
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

6 January 2022

P&S Heterogeneous Systems
Collaborative Computing

In Our Previous Lecture…

n GPU programming frameworks provide an interface to
express dynamic refinement algorithms in a more natural
way
q Recall BFS

n Each node in the frontier has a different number of neighbors
n CUDA Dynamic Parallelism

q Important semantics when a kernel is launched from a kernel
q Performance considerations

Dynamic Parallelism

3

Host Device

Previously, kernels could only be launched from the host (painful to program!)

Kernel Launch without Dynamic Parallelism

4

Easier to write programs with dynamically discovered parallelism

Host Device

Kernel Launch with Dynamic Parallelism

5

Lecture on Dynamic Parallelism

6https://youtu.be/uzPkEQWaH4E

https://youtu.be/uzPkEQWaH4E

Asynchronous Data Transfers
between CPU and GPU

Recall: CUDA Streams
n CUDA streams (command queues in OpenCL)
n Sequence of operations that are performed in order

q 1. Data transfer CPU-GPU
q 2. Kernel execution

n D input data instances, B blocks
n #Streams: (D / #Streams) data instances, (B / #Streams) blocks

q 3. Data transfer GPU-CPU

Copy data

Execute

Copy data

Execute

tT

tE

8

Asynchronous Transfers between CPU & GPU
n Computation divided into #Streams

q D input data instances, B blocks
q #Streams

n D/#Streams data instances
n B/#Streams blocks

q Estimates

Copy data

Execute

Copy data

Execute

tT

tE

tE >= tT (dominant kernel) tT > tE (dominant transfers)
9

Default stream

Several streams

𝑡! +
𝑡"

#𝑆𝑡𝑟𝑒𝑎𝑚𝑠 𝑡" +
𝑡!

#𝑆𝑡𝑟𝑒𝑎𝑚𝑠

Overlap of Data Transfers and Kernel Execution

10

// Create streams
int number_of_streams = 32;
cudaStream_t stream[number_of_streams]; // Stream declaration
for(int i = 0; i < number_of_streams; ++i)

cudaStreamCreate(&stream[i]); // Stream creation

// CPU-GPU data transfers
for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size,
cudaMemcpyHostToDevice, stream[i]);

// Kernel launches
for (int i = 0; i < number_of_streams; ++i)

MyKernel<<<num_blocks / number_of_streams, num_threads, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);

// GPU-CPU data transfers
for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size,
cudaMemcpyDeviceToHost, stream[i]);

cudaThreadSynchronize(); // Explicit synchronization

// Destroy streams
for (int i = 0; i < number_of_streams; ++i)

cudaStreamDestroy(stream[i]); // Stream destruction

Code for devices that do not support concurrent data transfers

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

Check CUDA programming guide
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

n Applications with independent computation on different data
instances can benefit from asynchronous transfers

n For instance, video processing

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is

transferred to device

2 x b blocks compute

on the chunk, while the

second chunk is being

transferred

Non-

streamed

execution

Streamed

execution

Execution time saved

thanks to streams

Use Case: Video Processing

11Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

n 256-bin histogram calculation

Video Processing: Performance Results (I)

12Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

0

5

10

15

20

25

30

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

0

2

4

6

8

10

12

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

GeForce GTX 480 GeForce GTX 280

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of streams

Size of the frames

n RGB-to-grayscale conversion

Video Processing: Performance Results (II)

13Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

0

10

20

30

40

50

2

4

8

1
6

3
2

2

4

8

1
6

3
2

2

4

8

1
6

3
2

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

0

5

10

15

20

25

2

4

8

1
6

3
2

2

4

8

1
6

3
2

2

4

8

1
6

3
2

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

GeForce GTX 480 GeForce GTX 280

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of streams

Size of the frames

Recommended Readings

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 18 - Programming
a heterogeneous computing cluster,
Section 18.5

14

Collaborative Computing

Recall: BFS on CPU or GPU?
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)
n New York City roads

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

9.0	

10.0	

1-1
00
	

10
1-2
00
	

20
1-3
00
	

30
1-4
00
	

40
1-5
00
	

50
1-6
00
	

60
1-7
00
	

70
1-8
00
	

80
1-9
00
	

90
1-1
00
0	

10
01
-11
00
	

11
01
-11
96
	

Av
er
ag
e	
no

de
s	p

er
	fr
on

:e
r	

Av
er
ag
e	
ex
ec
u:

on
	:
m
e	
(m

s)
	

Fron:ers	

CPU	(4	threads)	

GPU	(4x256	threads)	

Fron:er	size	

16

BFS: Collaborative Implementation (I)
n Choose CPU or GPU depending on frontier

n CPU threads or GPU kernel keep running while the
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads
}
else{

// Launch GPU kernel
}

}

17

BFS: Collaborative Implementation (II)
n Experimental results

q NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

NY	 BAY	

N
or
m
al
ize

d	
ex
ec
u9

on
	9
m
e	

Graph	

CPU	

CPU||GPU	

GPU	

15%

18

Lecture on Graph Search

19https://youtu.be/95OnUeUuOGg

https://youtu.be/95OnUeUuOGg

Unified Memory

// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);

Memory Allocation and Data Transfers
n Traditional approach to device allocation, CPU-GPU transfer,

and GPU-CPU transfer
q cudaMalloc();
q cudaMemcpy();

n Naturally matches systems with discrete GPUs

21

n Unified Virtual Address space
q Same virtual address space across host and device

n CUDA 6.0: Unified memory
n CUDA 8.0 + Pascal: GPU page faults

Unified Memory (I)

22

Unified Memory (II)
n Easier programming with Unified Memory

q cudaMallocManaged();

n No need for double allocation or explicit data transfers
n Naturally matches physically integrated devices (e.g., CPU and

GPU in the same chip) or devices with the same physical memory
(e.g., CPU and GPU in the same package)
q But it can also be implemented for discrete GPUs

23

// Allocate input
malloc(input, ...);
cudaMallocManaged(d_input, ...);
memcpy(d_input, input, ...); // Copy to managed memory

// Allocate output
cudaMallocManaged(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// Synchronize
cudaDeviceSynchronize();

Unified Memory: Kernel Time
n IBM Power8 with NVIDIA Pascal GPU

q D: Discrete (or traditional, without unified memory)
q U: Unified memory

24

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

D	 U	 D	 U	 D	 U	 D	 U	 D	 U	 D	 U	 D	 U	

BS	 HSTO	 HSTI	 RSCD	 PAD	 SC	 TRNS	

No	Atomics	 Atomics	for	ComputaAon	 Atomics	for	SynchronizaAon	

Ex
ec
u&

on
	T
im

e	
(n
or
m
al
iz
ed

)	

