
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

14 October 2021

P&S Heterogeneous Systems

SIMD Processing and GPUs

Heterogeneous Computing Systems
n The end of Moore’s law created the need for heterogeneous

systems
n More suitable devices for each type of workload
n Increased performance and energy efficiency

2

CPU
core

0

CPU
core

1

CPU
core
N-1

…

L1 L1 L1…
L2

FPGA

DMAScratchpad

Coherent interconnect

LLC

DRAM controller

DRAM DRAM DRAM DRAM

Crossbar

Coherent bus

Non-coherent bus

L2

C
U

L1

C
U

L1

C
U

L1

C
U

L1

C
U

L1

…

…
GPU

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor

3

Data Parallelism
n Concurrency arises from performing the same operation on

different pieces of data
q Single instruction multiple data (SIMD)
q E.g., dot product of two vectors

n Contrast with data flow
q Concurrency arises from executing different operations in parallel (in

a data driven manner)

n Contrast with thread (“control”) parallelism
q Concurrency arises from executing different threads of control in

parallel

n SIMD exploits operation-level parallelism on different data
q Same operation concurrently applied to different pieces of data
q A form of ILP where instruction happens to be the same across data

4

SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements (PEs), i.e., execution units

n Time-space duality

q Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PEs)

q Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

5

Array vs. Vector Processors

6

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

Vector Processors (I)
n A vector is a one-dimensional array of numbers
n Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
C[i] = (A[i] + B[i]) / 2

n A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

n Basic requirements
q Need to load/store vectors à vector registers (contain vectors)
q Need to operate on vectors of different lengths à vector length

register (VLEN)
q Elements of a vector might be stored apart from each other in

memory à vector stride register (VSTR)
n Stride: distance in memory between two elements of a vector

7

n A and B matrices, both stored in memory in row-major order

n Load A’s row 0 (A00 through A05) into vector register V1
q Each time, increment address by 1 to access the next column
q Accesses have a stride of 1

n Load B’s column 0 (B00 through B50) into vector register V2
q Each time, increment address by 10 to access the next row
q Accesses have a stride of 10

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

10 11 12 13 14 15

20

30

6 7 8 9

16 17 18 19

40

50

A0 B0

Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of
A with each column vector of B

A

Linear Memory

B

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7
8
9

10

Vector Processors (II)
n A vector instruction performs an operation on each element

in consecutive cycles
q Vector functional units are pipelined
q Each pipeline stage operates on a different data element

n Vector instructions allow deeper pipelines
q No intra-vector dependencies à no hardware interlocking

needed within a vector
q No control flow within a vector
q Known stride allows easy address calculation for all vector

elements
n Enables easy loading (or even early loading, i.e., prefetching) of

vectors into registers/cache/memory

9

Recall: Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

10Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.

Vector Registers
n Each vector data register holds N M-bit values
n Vector control registers: VLEN, VSTR, VMASK
n Maximum VLEN can be N

q Maximum number of elements stored in a vector register
n Vector Mask Register (VMASK)

q Indicates which elements of vector to operate on
q Set by vector test instructions

n e.g., VMASK[i] = (Vk[i] == 0)

11

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Loading/Storing Vectors from/to Memory
n Requires loading/storing multiple elements

n Elements separated from each other by a constant distance
(stride)
q Assume stride = 1 for now

n Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle
q Can sustain a throughput of one element per cycle

n Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

n Answer: Bank the memory; interleave the elements across
banks

12

Memory Banking
n Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks

13

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Vectorizable Loops
n A loop is vectorizable if each iteration is independent of any

other

n For I = 0 to 49
q C[i] = (A[i] + B[i]) / 2

n Vectorized loop (each instruction and its latency):
MOVI VLEN = 50 1
MOVI VSTR = 1 1
VLD V0 = A 11 + VLEN – 1
VLD V1 = B 11 + VLEN – 1
VADD V2 = V0 + V1 4 + VLEN – 1
VSHFR V3 = V2 >> 1 1 + VLEN – 1
VST C = V3 11 + VLEN – 1

14

7 dynamic instructions

Basic Vector Code Performance
n Assume no chaining (no vector data forwarding)

q i.e., output of a vector functional unit cannot be used as the
direct input of another

q The entire vector register needs to be ready before any
element of it can be used as part of another operation

n One memory port (one address generator)
n 16 memory banks (word-interleaved)

n 285 cycles
15

1 1 11 49 11 49 4 49 1 49 11 49

V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3

Vector Code Performance - Chaining
n Vector chaining: Data forwarding from one vector

functional unit to another

n 182 cycles

16

1 1 11 49 11 49

4 49

1 49

11 49

These two VLDs cannot be
pipelined. WHY?

