target is identified,

algorithm switches to the tracking mode. In [6] a technique

for the detection of moving objects from a mobile robot using

feature tracking and adaptive particle filtering was proposed

but with a poor detection rate in case of uneven terrain or

blurred images. With this new algorithm for walking robots,

we try to overcome these limitations encountered as a result

of strong egomotion and build a motion detection system

performing equally well at different levels of egomotion in

real-time, without prior knowledge about the target. Also a

higher frame rate of 31 fps at VGA resolution is achieved

through hardware-friendly algorithm and appropriate HW/SW

partitioning.

Fig. 1. Six legged robot OSCAR

III. ALGORITHM

A. Structure of the Algorithm
The algorithm can be subdivided into three sections as

shown below:

1) Egomotion estimation

2) Egomotion compensation

3) Moving object detection

The motion detection algorithm is based on optical flow [7],

[8] and Egomotion is first estimated from the optical flow

fields using the first order flow (F-o-F) model presented in

[9] and then compensated using the estimated model. A F-

o-F based frame differencing and 2D histogram based vector

clustering is used for motion detection, as shown in Figure 2.

Each of these techniques is well known individually but we try

to combine and optimize them for a hardware implementation

running in real-time. F-o-F based frame differencing is cur-

rently not implemented in hardware and we plan to complete

this, in the next phase of the project.

Fig. 2. System flow diagram

B. The Motion Model used for Egomotion estimation
Due to six legged OSCAR platform as substructure the

camera motion has six degrees of freedom including yaw,

pitch and roll. To estimate such motion we utilize a motion

model based on F-o-F from [9], as shown in equation 1.

�
vx
vy

⇥
=

�
D �R
R D

⇥ �
x� xc

y � yc

⇥
(1)

Here (vx, vy) represent the x- and y-components of the optical

flow vector, and (x, y) represent the coordinates of the point

of origin of the flow vector and (xc, yc) are coordinates of

the focus of expansion. D represents dilation and R stands for

rotation. Shear is ignored as it is not a significant parameter

for a slow moving robot. The F-o-F motion model described

above, has its limitation in accurately differentiating between

the rotation and translation in x and y axis, which limits

the degrees of freedom to four. But such a reduction helps

to improve the accuracy of the ego-motion estimation as

described in [10].

The F-o-F motion model can be estimated using the

velocity (vx, vy) and position (x, y) of two motion vectors.

Those are denoted as vx1, vy1, x1, y1 and vx2, vy2, x2, y2
respectively. For this purpose the equation 1 is inverted, as

shown in equation 2.

xc =
e1 + e2 + e3

(vx1 ⇥ (vx1 � 2 ⇥ vx2)) + v2
x2 + v2

y1 � (vy2 ⇥ (2 ⇥ vy1 � vy2))

yc =
e4 + e5 + e6

(vx1 ⇥ (vx1 � 2 ⇥ vx2)) + v2
x2 + v2

y1 � (vy2 ⇥ (2 ⇥ vy1 � vy2))

D =
((x1 � x2) ⇥ (vx1 � vx2)) + ((y1 � y2) ⇥ (vy1 � vy2))

(x1 ⇥ (x1 � 2 ⇥ x2)) + x2
2 + (y1 ⇥ (y1 � 2 ⇥ y2)) + y2

2

R =
((x1 � x2) ⇥ (vy1 � vy2)) + ((y2 � y1) ⇥ (vx1 � vx2))