Kernel	

14.4	

No cross-device
communication

Cross-device communication may heavily
burden kernel performance

Unified Memory: Total Execution Time
n IBM Power8 with NVIDIA Pascal GPU

q D: Discrete (or traditional, without unified memory)
q U: Unified memory

25

0.0	

5.0	

10.0	

15.0	

20.0	

25.0	

30.0	

35.0	

D	 U	 D	 U	 D	 U	 D	 U	 D	 U	 D	 U	 D	 U	

BS	 HSTO	 HSTI	 RSCD	 PAD	 SC	 TRNS	

No	Atomics	 Atomics	for	Computa@on	 Atomics	for	Synchroniza@on	

Ex
ec
u&

on
	T
im

e	
(n
or
m
al
ize

d)
	 Copy	Back	

Copy	To	Device	

Kernel	

Unified memory can hide data transfers with kernel execution

How to Implement
Collaborative Computing

Applications?

n Case studies using CPU and GPU
n Kernel launches are asynchronous

q CPU can work while waits for GPU to finish
q Traditionally, this is the most efficient way to exploit heterogeneity

// Allocate input
malloc(input, ...);
cudaMalloc(d_input, ...);
cudaMemcpy(d_input, input, ..., HostToDevice); // Copy to device memory

// Allocate output
malloc(output, ...);
cudaMalloc(d_output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_output, d_input, ...);

// CPU can do things here

// Synchronize
cudaDeviceSynchronize();

// Copy output to host memory
cudaMemcpy(output, d_output, ..., DeviceToHost);

Collaborative Computing Applications

27

n Fine-grained heterogeneity becomes possible with unified
memory (post Kepler/Maxwell architecture)

n Pascal/Volta/Turing/Ampere Unified Memory
q CPU-GPU memory coherence
q System-wide atomic operations

// Allocate input
cudaMallocManaged(input, ...);

// Allocate output
cudaMallocManaged(output, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (output, input, ...);

// CPU can do things here
output[x] = input[y];

output[x+1].fetch_add(1);

Fine-Grained Heterogeneity

28

CUDA 8.0 and Later
n Unified memory

cudaMallocManaged(&h_in, in_size);

n System-wide atomics

old = atomicAdd_system(&h_out[x], inc);

29

OpenCL 2.0 and Later
n Shared virtual memory

XYZ * h_in = (XYZ *)clSVMAlloc(

ocl.clContext, CL_MEM_SVM_FINE_GRAIN_BUFFER, in_size, 0);

n More flags:
CL_MEM_READ_WRITE

CL_MEM_SVM_ATOMICS

n C++11 atomic operations
(memory_scope_all_svm_devices)
old = atomic_fetch_add(&h_out[x], inc);

30

C++AMP (HCC)
n Unified memory space (HSA)

XYZ *h_in = (XYZ *)malloc(in_size);

n C++11 atomic operations
(memory_scope_all_svm_devices)

q Platform atomics (HSA)

old = atomic_fetch_add(&h_out[x], inc);

31

Collaborative Patterns

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure

Traditional Program Structure

33Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure Data Partitioning

… …
Device 1 Device 2

… …

Collaborative Patterns: Data Partitioning

34Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure

…

…

Device 1 Device 2

Coarse-grained Task Partitioning

Collaborative Patterns: Task Partitioning (I)

35Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

…

…

data-parallel tasks

se
qu

en
tia

l s
ub

-ta
sk

s

co
ar

se
-g

ra
in

ed

sy
nc

hr
on

iz
at

io
n

Program Structure Fine-grained Task
Partitioning

Device 1 Device 2

…

…

…
… …

…

Collaborative Patterns: Task Partitioning (II)

36Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

Analytical Modeling
n 𝑁: Number of data parallel tasks in the application

n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker

n 𝑡!,#%: Execution time of sub-task 𝑖 by a Device 2 worker

n 𝑤#$: Number of available Device 1 workers

n 𝑤#%: Number of available Device 2 workers

n 𝛽: Distribution and aggregation overhead factor

n 𝛼: Fraction of data parallel tasks assigned to Device 1

n 𝑆#$ and 𝑆#% are, respectively, the set of subtasks executed
in Device 1 and Device 2

37Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"
ICPE 2019

Analytical Model: Data Partitioning

Data partitioning

The total execution time is

𝑡data, total = 𝛽data , max
𝛼𝑁∑! 𝑡!,#$

𝑤#$
,
1 − 𝛼 𝑁∑! 𝑡!,#%

𝑤#%

Fixing all the variables except 𝛼, the optimal 𝛼 (global minimum point) is

𝛼∗ = 5
∑! 𝑡!,#%
𝑤#%

∑! 𝑡!,#$
𝑤#$

+
∑! 𝑡!,#%
𝑤#%

Workloads of Device 1 and Device 2 workers are balanced

… …
Device 1 Device 2

Data partitioning

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"
ICPE 2019

n 𝑁: Number of data parallel tasks in the application
n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker
n 𝑡!,#%: Execution time of sub-task 𝑖 by a Device 2 worker
n 𝑤#$: Number of available Device 1 workers
n 𝑤#%: Number of available Device 2 workers
n 𝛽: Distribution and aggregation overhead factor
n 𝛼: Fraction of data parallel tasks assigned to Device 1

Total D1 execution time
(sequential execution)

Total D2 execution time
(sequential execution)

38

Analytical Model: Fine-Grained Task Part.

Fine-grained task partitioning

The total execution time is

𝑡task, total = 𝛽task𝑁 , max
∑!∈(!" 𝑡!,#$

𝑤#$
,
∑!∈&!# 𝑡!,#'

𝑤#'

Device 1 Device 2
…

…

…

Fine-grained task partitioning

(Assume sub-tasks are very fine-grained)

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"
ICPE 2019

39

n 𝑁: Number of data parallel tasks in the application
n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker
n 𝑡!,#': Execution time of sub-task 𝑖 by a Device 2 worker
n 𝑤#$: Number of available Device 1 workers
n 𝑤#': Number of available Device 2 workers
n 𝛽: Distribution and aggregation overhead factor
n 𝑆#$ and 𝑆#' are, respectively, the set of subtasks executed

in Device 1 and Device 2

Analytical Model: Coarse-Grained Task Part.