VLD and VST cannot be
pipelined. WHY?

Strict assumption:
Each memory bank
has a single port
(memory bandwidth
bottleneck)

VLD V0=A VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Vector Code Performance – Multiple Memory Ports

n Chaining and 2 load ports, 1 store port in each bank

n 79 cycles
n 19X perf. improvement!

17

1 1 11 49

4 49

1 49

11 49

11 491

VLD V0=A

VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3

Conditional Operations in a Loop
n What if some operations should not be executed on a vector

(based on a dynamically-determined condition)?
loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

n Idea: Masked operations
q VMASK register is a bit mask determining which data element

should not be acted upon
VLD V0 = A
VLD V1 = B
VMASK = (V0 != 0)
VMUL V1 = V0 * V1
VST B = V1

q This is predicated execution. Execution is predicated on mask bit.
18

Another Example with Masking

19

for (i = 0; i < 64; ++i)
if (a[i] >= b[i])

c[i] = a[i]
else

c[i] = b[i]

A B VMASK
1 2 0
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get
VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C

Some Issues
n Stride and banking

q As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

n Storage format of a matrix
q Row major: Consecutive elements in a row are laid out

consecutively in memory
q Column major: Consecutive elements in a column are laid out

consecutively in memory
q You need to change the stride when accessing a row versus

column

20

n A and B matrices, both stored in memory in row-major order

n Load A’s row 0 (A00 through A05) into vector register V1
q Each time, increment address by 1 to access the next column
q Accesses have a stride of 1

n Load B’s column 0 (B00 through B50) into vector register V2
q Each time, increment address by 10 to access the next row
q Accesses have a stride of 10

0 1 2 3 4 5

6 7 8 9 10 11

0 1 2 3 4 5

10 11 12 13 14 15

20

30

6 7 8 9

16 17 18 19

40

50

A0 B0

Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of
A with each column vector of B

A

Linear Memory

B

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7
8
9

10

Different strides can lead
to bank conflicts

How do we minimize them?

Recall: Memory Banking
n Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks

22

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Minimizing Bank Conflicts
n More banks

n More ports in each bank

n Better data layout to match the access pattern
q Is this always possible?

n Better mapping of address to bank
q E.g., randomized mapping
q Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

23

Minimizing Bank Conflicts: Recommended Reading

24Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

SIMD Operations in Modern ISAs

MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image x on top of the background in image y

26Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

PMADDWD~ vo I VI I vo I V I I I v 2 I v3 I v 2 1 v 3 1
X X X X X X X X

1 MOO 1 MO1 I M10 I M I 1 I I MO2 I MO3 1 M12 I M13 1
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I

1 First result I Second result 1
P A D D D ~ + /

Figure 7. Flow diagram of matrix-vector mult iply.

much like the one in Figure 6. This operation and similar ones
appear in many multimedia algorithms and applications.

A multiply-accumulate operation (MAC)-the product of
two operands added to a third operand (the accumulator)-
requires two loads (operands of the multiplication opera-
tion), a multiply, and an add (to the accumulator). MMX does
not support three-operand instructions, therefore it does not
have a full MAC capability. On the other hand, MMX does
define the PMADDWD instruction that performs four multi-
plies and two 32-bit adds. A following PADDD instruction
performs the additional two adds.

We start by looking at a vector dot product, the building
block of the matrix-vector multiplication. For this perfor-
mance example, we assume both input vectors are 16 ele-
ments long, with each element in the vectors being signed
16 bits. Accumulation takes place in 32-bit precision. A
Pentium processor microarchitecture, for example, would
have to process the operations one at a time in sequential
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi-
tions, for a total of 63 instructions. Assume we perform four
MACs (out of the 16) per loop iteration of our code. Then,
we need to add 12 instructions for loop control (3 instructions
per iteration, increment, compare, branch) and 1 instruction
to store the result. Now the total is 76 instructions.