(x1 ⇥ (x1 � 2 ⇥ x2)) + x2
2 + (y1 ⇥ (y1 � 2 ⇥ y2)) + y2

2

(2)

where e1, to e6 are as shown below:

e1 = vx1 ⇥ ((�vx2 ⇥ x1) + vx1 ⇥ x2 � vx2 ⇥ x2 + vy2 ⇥ y1 � vy2 ⇥ y2)

e2 = vy1 ⇥ ((�vy2 ⇥ x1) + vy1 ⇥ x2 � vy2 ⇥ x2 � vx2 ⇥ y1 + vx2 ⇥ y2)

e3 = x1 ⇥ (v2
y2 + v2

x2)

e4 = vx2 ⇥ ((vy1 ⇥ x1) � vy1 ⇥ x2 � vx1 ⇥ y1 + vx2 ⇥ y1 � vx1 ⇥ y2)

e5 = vy2 ⇥ ((�vx1 ⇥ x1) + vx1 ⇥ x2 � vy1 ⇥ y1 + vy2 ⇥ y1 � vy1 ⇥ y2)

e6 = y2 ⇥ (v2
x1 + v2

y1)

(3)

Egomotion Compensation and Moving Objects 
Detection (I)
n Hexapod robot OSCAR

q Rescue scenarios
q Strong egomotion on uneven terrains

n Algorithm
q Random Sample Consensus (RANSAC): F-o-F model
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(b) Fast moving object in strong egomotion scenario detected by vector clustering

75

Egomotion Compensation and Moving Objects 
Detection (II)
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While (iteration < MAX_ITER){
Fitting stage (Compute F-o-F model) // SISD phase

Evaluation stage (Count outliers) // SIMD phase

Comparison to best model // SISD phase

Check if best model is good enough and iteration >= MIN_ITER // SISD phase
}

SISD and SIMD phases
n RANSAC (Fischler+, 1981)

q Fitting stage picks two flow 
vectors randomly

q Evaluation generates motion 
vectors from F-o-F model, and 
compares them to real flow 
vectors

76Gómez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011



CPU 
thread

GPU 
block

CPU 
thread

GPU 
block

CPU 
thread

GPU 
block

Iteration 0 Iteration 1 Iteration 2

Collaborative Implementation
n Randomly picked vectors: Iterations are independent

q We assign one iteration to one CPU thread and one GPU block
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https://chai-benchmarks.github.io

Chai Benchmark Suite 
n Collaborative Heterogeneous Applications for Integrated 

architectures
n Heterogeneous execution on CPU, GPU, FPGA
n Collaboration patterns

q 8 data partitioning benchmarks
q 3 coarse-grain task partitioning benchmarks
q 3 fine-grain task partitioning benchmarks

n Discrete (D) and Unified (U) versions
q CUDA, OpenCL, and C++AMP for CPU+GPU
q OpenCL for CPU+FPGA
q CUDA-Sim for Gem5-GPU

78Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017



Chai Benchmarks
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Versions:
n OpenCL-U
n OpenCL-D
n CUDA-U
n CUDA-D
n CUDA-U-Sim
n CUDA-D-Sim
n C++AMP

Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017



Chai: Diversity of Benchmarks (I)
n Diversity of partitioning, usage of system-wide atomics, load 

balancing, and concurrency

80Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

DATA PARTITIONING

Benchmark Partitioning 
Granularity

Partitioned 
Data

System-wide 
Atomics

Load 
Balance

BS Fine Output None Yes
CEDD Coarse Input, Output None Yes
HSTI Fine Input Compute No
HSTO Fine Output None No
PAD Fine Input, Output Sync Yes
RSCD Medium Output Compute Yes

SC Fine Input, Output Sync No
TRNS Medium Input, Output Sync No

FINE-GRAIN TASK PARTITIONING

Benchmark System-wide 
Atomics Load Balance

RSCT Sync, Compute Yes
TQ Sync No

TQH Sync No

COARSE-GRAIN TASK PARTITIONING

Benchmark System-wide 
Atomics Partitioning Concurrency

BFS Sync, Compute Iterative No

CEDT Sync Non-iterative Yes

SSSP Sync, Compute Iterative No



Chai: Diversity of Benchmarks (II)
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Benefits of Unified Memory: Kernel Time
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Comparable (same kernels, 
system-wide atomics make 
Unified sometimes slower)

Unified kernels can 
exploit more 
parallelism

Unified kernels 
avoid kernel 

launch overhead
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Benefits of Unified Memory: Data Transfers
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Benefits of Unified Memory: Allocation
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Comparison C++AMP vs. OpenCL-U
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Heterogeneous System Architecture