Coarse-grained task partitioning

The total execution time is

𝑡task, total = 𝛽task𝑁 ,
∑!∈&!" 𝑡!,#$

𝑤#$
+
∑!∈&!# 𝑡!,#'

𝑤#'

…

…

Device 1 Device 2
Coarse-grained task partitioning

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"
ICPE 2019

40

n 𝑁: Number of data parallel tasks in the application
n 𝑡!,#$: Execution time of sub-task 𝑖 by a Device 1 worker
n 𝑡!,#': Execution time of sub-task 𝑖 by a Device 2 worker
n 𝑤#$: Number of available Device 1 workers
n 𝑤#': Number of available Device 2 workers
n 𝛽: Distribution and aggregation overhead factor
n 𝑆#$ and 𝑆#' are, respectively, the set of subtasks executed

in Device 1 and Device 2

Data Partitioning

SM#0 SM#1CPU
core#0

Block
0

Block
1

Block
2

Block
3

CPU
core#1

CPU
core#2

CPU
core#3

0 0 0 0 0 0... 0 0 0 0 0 0...

0 0 0 0 0 0...

malloc(CPU image);
cudaMalloc(GPU image);
cudaMemcpy(GPU image, CPU image, ...,

Host to Device);
malloc(CPU histogram);
memset(CPU histogram, 0);
cudaMalloc(GPU histogram);
cudaMemset(GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaMemcpy(GPU histogram, DeviceToHost);

// Launch CPU threads for merging

Histogram without Unified Memory
n Traditional approach: Separate CPU and GPU histograms

are merged at the end

42

SM#0 SM#1CPU
core#0

Block
0

Block
1

Block
2

Block
3

CPU
core#1

CPU
core#2

CPU
core#3

0 0 0 0 0 0... 0 0 0 0 0 0...

0 0 0 0 0 0...

malloc(CPU image);
cudaMallocManaged(GPU image);
memcpy(GPU image, CPU image, ...);

malloc(CPU histogram);
memset(CPU histogram, 0);
cudaMallocManaged(GPU histogram);
cudaMemset(GPU histogram, 0);

// Launch CPU threads
// Launch GPU kernel

cudaDeviceSynchronize();

// Launch CPU threads for merging

Histogram with Unified Memory (I)
n Traditional approach: Separate CPU and GPU histograms

are merged at the end

43

cudaMallocManaged(Histogram);
cudaMemset(Histogram, 0);

// Launch CPU threads
// Launch GPU kernel (atomicAdd_system)SM#0 SM#1CPU

core#0

Block
0

Block
1

Block
2

Block
3

CPU
core#1

CPU
core#2

CPU
core#3

0 0 0 0 0 0...

Histogram with Unified Memory (II)
n System-wide atomic operations: One single histogram

44

Y

X

Z

Bézier Surfaces (I)
n Bézier surface: 4x4 net of control points

45Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," IJPP, 2018

2 Journal Title XX(X)

In the last decade, strategies to parallelize the evaluation⇤

of Bézier surfaces have been developed (Section 3).
These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications
(conversion of continuous surfaces to discrete triangle
meshes). Furthermore, these strategies are often limited to
the computing of bi-cubic Bézier patches widely used in
rendering and animation.

Generalized parallel strategies going beyond bi-cubic
schemes, together with techniques to map the paralleliza-
tion efficiently onto different hardware platforms, have
consequently the potential to make an impact in the perfor-
mance of not only computer-graphics, but a broader range
of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier
tensor-product surfaces that can be employed not only
in rendering applications—where bi-cubic Bézier surfaces
are predominant—but also in applications requiring high-
degree surfaces.

The main contribution of this work is twofold. On
one hand, we propose a multi-level evaluation (MLE)
method for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The
use of this method can be further applied to other
formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces. On other hand, we
propose different techniques to map MLE onto different
hardware platforms, including central processing units
(CPU), discrete and integrated graphics processing units
(GPU) as well as mobile integrated GPUs—these latter
ones being poorly explored in the literature. As the latest
trends in computing move towards hybrid systems (more
than one kind of processor present), we also propose CPU-
GPU cooperation mechanisms, including the exploitation
of heterogeneous computing systems (HCS) models with
different properties. In addition, we review and classify
the most important works in the literature concerned with
the optimization and acceleration of computation of Bézier
surfaces. These works are then classified (Table 1) attending
to the underlying Bézier formulation, the maximum degree
evaluated, the optimization strategy, the implementation
technology and whether rendering was the main purpose.

The rest of the paper is organized as follows. Section 2
provides fundamental mathematical background on Bézier
surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the
computation of Bézier surfaces. In Section 4 the proposed
method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto
different computing platforms, including CPUs, GPUs
and HCSs. In Section 6, our experiments and results are

described. These results and the most relevant findings
are discussed in Section 7. Finally, in Section 8, some
concluding remarks are presented.

2 Background
In this section, a brief description of Bézier surfaces is
provided. A deeper description of this type of surfaces and
its properties can be found in Piegl and Tiller (1997). For
simplicity and clarity reasons, in this work, the focus is on
the use of the parametric non-rational formulation of Bézier
surfaces. However, the methods presented in this paper are
generalizable to other Bézier tensor-product formulations
(e.g., rational formulations or higher order tensors).

Mathematically, non-rational Bézier tensor-product sur-
faces S : R2 ! R3 are defined as:

S(u, v) =
mX

i=0

nX

j=0

Pi,jBi,m(u)Bj,n(v), (1)

where u, v 2 [0, 1] form the parametric space of the
surface and Pi,j are control points. The m and n values
determine the degree of the Bernstein polynomials Bi,m(u)
and Bj,n(v) used as basis functions. These polynomials are
generically defined as:

Bi,m(u) =

✓
m

i

◆
(1� u)(m�i)ui, (2)

with 0 i m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific

literature is the bi-cubic surface (m = n = 3). An example
of this type of surface together with its control points is
shown in Figure 1. Bézier surfaces can also be expressed
in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control
points. This matrix is given by:

P =

2

6664

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n
...

...
. . .

...
Pm,0 Pm,1 . . . Pm,n

3

7775
.

.
The vectors U and VT are polynomial spaces of degree

m and n, associated to the parameterization directions u
and v respectively. Generically, these basis vectors take
the form T(t) = [t↵, t↵�1, ..., t0], where ↵ is the degree of

⇤In the line of other related works, we use the term evaluation to refer to
computation.