Assuming all data and instructions are in the on-chip
caches, and that exiting the loop will incur one branch mis-
prediction, the integer assembly optimized version of this
code (using both pipelines) takes just over 200 cycles on a
Pentium processor microarchitecture. The cycle count is
dominated by the nonpipelined, 11-cycle integer multiply
operation. Under the same conditions, but assuming the data
is in floating-point format, the floating-point optimized
assembly version executes in 74 cycles. This version is faster
as the floating-point multiply takes only three cycles to exe-
cute and executes in a pipelined unit.

Now, we can look at MMX technology MMX computes
four elements at a time. This reduces the instruction count to
eight loads, four PMADDWD instructions, three PADDD
instructions, one store instruction, and three additional
instructions (overhead due to packed data types), totaling 19
instructions. Performing loop unrolling of four PMADDWD
instructions eliminates the need to insert loop control instruc-
tions. The four PMADDWDs already perform the 16 required
MACs. Thus, the MMX instruction count is four times less than
that for integer or floating-point operations. With the same
assumptions applied to a Pentium processor microarchitec-
ture, an MMX-optimized assembly version of the code using
both pipelines will execute in only 12 cycles. This is a

speedup of six times over floating-
point and much more over integer.

Now, we extend this example to
a full matrix-vector multiply. We
assume a 16x16 matrix multiplies a
16-element vector, an operation built
of 16 vector dot products. Repeating
the same exercise as before, and
assuming a loop unrolling that per-
forms four vector dot products each
iteration, the regular Pentium proces-

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic-
tions. Using MMX technology will require 4(4x19 + 3) or 316
instructions. The MMX instruction count is 3.9 times less than
when using regular operations. The best regular code imple-
mentation (floating-point optimized version) takes just under
1;200 cycles to complete in comparison to 207 cycles for the
MMX code version. This is a speedup of 5.8 times.

Chroma k e y ~ ~ g
Chroma keying is an image overlay technique frequently

referred to as the weatherman example. In this example, we
use a dark-blue screen to overlay an image of a woman on
a picture of a spring blossom (see Figure 8). The required C
code operation is

for (i=O: i<image-size; i++) i
if (x[il == Blue) new-image[i] =y[il;

else new-image[il = x[il;
1

arhere x is the image of the woman on a blue blackground,
and y is the image of the spring blossom.

Using MMX technology, we load eight pixels from the pic-
ture with the woman on a blue background. In Figure 9, the
compare instruction builds a mask for that data. This mask
is a sequence of byte elements that are all 1s or all Os, rep-
resenting the Boolean values of true and false. This reflects
the h"anted" background and what we want to keep.
Figure 9 shows this result using a black-and-white picture.

Figure 10 shows this mask being used on the same eight
pixels from the picture with the woman and the corre-
sponding eight pixels from the spring blossom. The PANDN
and PAND instructions use the mask to identify which pix-
els to keep from the spring blossom and the woman. They
also turn the unwanted pixels to Os. The POR instruction
builds the final picture

The MMX code sequence in Figure 11 processes eight pix-
els using only six MMX instructions and doing so without
branches. Being able to process a conditional move without
using branch instructions or looking up condition codes is
becoming an important performance issue with the advanced,
deep-pipeline microarchitectures that use branch prediction.
A branch based on the result of a compare operation on the
incoming data is usually difficult to predict, as incoming data
in many cases can change randomly and thus degrade the pre-
diction quality. Eliminating branches used for data selection,
together nTith the parallelism of the MMX instructions, com-
bines into an important performance enhancement feature.

48 IEEEMicro

Image x[]

Image y[] Image new_image[]

Blue
background

Image x[]

Bit mask

Blossom
background

MMX Example: Image Overlaying (II)

27Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

PMADDWD~ vo I VI I vo I V I I I v 2 I v3 I v 2 1 v 3 1
X X X X X X X X

1 MOO 1 MO1 I M10 I M I 1 I I MO2 I MO3 1 M12 I M13 1
1 VOxMOO+Vl xMOl I VOxMl O+V1 xM11 I 1 V2xM02+V3xM03 I V2xM12+V3xMl3 I

1 First result I Second result 1
P A D D D ~ + /

Figure 7. Flow diagram of matrix-vector mult iply.

much like the one in Figure 6. This operation and similar ones
appear in many multimedia algorithms and applications.