86

n Wen-mei W. Hwu (editor), “Heterogeneous System 
Architecture: A New Compute Platform Infrastructure,”
2016
q Chapter 8 – Application 
use cases: Platform atomics



Intel OpenCL SDK for FPGA
n Intel OpenCL SDK for FPGA is used to compile and 

synthesize host executable and FPGA design 

87Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 
ICPE 2019



Benefits of Collaboration on FPGA (I)
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Benefits of Collaboration on FPGA (II)

Case Study:
Random 
Sample 

Consensus

0
5

10
15
20
25
30
35
40
45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

Data Partitioning (Stratix V)
Task Partitioning (Stratix V)
Data Partitioning (Arria 10)
Task Partitioning (Arria 10)

Task partitioning 
exploits disparity in 

nature of tasks

89Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017



Chai on CPU-FPGA Systems (I)
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n Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia De Gonzalo, Juan 
Gomez-Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan
Milojicic, Onur Mutlu, Deming Chen, and Wen-mei Hwu,
"Analysis and Modeling of Collaborative Execution Strategies for 
Heterogeneous CPU-FPGA Architectures"
Proceedings of the 10th ACM/SPEC International Conference on Performance 
Engineering (ICPE), Mumbai, India, April 2019.
[Slides (pptx) (pdf)]
[Chai CPU-FPGA Benchmark Suite]

https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19.pdf
https://icpe2019.spec.org/
https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19-talk.pdf
https://github.com/chai-benchmarks/chai-fpga


Chai on CPU-FPGA Systems (II)

91

n Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gómez-Luna, Nan Guan, Qingxu
Deng, Wei Zhang, and Onur Mutlu,
"Boyi: A Systematic Framework for Automatically Deciding the Right 
Execution Model of OpenCL Applications on FPGAs"
Proceedings of the 28th International Symposium on Field-Programmable Gate 
Arrays (FPGA), Seaside, CA, USA, February 2020.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20.pdf
http://isfpga.org/
https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20-talk.pdf


NERO Application Framework

https://github.com/open-power/snap

n NERO communicates to 
Host over CAPI2 
(Coherent Accelerator 
Processor Interface)

n COSMO API handles 
offloading jobs to NERO

n SNAP (Storage, Network, 
and Analytics 
Programming) allows for 
seamless integration of 
the COSMO API

Singh+, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling," FPL 2020 92

https://github.com/open-power/snap


Accelerating Climate Modeling
n Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan 

Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for 
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic 
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.
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https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0


Collaborative Computing: Key Takeaways
n Possibility of having several devices collaborating on the 

same workload
n Or having the most appropriate cores for each workload
n Easier programming with Unified Memory or Shared Virtual 

Memory
n CPU-GPU memory coherence and system-wide atomic 

operations since NVIDIA Pascal and HSA
q Fine-grain collaboration
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Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

n Short weekly lectures
n Hands-on projects
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https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737


Processing-in-Memory Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=processing_in_memory

https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

n Short weekly lectures
n Hands-on projects

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX


n Understanding and Improving Modern DRAM Performance, Reliability, 
and Security with Hands-On Experiments

n Designing and Evaluating Memory Systems and Modern Software 
Workloads with Ramulator

n Accelerating Genome Analysis with FPGAs, GPUs, and New Execution 
Paradigms

n Genome Sequencing on Mobile Devices
n Understanding and Designing Modern NAND Flash-Based Solid-State 

Drives (SSDs)

More P&S Courses: SSDs, Memory, Bioinformatics 
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https://safari.ethz.ch/projects_and_seminars/
fall2021/doku.php?id=start

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=start


n All P&S courses
n Digital Design and CompArch course
n Advanced CompArch course
n Seminar in CompArch

More Resources: Onur Mutlu Lectures

98https://www.youtube.com/c/OnurMutluLectures/playlists

https://www.youtube.com/c/OnurMutluLectures/playlists
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