Prepared using sagej.cls

2 Journal Title XX(X)

In the last decade, strategies to parallelize the evaluation⇤

of Bézier surfaces have been developed (Section 3).
These strategies, however, circumscribe mostly to the field
of computer-graphics as part of tessellation applications
(conversion of continuous surfaces to discrete triangle
meshes). Furthermore, these strategies are often limited to
the computing of bi-cubic Bézier patches widely used in
rendering and animation.

Generalized parallel strategies going beyond bi-cubic
schemes, together with techniques to map the paralleliza-
tion efficiently onto different hardware platforms, have
consequently the potential to make an impact in the perfor-
mance of not only computer-graphics, but a broader range
of applications.

1.1 Contribution

The aim of this work is computing real-time Bézier
tensor-product surfaces that can be employed not only
in rendering applications—where bi-cubic Bézier surfaces
are predominant—but also in applications requiring high-
degree surfaces.

The main contribution of this work is twofold. On
one hand, we propose a multi-level evaluation (MLE)
method for the computation of parametric non-rational
Bézier tensor-product surfaces of arbitrary degree. The
use of this method can be further applied to other
formulations (e.g., rational Bézier), as well as tensor-
products of higher order than surfaces. On other hand, we
propose different techniques to map MLE onto different
hardware platforms, including central processing units
(CPU), discrete and integrated graphics processing units
(GPU) as well as mobile integrated GPUs—these latter
ones being poorly explored in the literature. As the latest
trends in computing move towards hybrid systems (more
than one kind of processor present), we also propose CPU-
GPU cooperation mechanisms, including the exploitation
of heterogeneous computing systems (HCS) models with
different properties. In addition, we review and classify
the most important works in the literature concerned with
the optimization and acceleration of computation of Bézier
surfaces. These works are then classified (Table 1) attending
to the underlying Bézier formulation, the maximum degree
evaluated, the optimization strategy, the implementation
technology and whether rendering was the main purpose.

The rest of the paper is organized as follows. Section 2
provides fundamental mathematical background on Bézier
surfaces. Section 3 lists and shortly reviews relevant
works in the literature which accelerate and optimize the
computation of Bézier surfaces. In Section 4 the proposed
method (MLE) is described. Section 5, on other hand,
addresses the parallelization and mapping of MLE onto
different computing platforms, including CPUs, GPUs
and HCSs. In Section 6, our experiments and results are

described. These results and the most relevant findings
are discussed in Section 7. Finally, in Section 8, some
concluding remarks are presented.

2 Background
In this section, a brief description of Bézier surfaces is
provided. A deeper description of this type of surfaces and
its properties can be found in Piegl and Tiller (1997). For
simplicity and clarity reasons, in this work, the focus is on
the use of the parametric non-rational formulation of Bézier
surfaces. However, the methods presented in this paper are
generalizable to other Bézier tensor-product formulations
(e.g., rational formulations or higher order tensors).

Mathematically, non-rational Bézier tensor-product sur-
faces S : R2 ! R3 are defined as:

S(u, v) =
mX

i=0

nX

j=0

Pi,jBi,m(u)Bj,n(v), (1)

where u, v 2 [0, 1] form the parametric space of the
surface and Pi,j are control points. The m and n values
determine the degree of the Bernstein polynomials Bi,m(u)
and Bj,n(v) used as basis functions. These polynomials are
generically defined as:

Bi,m(u) =

✓
m

i

◆
(1� u)(m�i)ui, (2)

with 0 i m. Bj,n(v) is defined similarly.
The most common case of Bézier surface in the scientific

literature is the bi-cubic surface (m = n = 3). An example
of this type of surface together with its control points is
shown in Figure 1. Bézier surfaces can also be expressed
in terms of the matrix product:

S(u, v) = U(u)R(m)PR(n)TV(v)T , (3)

where the P is the matrix representing the net of control
points. This matrix is given by:

P =

2

6664

P0,0 P0,1 . . . P0,n

P1,0 P1,1 . . . P1,n
...

...
. . .

...
Pm,0 Pm,1 . . . Pm,n

3

7775
.

.
The vectors U and VT are polynomial spaces of degree

m and n, associated to the parameterization directions u
and v respectively. Generically, these basis vectors take
the form T(t) = [t↵, t↵�1, ..., t0], where ↵ is the degree of

⇤In the line of other related works, we use the term evaluation to refer to
computation.

Prepared using sagej.cls

Bézier Surfaces (II)
n Parametric non-rational formulation

q Bernstein polynomials
q Bi-cubic surface m = n = 3

46Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," IJPP, 2018

(a) Static Distribution
xyz

...

...

...

...

...

...

...

(b) Dynamic Distribution
xy

...

...

...

...

...

...
...

z

Tile of surface points processed
in CPU

Tile of surface points processed
in GPU

3D Surface point processed
in GPU

3D Surface point processed
in CPU

(a) Static Distribution
xyz

...

...

...

...

...

...

...

(b) Dynamic Distribution
xy

...

...

...

...

...

...

...

z

Tile of surface points processed
in CPU

Tile of surface points processed
in GPU

3D Surface point processed
in GPU

3D Surface point processed
in CPU

Bézier Surfaces: Static Distribution (I)
n Collaborative implementation

q Tiles calculated by GPU blocks or CPU threads
q Static distribution

47Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," IJPP, 2018

// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
malloc(surface, ...);
cudaMalloc(d_surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (d_surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

// Copy gpu part of surface to host memory
cudaMemcpy(&surface[end_of_cpu_part], d_surface, ..., DeviceToHost);

n Without Unified Memory

Bézier Surfaces: Static Distribution (II)

48

n Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU
cores + 2 GPU cores)
q Bezier surface: 300x300, 4x4 control points
q %Tiles to CPU
q 17% speedup over GPU only

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

80.0	

90.0	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	

Ex
ec
u2

on
	2
m
e	
(m

s)
	

%Tiles	to	CPU	

Bézier Surfaces: Static Distribution (III)

49

// Allocate control points
malloc(control_points, ...);
generate_cp(control_points);
cudaMalloc(d_control_points, ...);
cudaMemcpy(d_control_points, control_points, ..., HostToDevice); // Copy to device memory

// Allocate surface
cudaMallocManaged(surface, ...);

// Launch CPU threads
std::thread main_thread (run_cpu_threads, control_points, surface, ...);

// Launch GPU kernel
gpu_kernel<<<blocks, threads>>> (surface, d_control_points, ...);

// Synchronize
main_thread.join();
cudaDeviceSynchronize();

Bézier Surfaces with Unified Memory
n With Unified Memory

50

n Static vs. dynamic implementation

q Pascal/Volta/Turing/Ampere Unified Memory: system-wide atomic
operations

(a) Static Distribution
xyz

...