A multiply-accumulate operation (MAC)-the product of
two operands added to a third operand (the accumulator)-
requires two loads (operands of the multiplication opera-
tion), a multiply, and an add (to the accumulator). MMX does
not support three-operand instructions, therefore it does not
have a full MAC capability. On the other hand, MMX does
define the PMADDWD instruction that performs four multi-
plies and two 32-bit adds. A following PADDD instruction
performs the additional two adds.

We start by looking at a vector dot product, the building
block of the matrix-vector multiplication. For this perfor-
mance example, we assume both input vectors are 16 ele-
ments long, with each element in the vectors being signed
16 bits. Accumulation takes place in 32-bit precision. A
Pentium processor microarchitecture, for example, would
have to process the operations one at a time in sequential
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi-
tions, for a total of 63 instructions. Assume we perform four
MACs (out of the 16) per loop iteration of our code. Then,
we need to add 12 instructions for loop control (3 instructions
per iteration, increment, compare, branch) and 1 instruction
to store the result. Now the total is 76 instructions.

Assuming all data and instructions are in the on-chip
caches, and that exiting the loop will incur one branch mis-
prediction, the integer assembly optimized version of this
code (using both pipelines) takes just over 200 cycles on a
Pentium processor microarchitecture. The cycle count is
dominated by the nonpipelined, 11-cycle integer multiply
operation. Under the same conditions, but assuming the data
is in floating-point format, the floating-point optimized
assembly version executes in 74 cycles. This version is faster
as the floating-point multiply takes only three cycles to exe-
cute and executes in a pipelined unit.

Now, we can look at MMX technology MMX computes
four elements at a time. This reduces the instruction count to
eight loads, four PMADDWD instructions, three PADDD
instructions, one store instruction, and three additional
instructions (overhead due to packed data types), totaling 19
instructions. Performing loop unrolling of four PMADDWD
instructions eliminates the need to insert loop control instruc-
tions. The four PMADDWDs already perform the 16 required
MACs. Thus, the MMX instruction count is four times less than
that for integer or floating-point operations. With the same
assumptions applied to a Pentium processor microarchitec-
ture, an MMX-optimized assembly version of the code using
both pipelines will execute in only 12 cycles. This is a

speedup of six times over floating-
point and much more over integer.

Now, we extend this example to
a full matrix-vector multiply. We
assume a 16x16 matrix multiplies a
16-element vector, an operation built
of 16 vector dot products. Repeating
the same exercise as before, and
assuming a loop unrolling that per-
forms four vector dot products each
iteration, the regular Pentium proces-

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic-
tions. Using MMX technology will require 4(4x19 + 3) or 316
instructions. The MMX instruction count is 3.9 times less than
when using regular operations. The best regular code imple-
mentation (floating-point optimized version) takes just under
1;200 cycles to complete in comparison to 207 cycles for the
MMX code version. This is a speedup of 5.8 times.

Chroma k e y ~ ~ g
Chroma keying is an image overlay technique frequently

referred to as the weatherman example. In this example, we
use a dark-blue screen to overlay an image of a woman on
a picture of a spring blossom (see Figure 8). The required C
code operation is

for (i=O: i<image-size; i++) i
if (x[il == Blue) new-image[i] =y[il;

else new-image[il = x[il;
1

arhere x is the image of the woman on a blue blackground,
and y is the image of the spring blossom.

Using MMX technology, we load eight pixels from the pic-
ture with the woman on a blue background. In Figure 9, the
compare instruction builds a mask for that data. This mask
is a sequence of byte elements that are all 1s or all Os, rep-
resenting the Boolean values of true and false. This reflects
the h"anted" background and what we want to keep.
Figure 9 shows this result using a black-and-white picture.

Figure 10 shows this mask being used on the same eight
pixels from the picture with the woman and the corre-
sponding eight pixels from the spring blossom. The PANDN
and PAND instructions use the mask to identify which pix-
els to keep from the spring blossom and the woman. They
also turn the unwanted pixels to Os. The POR instruction
builds the final picture

The MMX code sequence in Figure 11 processes eight pix-
els using only six MMX instructions and doing so without
branches. Being able to process a conditional move without
using branch instructions or looking up condition codes is
becoming an important performance issue with the advanced,
deep-pipeline microarchitectures that use branch prediction.
A branch based on the result of a compare operation on the
incoming data is usually difficult to predict, as incoming data
in many cases can change randomly and thus degrade the pre-
diction quality. Eliminating branches used for data selection,
together nTith the parallelism of the MMX instructions, com-
bines into an important performance enhancement feature.

48 IEEEMicro

Lecture on SIMD Processing

28https://youtu.be/fP4kZ2Zx_84

Heterogeneous Computing Systems
n The end of Moore’s law created the need for heterogeneous

systems
n More suitable devices for each type of workload
n Increased performance and energy efficiency

29

CPU
core

0

CPU
core

1

CPU
core
N-1

…

L1 L1 L1…
L2

FPGA

DMAScratchpad

Coherent interconnect

LLC

DRAM controller

DRAM DRAM DRAM DRAM

Crossbar

Coherent bus

Non-coherent bus

L2

C
U

L1

C
U

L1

C
U

L1

C
U

L1

C
U

L1

…

…
GPU

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

GPUs (Graphics Processing Units)

NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

31

Recall: Array vs. Vector Processors

32

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR ß A[3:0]
ADD VR ß VR, 1
MUL VR ß VR, 2
ST A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

NVIDIA A100 Core
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

33
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Recall: Memory Banking
n Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks

34

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

GPUs are SIMD Engines Underneath
n The instruction pipeline operates like a SIMD pipeline (e.g.,

an array processor)

n However, the programming is done using threads, NOT
SIMD instructions

n To understand this, let’s go back to our parallelizable code
example

n But, before that, let’s distinguish between
q Programming Model (Software)

vs.
q Execution Model (Hardware)

35

Programming Model vs. Hardware Execution Model

n Programming Model refers to how the programmer expresses
the code
q E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,

Multi-threaded (MIMD, SPMD), …

n Execution Model refers to how the hardware executes the
code underneath
q E.g., Out-of-order execution, Vector processor, Array processor,

Dataflow processor, Multiprocessor, Multithreaded processor, …

n Execution Model can be very different from the Programming
Model
q E.g., von Neumann model implemented by an OoO processor
q E.g., SPMD model implemented by a SIMD processor (a GPU)

36

How Can You Exploit Parallelism Here?

37

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming
options to exploit instruction-level

parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

Prog. Model 1: Sequential (SISD)

38

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n Can be executed on a:

n Pipelined processor
n Out-of-order execution processor

q Independent instructions executed
when ready

q Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

q In other words, the loop is dynamically
unrolled by the hardware

n Superscalar or VLIW processor
q Can fetch and execute multiple

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)

39

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD A à V1

VLD B à V2

VADD V1 + V2 à V3

VST V3 à C

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded

40

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

Prog. Model 3: Multithreaded

41

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread

A GPU is a SIMD (SIMT) Machine
n Except it is not programmed using SIMD instructions

n It is programmed using threads (SPMD programming model)
q Each thread executes the same code but operates a different

piece of data
q Each thread has its own context (i.e., can be

treated/restarted/executed independently)

n A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware
q A warp is essentially a SIMD operation formed by hardware!

42

Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine

43

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)

Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)

SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages:
q Can treat each thread separately à i.e., can execute each thread

independently (on any type of scalar pipeline) à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

45

Fine-Grained Multithreading of
Warps

46

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter.
1

Iter.
2

Warp 0 at PC X

n Assume a warp consists of 32 threads
n If you have 32K iterations, and 1 iteration/thread à 1K warps
n Warps can be interleaved on the same pipeline à Fine grained

multithreading of warps

Warp 1 at PC X

Iter.
33

Iter.
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2

Fine-Grained Multithreading

47

Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers).