...

...

...

...

...

...

(b) Dynamic Distribution
xy

...

...

...

...

...

...

...

z

Tile of surface points processed

in CPU

Tile of surface points processed

in GPU

3D Surface point processed

in GPU

3D Surface point processed

in CPU

while(true){
if(threadIdx.x == 0)

my_tile = atomicAdd_system(tile_num, 1); // my_tile in shared memory; tile_num in UM

__syncthreads(); // Synchronization

if(my_tile >= number_of_tiles) break; // Break when all tiles processed
...
}

Bézier Surfaces: Dynamic Distribution

51Palomar+, "High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms," IJPP, 2018

Benefits of Collaboration: Bézier Surfaces
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q Data partitioning improves performance

4
16
64

256
1024
4096

1C
PU

2C
PU

4C
PU GP

U

GP
U +

 1C
PU

GP
U +

 2C
PU

GP
U +

 4C
PU

Ex
ec

ut
io

n
Ti

m
e

(m
s)

12x12 (300x300)
8x8 (300x300)
4x4 (300x300)

Bézier Surfaces
(up to 47% improvement over GPU only)

best

52Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

n Matrix padding
q Memory alignment
q Transposition of near-square matrices

n Traditionally, it can only be performed out-of-place

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

Padding

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

Padding (I)

53

n Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU
cores + 2 GPU cores)
q Matrix size: 4000x4000, padding = 1
q 29% speedup over GPU only

0	

20	

40	

60	

80	

100	

120	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	 0.55	 0.60	

Ex
ec
u0

on
	0
m
e	
(m

s)
	

%CPU	workload	

Padding (II)

54

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

30 31 32 33

34

25 26 27 28 29

20

21 22 23 24

0 1 2 3

5 6 7 8

10 11 12

13 15 16

17 18

4

9

14

19

20 21 22 23 24

25 26 27 28 29

0 1 2 3

5 6 7 8

10 11 12 13

15 16 17 18

20 21 22 23

25 26 27 28

30 31 32 33

4

9

14

19

24

29

34

30 31 32 33 34

1

GPU temporary
location

30 31 32 33

25 26

20 21

15 16

30 31

1

1

Coherent
memory

25 26

1

1

1

20

21

15 16 17 18 19

20

30 31 32 33

34

25 26 27 28 29

21 22 23 24

15 16

17 18 19

30 31 32 33

34

25 26 27 28 29

20

21 22 23 24

0 1 2 3

5 6 7 8

10 11 12

13 15 16

17 18

4

9

14

19

1

1

1

1

1

1

1

1

1

1

1

Adjacent synchronization:
CPU and GPU

In-place implementation will
be possible

Flags

CPU temporary
location

In-Place Padding
n Pascal/Volta/Turing/Ampere Unified Memory

55

Benefits of Collaboration: Padding
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q Optimal number of devices is not always the maximum

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

16.0	

18.0	

+0CPU	 +1CPU	 +2CPU	 +4CPU	 +0CPU	 +1CPU	 +2CPU	 +4CPU	 Copy	 Mul	 Add	 Triad	

8WG(64WI)	 16WG(64WI)	 GPU-STREAM	

Th
ro
ug
hp

ut
	(G

B/
s)
	

ExecuKon	configuraKon	
(GPU	work-groups	+	CPU	threads)	

1000x999	

6000x5999	

12000x11999	

GPU-STREAM	

56Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

2 1 3 0 0 1 3 4 0 0 2 1

2 1 3 1 3 4 2 1

Predicate: Element > 0

Input

Output

Stream compaction

Stream Compaction (I)
n Stream compaction or filtering

q Saving memory storage in sparse data
q Similar to padding, but local reduction result (non-zero

element count) is propagated

57

0	

2	

4	

6	

8	

10	

12	

14	

0.00	 0.05	 0.10	 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0.45	 0.50	 0.55	 0.60	

Ex
ec
u0

on
	0
m
e	
(m

s)
	

%CPU	workload	

Stream Compaction (II)
n Performance results on NVIDIA Jetson TX1 (4 ARMv8 CPU

cores + 2 GPU cores)
q Array size: 2 MB, filtered items = 50%
q 25% speedup over GPU only

58

Benefits of Collaboration: Stream Comp.
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q Data partitioning improves performance

8

32

128

512

1C
PU

2C
PU

4C
PU GP

U

GP
U +

 1C
PU

GP
U +

 2C
PU

GP
U +

 4C
PUEx

ec
ut

io
n

Ti
m

e
(m

s)

1
0.5
0

Stream Compaction
(up to 82% improvement over GPU only)

best

59Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Coarse-Grained Task Partitioning

Breadth-First Search
n Small-sized and big-sized frontiers

q Top-down approach
q Kernel 1 and Kernel 2

n Atomic-based block synchronization
q Avoids kernel re-launch

n Very small frontiers
q Underutilize GPU resources

n Collaborative implementation

61

Recall: Persistent Thread Blocks
n Combine Kernel 1 and Kernel 2
n We can avoid kernel re-launch
n We need to use persistent thread blocks

q Kernel 2 launches (frontier_size / block_size) blocks
q Persistent blocks: up to (number_SMs x max_blocks_SM)

SM#0 SM#1

Block
0

Block
1

Block
2

Block
3

Block
2nBlock

2nBlock
2nBlock

2nBlock
4

SM#0 SM#1

Block
0

Block
1

Block
2

Block
3

Block
2nBlock

2nBlock
2nBlock

2nBlock
4

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block m-2 Block m-1

0 1 2 3 4 5 m-2 m-1...

Block 0 Block 1 Block 2 Block 3 Block 0 Block 1 Block 2 Block 3

62

Atomic-based Block Synchronization (I)
n Code (simplified)

// GPU kernel
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;

while(frontier_size != 0){

for(node = gtid; node < frontier_size; node += blockDim.x * gridDim.x){

// Visit neighbors
// Enqueue in output queue if needed (global or local queue)

}

// Update frontier_size

// Global synchronization
}

63

Atomic-based Block Synchronization (II)
n Global synchronization (simplified)

q At the end of each iteration
const int tid = threadIdx.x;
const int gtid = blockIdx.x * blockDim.x + threadIdx.x;
atomicExch(ptr_threads_run, 0);
atomicExch(ptr_threads_end, 0);
int frontier = 0;
...

frontier++;

if(tid == 0){
atomicAdd(ptr_threads_end, 1); // Thread block finishes iteration

}

if(gtid == 0){
while(atomicAdd(ptr_threads_end, 0) != gridDim.x){;} // Wait until all blocks finish

atomicExch(ptr_threads_end, 0); // Reset
atomicAdd(ptr_threads_run, 1); // Count iteration

}

if(tid == 0 && gtid != 0){
while(atomicAdd(ptr_threads_run, 0) < frontier){;} // Wait until ptr_threads_run is updated

}

__syncthreads(); // Rest of threads wait here

...