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough

threads to cover the whole pipeline
48

Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

49

Lecture on Fine-Grained Multithreading

50https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16

Lectures on Fine-Grained Multithreading
n Digital Design & Computer Architecture, Spring 2021, Lecture 14

q Pipelined Processor Design (ETH, Spring 2021)
q https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39Y

B5pfW4SJ7LlN&index=16

n Digital Design & Computer Architecture, Spring 2020, Lecture 18c
q Fine-Grained Multithreading (ETH, Spring 2020)
q https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=26

51https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

Warps and Warp-Level FGMT
n Warp: A set of threads that execute the same instruction

(on different data elements) à SIMT (Nvidia-speak)
n All threads run the same code
n Warp: The threads that run lengthwise in a woven fabric …

52

Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

High-Level View of a GPU

53Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.

Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that

execute the same instruction
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in

pipeline at a time (No
interlocking)

q Interleave warp execution to
hide latencies

n Register values of all threads stay
in register file

n FGMT enables long latency
tolerance
q Millions of pixels

54

Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Warp Execution

55

32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using
one pipelined
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using
four pipelined
functional units

Slide credit: Krste Asanovic

Time

Space

Time

56

Lane

Functional Unit

Registers
for each
Thread

Memory Subsystem

Registers for
thread IDs
0, 4, 8, …

Registers for
thread IDs
1, 5, 9, …

Registers for
thread IDs
2, 6, 10, …

Registers for
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure

Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle

57

W3

W0
W1

W4

W2

W5

Load Unit Multiply Unit Add Unit

time

Warp issue

Slide credit: Krste Asanovic

n Same instruction in different threads uses thread id to
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3

58

n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

59

Slide credit: Hwu & Kirk

Amdahl’s Law
n Amdahl’s Law

q f: Parallelizable fraction of a program
q N: Number of processors

q Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

n Maximum speedup limited by serial portion: Serial bottleneck

n All parallel machines “suffer from” the serial bottleneck

60

Speedup =
1

+1 - f f
N

n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

61

Slide credit: Hwu & Kirk

Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 62

From Blocks to Warps
n GPU cores: SIMD pipelines

q Streaming Multiprocessors (SM)
q Streaming Processors (SP)

n Blocks are divided into warps
q SIMD unit (32 threads)

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…
Block 2’s warps

63

NVIDIA Fermi architecture

Warp-based SIMD vs. Traditional SIMD
n Traditional SIMD contains a single thread

q Sequential instruction execution; lock-step operations in a SIMD instruction
q Programming model is SIMD (no extra threads) à SW needs to know

vector length
q ISA contains vector/SIMD instructions

n Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)
q Does not have to be lock step
q Each thread can be treated individually (i.e., placed in a different warp)

à programming model not SIMD
n SW does not need to know vector length
n Enables multithreading and flexible dynamic grouping of threads

q ISA is scalar à SIMD operations can be formed dynamically
q Essentially, it is SPMD programming model implemented on SIMD

hardware
64

SPMD
n Single procedure/program, multiple data

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same
program
q Each program/procedure 1) works on different data, 2) can execute a

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware

65

SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages:
q Can treat each thread separately à i.e., can execute each thread

independently on any type of scalar pipeline à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing

66

Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths

67

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD

pipeline to save area
on control logic
q Groups scalar threads

into warps

n Branch divergence
occurs when threads
inside warps branch to
different execution
paths

68

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

0

1000

2000

3000

4000

5000

6000

7000

8000

GTX 285
(2009)

GTX 480
(2010)

GTX 780
(2013)

GTX 980
(2014)

P100 (2016) V100 (2017) A100 (2020)

GF
LO

PS

#F
un

ct
io

na
l U

ni
ts

Functional units (stream processors)

GFLOPS

Evolution of NVIDIA GPUs

69

NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

70

NVIDIA A100 Core
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

71
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Tensor Core Microarchitecture (Volta)
n Each warp utilizes two tensor cores
n Each tensor core contains two “octets”

q 16 SIMD units per tensor core (8 per octet)
q 4x4 matrix-multiply and accumulate each cycle per tensor core

72* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.