64

Recall: BFS on CPU or GPU?
n Motivation

q Small-sized frontiers underutilize GPU resources
n NVIDIA Jetson TX1 (4 ARMv8 CPUs + 2 SMXs)
n New York City roads

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

0.0	

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

8.0	

9.0	

10.0	

1-1
00
	

10
1-2
00
	

20
1-3
00
	

30
1-4
00
	

40
1-5
00
	

50
1-6
00
	

60
1-7
00
	

70
1-8
00
	

80
1-9
00
	

90
1-1
00
0	

10
01
-11
00
	

11
01
-11
96
	

Av
er
ag
e	
no

de
s	p

er
	fr
on

:e
r	

Av
er
ag
e	
ex
ec
u:

on
	:
m
e	
(m

s)
	

Fron:ers	

CPU	(4	threads)	

GPU	(4x256	threads)	

Fron:er	size	

65

BFS: Collaborative Implementation (I)
n Choose the most appropriate device

CPU GPU

small frontiers
processed on

CPU

large frontiers
processed on

GPU

66

BFS: Collaborative Implementation (II)
n Choose CPU or GPU depending on frontier

n CPU threads or GPU kernel keep running while the
condition is satisfied

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads
}
else{

// Launch GPU kernel
}

}

67

BFS: Collaborative Implementation (III)
n Experimental results

q NVIDIA Jetson TX1 (4 ARMv8 CPU cores + 2 GPU cores)

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

NY	 BAY	

N
or
m
al
ize

d	
ex
ec
u9

on
	9
m
e	

Graph	

CPU	

CPU||GPU	

GPU	

15%

68

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Copy from host to device (queues and synchronization variables)

// Launch GPU kernel

// Copy from device to host (queues and synchronization variables)

}

}

Collaborative Implementation without UM
n Without Unified Memory (UM)

q Explicit memory copies

69

// Host code
while(frontier_size != 0){

if(frontier_size < LIMIT){

// Launch CPU threads

}
else{

// Launch GPU kernel

cudaDeviceSynchronize();

}

}

Collaborative Implementation with UM (I)
n Unified Memory

q cudaMallocManaged();

q Easier programming
q No explicit memory copies

70

Collaborative Implementation with UM (II)
n Pascal/Volta/Turing/Ampere Unified Memory

q CPU/GPU coherence
q System-wide atomic operations
q No need to re-launch kernel or CPU threads
q Possibility of CPU and GPU working on the same frontier

71

Benefits of Collaboration: SSSP
n AMD Kaveri (4 CPU cores + 8 GPU cores)

q SSSP performs more computation than BFS

16
128

1024
8192

65536
524288

1C
PU

2C
PU

4C
PU GP

U

GP
U +

 1C
PU

GP
U +

 2C
PU

GP
U +

 4C
PUEx

ec
ut

io
n

Ti
m

e
(m

s)

NE
NY
UT

Single Source Shortest Path
(up to 22% improvement over GPU only)

72Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Fine-Grained Task Partitioning

RANSAC

kernel
(egomotion

estimation)

Flow

vectors

array

F-o-F

model

Compensati

on kernel

2D

Histogram

calculation

Local

maxima

kernel

Clustering

kernel

Region

growing

kernel

Compensation

and differencing

kernel
NPP Erode

Region

growing

kernel

Bounding

boxes

Vector clustering

Frame differencing

Optical flow
Current

frame

Next

frame

legs are free to reach new foot placements or manipulate

a payload, which makes this structure suitable for a rescue

robot. Motion on uneven terrains produce strong egomotion

and various methods have already been proposed for image

stabilization on mobile robots. A method based on morpho-

logical filtering for a pan/tilt camera was proposed in [3]

while [4] proposed a method for motion detection in the

presence of egomotion and to achieve high detection rate

a tracking mechanism using pattern recognition, is utilized.

Similarly [5] proposed an approach which uses tracking of

randomly selected features, assuming that the object occupies

less than half of the frame area. When the target is identified,

algorithm switches to the tracking mode. In [6] a technique

for the detection of moving objects from a mobile robot using

feature tracking and adaptive particle filtering was proposed

but with a poor detection rate in case of uneven terrain or

blurred images. With this new algorithm for walking robots,

we try to overcome these limitations encountered as a result

of strong egomotion and build a motion detection system

performing equally well at different levels of egomotion in

real-time, without prior knowledge about the target. Also a

higher frame rate of 31 fps at VGA resolution is achieved

through hardware-friendly algorithm and appropriate HW/SW

partitioning.

Fig. 1. Six legged robot OSCAR

III. ALGORITHM

A. Structure of the Algorithm
The algorithm can be subdivided into three sections as

shown below:

1) Egomotion estimation

2) Egomotion compensation

3) Moving object detection

The motion detection algorithm is based on optical flow [7],

[8] and Egomotion is first estimated from the optical flow

fields using the first order flow (F-o-F) model presented in

[9] and then compensated using the estimated model. A F-

o-F based frame differencing and 2D histogram based vector

clustering is used for motion detection, as shown in Figure 2.

Each of these techniques is well known individually but we try

to combine and optimize them for a hardware implementation

running in real-time. F-o-F based frame differencing is cur-

rently not implemented in hardware and we plan to complete

this, in the next phase of the project.

Fig. 2. System flow diagram

B. The Motion Model used for Egomotion estimation
Due to six legged OSCAR platform as substructure the

camera motion has six degrees of freedom including yaw,

pitch and roll. To estimate such motion we utilize a motion

model based on F-o-F from [9], as shown in equation 1.