���#$�"�����

	�$"�&���
�%���"

	�$"�&��
�%���" '	�$"�&���

�%���"

��$�$�-

��!�"�����%#�.
�!�"�����%#�/
�!�"�����%#�0

��
��
�.
3(
.6

	%&

��
��
�-
(0

��
��
�.
3(
.6

��
��
�.
3(
.6

�"�$�����

 $
��
"��

&�
�%
$�

��
%�

�$#

��"����" %!�- ��"����" %!�1

��
��
�-
(0

��$�$�.��$�$�/��$�$�0

��
��
�

/-
(/
0

��
��
��

5(
..

��
��
�

/.
(/
1

��
��
�1
(4

��
��
/-
(/
0

��
��

��
5(
..

�
��
��
/1
(/
4

��
��

�1
(4

���
��
�

/1
(/
4

���
��
�

./
(.
2

� � � �

7 7

7��!������

���#$�"#

��
)� $��" �%�$*�

���$

��
��
�
��
��

��
��
�
��
����

��
�.
/(
.2

��
��
/5
(/
.

7

��.3�	%�$�!���"

7

��0/�����"

�

���%�%��$ "��%���"

Figure 13: Proposed Tensor Core Microarchitecture

each FEDP unit, multiplication is performed in parallel in
the first stage and accumulation occurs over three stages for
a total of four pipeline stages. As each tensor core consists
of sixteen FP16 FEDP units, it is capable of completing one
4× 4 matrix multiplication each cycle.

V. MODELING AND EVALUATION

A. Modelling Tensor Cores
Our changes to model the tensor cores in Volta are avail-

able in the “dev” branch of GPGPU-Sim [24] on github3. We
extended the current version of GPGPU-Sim to support 16-
bit floating-point by using a half-precision C++ header-only
library [45]. The library provides an efficient implementation
of 16-bit floating-point conforming to the IEEE 754 half-
precision format. It provides common arithmetic operations
and type conversion. GPGPU-Sim currently only supports
SASS execution for the G90 architecture; therefore, we only
model tensor core operations at the PTX level. To do so,
we added functional and timing models for the wmma.load,
wmma.mma and wmma.store PTX instructions described in
Section II-C.

Our functional model of the wmma.load and wmma.store
PTX instructions support all possible layout combinations
for operand matrix A, B and C. Our functional model follows

3https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev

the operand matrix element to thread mapping shown in
Figure 7. We have verified the timing model generates
the exact same number of coalesced memory transactions
generated by the Titan V GPU for these operations.

Our functional model of the wmma.mma instruction sup-
ports all 32 possible configurations supported on the Titan V
GPU. A timing model for the tensor core functional unit
is added to the GPU pipeline. We interface our tensor
core timing model to the operand collector unit modeled
in GPGPU-Sim. Each wmma.mma instruction is issued to
the tensor core unit after all of its source operands are
ready in the operand collector. We updated the scoreboard to
check for RAW and WAW hazard associated with wmma.mma
instructions.

We validate our tensor core model by comparing against
an NVIDIA Tesla Titan V with CUDA Capability 7.0, hosted
by an Intel Core i7-4771 3.50GHz based workstation with
Ubuntu 16.04.4 LTS, CUDA Toolkit Version 9.0, NVIDIA
410.48 GPU driver, and gcc 4.9.4. Figure 14a compares the
cycles required to execute a WMMA based matrix-multiply
and accumulate kernel on the Titan V GPU and GPGPU-
Sim as matrix size varies. We find GPGPU-Sim tracks real
hardware very accurately with a standard deviation of less
than 5%. This is despite the fact our model is implemented
at the PTX level.

��

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 12,2021 at 09:41:33 UTC from IEEE Xplore. Restrictions apply.

Proposed* tensor core microarchitecture

SIMD unit

Unlike conventional SIMD,
register contents are not
private to each thread, but
shared inside the warp

Lecture on Graphics Processing Units

73https://youtu.be/eaxGCv0wRrU

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

14 October 2021

P&S Heterogeneous Systems

SIMD Processing and GPUs

Clarification of Some GPU Terms

75

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Pipelined
functional unit /
Scalar pipeline

Streaming
processor /
CUDA core

- Functional unit that executes instructions for one
GPU thread

SIMD functional
unit /
SIMD pipeline

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for
an entire warp

GPU core Streaming
multiprocessor

Compute unit It contains one or more warp schedulers and one
or several SIMD pipelines