�
vx
vy

⇥
=

�
D �R
R D

⇥ �
x� xc

y � yc

⇥
(1)

Here (vx, vy) represent the x- and y-components of the optical

flow vector, and (x, y) represent the coordinates of the point

of origin of the flow vector and (xc, yc) are coordinates of

the focus of expansion. D represents dilation and R stands for

rotation. Shear is ignored as it is not a significant parameter

for a slow moving robot. The F-o-F motion model described

above, has its limitation in accurately differentiating between

the rotation and translation in x and y axis, which limits

the degrees of freedom to four. But such a reduction helps

to improve the accuracy of the ego-motion estimation as

described in [10].

The F-o-F motion model can be estimated using the

velocity (vx, vy) and position (x, y) of two motion vectors.

Those are denoted as vx1, vy1, x1, y1 and vx2, vy2, x2, y2
respectively. For this purpose the equation 1 is inverted, as

shown in equation 2.

xc =
e1 + e2 + e3

(vx1 ⇥ (vx1 � 2 ⇥ vx2)) + v2
x2 + v2

y1 � (vy2 ⇥ (2 ⇥ vy1 � vy2))

yc =
e4 + e5 + e6

(vx1 ⇥ (vx1 � 2 ⇥ vx2)) + v2
x2 + v2

y1 � (vy2 ⇥ (2 ⇥ vy1 � vy2))

D =
((x1 � x2) ⇥ (vx1 � vx2)) + ((y1 � y2) ⇥ (vy1 � vy2))

(x1 ⇥ (x1 � 2 ⇥ x2)) + x2
2 + (y1 ⇥ (y1 � 2 ⇥ y2)) + y2

2

R =
((x1 � x2) ⇥ (vy1 � vy2)) + ((y2 � y1) ⇥ (vx1 � vx2))

(x1 ⇥ (x1 � 2 ⇥ x2)) + x2
2 + (y1 ⇥ (y1 � 2 ⇥ y2)) + y2

2

(2)

where e1, to e6 are as shown below:

e1 = vx1 ⇥ ((�vx2 ⇥ x1) + vx1 ⇥ x2 � vx2 ⇥ x2 + vy2 ⇥ y1 � vy2 ⇥ y2)

e2 = vy1 ⇥ ((�vy2 ⇥ x1) + vy1 ⇥ x2 � vy2 ⇥ x2 � vx2 ⇥ y1 + vx2 ⇥ y2)

e3 = x1 ⇥ (v2
y2 + v2

x2)

e4 = vx2 ⇥ ((vy1 ⇥ x1) � vy1 ⇥ x2 � vx1 ⇥ y1 + vx2 ⇥ y1 � vx1 ⇥ y2)

e5 = vy2 ⇥ ((�vx1 ⇥ x1) + vx1 ⇥ x2 � vy1 ⇥ y1 + vy2 ⇥ y1 � vy1 ⇥ y2)

e6 = y2 ⇥ (v2
x1 + v2

y1)

(3)

Egomotion Compensation and Moving Objects
Detection (I)
n Hexapod robot OSCAR

q Rescue scenarios
q Strong egomotion on uneven terrains

n Algorithm
q Random Sample Consensus (RANSAC): F-o-F model

74Gómez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011

(b) Fast moving object in strong egomotion scenario detected by vector clustering

75

Egomotion Compensation and Moving Objects
Detection (II)

Gómez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011

While (iteration < MAX_ITER){
Fitting stage (Compute F-o-F model) // SISD phase

Evaluation stage (Count outliers) // SIMD phase

Comparison to best model // SISD phase

Check if best model is good enough and iteration >= MIN_ITER // SISD phase
}

SISD and SIMD phases
n RANSAC (Fischler+, 1981)

q Fitting stage picks two flow
vectors randomly

q Evaluation generates motion
vectors from F-o-F model, and
compares them to real flow
vectors

76Gómez-Luna+, "Egomotion Compensation and Moving Objects Detection Algorithm on GPU," PARCO 2011

CPU
thread

GPU
block

CPU
thread

GPU
block

CPU
thread

GPU
block

Iteration 0 Iteration 1 Iteration 2

Collaborative Implementation
n Randomly picked vectors: Iterations are independent

q We assign one iteration to one CPU thread and one GPU block

77

https://chai-benchmarks.github.io

Chai Benchmark Suite
n Collaborative Heterogeneous Applications for Integrated

architectures
n Heterogeneous execution on CPU, GPU, FPGA
n Collaboration patterns

q 8 data partitioning benchmarks
q 3 coarse-grain task partitioning benchmarks
q 3 fine-grain task partitioning benchmarks

n Discrete (D) and Unified (U) versions
q CUDA, OpenCL, and C++AMP for CPU+GPU
q OpenCL for CPU+FPGA
q CUDA-Sim for Gem5-GPU

78Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Chai Benchmarks

79

Versions:
n OpenCL-U
n OpenCL-D
n CUDA-U
n CUDA-D
n CUDA-U-Sim
n CUDA-D-Sim
n C++AMP

Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Chai: Diversity of Benchmarks (I)
n Diversity of partitioning, usage of system-wide atomics, load

balancing, and concurrency

80Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

DATA PARTITIONING

Benchmark Partitioning
Granularity

Partitioned
Data

System-wide
Atomics

Load
Balance

BS Fine Output None Yes
CEDD Coarse Input, Output None Yes
HSTI Fine Input Compute No
HSTO Fine Output None No
PAD Fine Input, Output Sync Yes
RSCD Medium Output Compute Yes

SC Fine Input, Output Sync No
TRNS Medium Input, Output Sync No

FINE-GRAIN TASK PARTITIONING

Benchmark System-wide
Atomics Load Balance

RSCT Sync, Compute Yes
TQ Sync No

TQH Sync No

COARSE-GRAIN TASK PARTITIONING

Benchmark System-wide
Atomics Partitioning Concurrency

BFS Sync, Compute Iterative No

CEDT Sync Non-iterative Yes

SSSP Sync, Compute Iterative No

Chai: Diversity of Benchmarks (II)

0%20%
40%60%
80%100% Occupancy

MemUnitBusy

CacheHitVALUUtilization

VALUBusy

LEGEND:

BS CEDD (gaussian)

CEDD (sobel) CEDD (non-max) HSTI

HSTO PAD RSCD SC

CEDD (hysteresis)

TRNS TQ TQH

BFS CEDT (gaussian) CEDT (sobel)

RSCT

SSSP

0
2
4
6
8

10
12
14

BS
CE

DD
HS

TI
HS

TO PA
D

RS
CD SC

TR
NS

RS
CT TQ TQ
H

BF
S

CE
DT

SS
SPSy

st
em

-w
id

e
At

om
ics

(o

ps
 /

th
ou

sa
nd

 c
yc

le
s)

CPU GPU
49.5 64.8

Varying intensity in use of system-wide atomics
Diverse execution profiles

Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017 81

Benefits of Unified Memory: Kernel Time

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDD HSTI HSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

)

Kernel
Comparable (same kernels,
system-wide atomics make
Unified sometimes slower)

Unified kernels can
exploit more
parallelism

Unified kernels
avoid kernel

launch overhead

82Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Benefits of Unified Memory: Data Transfers

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDD HSTI HSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

)

Kernel Copy Back & Merge Copy To Device

Unified versions avoid copy overhead

83Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Benefits of Unified Memory: Allocation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

D U D U D U D U D U D U D U D U D U D U D U D U D U D U

BS CEDD HSTI HSTO PAD RSCD SC TRNS RSCT TQ TQH BFS CEDT SSSP

Fine-grain Coarse-grain

Data Partitioning Task Partitioning

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

iz
ed

)

Kernel Copy Back & Merge Copy To Device Allocation
SVM allocation

seems to take longer

84Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Comparison C++AMP vs. OpenCL-U

85

0

0.5

1

1.5

2

2.5

BS
CE

DD
HS

TI
HS

TO PA
D

RS
CD SC

TR
NS

RS
CT TQ TQ

H BF
S

CE
DT

SS
SP

ge
om

ea
n

Sp
ee

du
p

(n
or

m
al

iz
ed

 to
 fa

st
er

)

OpenCL-U

C++AMP

4.37 11.93 8.08

Gómez-Luna+, "Chai: Collaborative Heterogeneous Applications for Integrated-architectures," ISPASS 2017

Heterogeneous System Architecture

86

n Wen-mei W. Hwu (editor), “Heterogeneous System
Architecture: A New Compute Platform Infrastructure,”
2016
q Chapter 8 – Application
use cases: Platform atomics

Intel OpenCL SDK for FPGA
n Intel OpenCL SDK for FPGA is used to compile and

synthesize host executable and FPGA design

87Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures,"
ICPE 2019

Benefits of Collaboration on FPGA (I)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

C F C F C F C F C F C F C F C F

CPU FPGA Data Task CPU FPGA Data Task

Single device Collaborative Single device Collaborative

Stratix V Arria 10

Ex
ec

ut
io

n
Ti

m
e

(s
) Idle

Copy
Compute

Case Study:
Canny Edge
Detection

Similar
improvement
from data and

task partitioning

88Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

Benefits of Collaboration on FPGA (II)

Case Study:
Random
Sample

Consensus

0
5

10
15
20
25
30
35
40
45

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Data Partitioning (Stratix V)
Task Partitioning (Stratix V)
Data Partitioning (Arria 10)
Task Partitioning (Arria 10)

Task partitioning
exploits disparity in

nature of tasks

89Chang+, "Collaborative Computing for Heterogeneous Integrated Systems," ICPE 2017

Chai on CPU-FPGA Systems (I)

90

n Sitao Huang, Li-Wen Chang, Izzat El Hajj, Simon Garcia De Gonzalo, Juan
Gomez-Luna, Sai Rahul Chalamalasetti, Mohamed El-Hadedy, Dejan
Milojicic, Onur Mutlu, Deming Chen, and Wen-mei Hwu,
"Analysis and Modeling of Collaborative Execution Strategies for
Heterogeneous CPU-FPGA Architectures"
Proceedings of the 10th ACM/SPEC International Conference on Performance
Engineering (ICPE), Mumbai, India, April 2019.
[Slides (pptx) (pdf)]
[Chai CPU-FPGA Benchmark Suite]

https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19.pdf
https://icpe2019.spec.org/
https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/CPU-FPGA-collaborative-execution-strategies_icpe19-talk.pdf
https://github.com/chai-benchmarks/chai-fpga

Chai on CPU-FPGA Systems (II)

91

n Jiantong Jiang, Zeke Wang, Xue Liu, Juan Gómez-Luna, Nan Guan, Qingxu
Deng, Wei Zhang, and Onur Mutlu,
"Boyi: A Systematic Framework for Automatically Deciding the Right
Execution Model of OpenCL Applications on FPGAs"
Proceedings of the 28th International Symposium on Field-Programmable Gate
Arrays (FPGA), Seaside, CA, USA, February 2020.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20.pdf
http://isfpga.org/
https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/boyi-opencl-execution-model-selection-for-FPGAs_fpga20-talk.pdf

NERO Application Framework

https://github.com/open-power/snap

n NERO communicates to
Host over CAPI2
(Coherent Accelerator
Processor Interface)

n COSMO API handles
offloading jobs to NERO

n SNAP (Storage, Network,
and Analytics
Programming) allows for
seamless integration of
the COSMO API

Singh+, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling," FPL 2020 92

https://github.com/open-power/snap

Accelerating Climate Modeling
n Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan

Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

93

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Collaborative Computing: Key Takeaways
n Possibility of having several devices collaborating on the

same workload
n Or having the most appropriate cores for each workload
n Easier programming with Unified Memory or Shared Virtual

Memory
n CPU-GPU memory coherence and system-wide atomic

operations since NVIDIA Pascal and HSA
q Fine-grain collaboration

94

Heterogeneous Systems Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=heterogeneous_systems

https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

n Short weekly lectures
n Hands-on projects

95

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://youtube.com/playlist?list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

Processing-in-Memory Course (Fall 2021)

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id
=processing_in_memory

https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

n Short weekly lectures
n Hands-on projects

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=processing_in_memory
https://youtube.com/playlist?list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

n Understanding and Improving Modern DRAM Performance, Reliability,
and Security with Hands-On Experiments

n Designing and Evaluating Memory Systems and Modern Software
Workloads with Ramulator

n Accelerating Genome Analysis with FPGAs, GPUs, and New Execution
Paradigms

n Genome Sequencing on Mobile Devices
n Understanding and Designing Modern NAND Flash-Based Solid-State

Drives (SSDs)

More P&S Courses: SSDs, Memory, Bioinformatics

97

https://safari.ethz.ch/projects_and_seminars/
fall2021/doku.php?id=start

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=start

n All P&S courses
n Digital Design and CompArch course
n Advanced CompArch course
n Seminar in CompArch

More Resources: Onur Mutlu Lectures

98https://www.youtube.com/c/OnurMutluLectures/playlists

https://www.youtube.com/c/OnurMutluLectures/playlists

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

6 January 2022

P&S Heterogeneous Systems
Collaborative Computing

