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Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous
systems

More suitable devices for each type of workload
Increased performance and energy efficiency
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Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor




Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control™) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
o Same operation concurrently applied to different pieces of data
o A form of ILP where instruction happens to be the same across data



SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)



Array vs. Vector Processors

Instruction Stream

LD VR € A[3:0]
ADD VR € VR, 1
MUL VR € VR, 2
ST A[3:0] € VR

ARRAY PROCESSOR

Same op @ same time

[LDO

LD1

LD2

LD3|

ADO
MUO
STO

Time

AD1
MU1

ST1
—

AD2
MU2
ST2

AD3
MU3
ST3

Different ops @ same space

VECTOR PROCESSOR

Different ops @ time

LDO
MY
LD1| ADO

LD2 | AD1 [MUO
LD3 | AD2 [MU1 STO|
AD3 |MU2 ST
N—

MU3 ST2
Same op @ space ST3
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Vector Processors (1)

A vector is a one-dimensional array of numbers

Many scientific/commercial programs use vectors
for (i = 0; i<=49; i++)
Cli] = (A[i] + B[i]) / 2

A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

Basic requirements
o Need to load/store vectors - vector registers (contain vectors)

o Need to operate on vectors of different lengths - vector length
register (VLEN)

o Elements of a vector might be stored apart from each other in
memory > vector stride register (VSTR)

Stride: distance in memory between two elements of a vector



Vector Stride Example: Matrix Multiply

A and B matrices, both stored in memory in row-major order jnearemory

»
-

A 0
Ao| O 1 2 3 4 5 Bo] O 1 2 3 4 5 6 7 8 9 1
6 7 8 9 10 | 11 10 |11 |12 | 183 | 14 |15 |16 | 17 | 18 | 19 2
20 3
4
30 5
40 6
A4x6 BGX1O — C4x10 50
Dot product of each row vector of
A with each column vector of B
Load A’s row 0 (Ay, through Ays) into vector register V, B

o Each time, increment address by 1 to access the next column
o Accesses have a stride of 1

Load B’s column 0 (By, through Bsy) into vector register V,
o Each time, increment address by 10 to access the next row
o Accesses have a stride of 10
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Vector Processors (11)

A vector instruction performs an operation on each element
in consecutive cycles

o Vector functional units are pipelined
o Each pipeline stage operates on a different data element

Vector instructions allow deeper pipelines

a No intra-vector dependencies - no hardware interlocking
needed within a vector

o No control flow within a vector

o Known stride allows easy address calculation for all vector
elements

Enables easy loading (or even early loading, i.e., prefetching) of
vectors into registers/cache/memory



Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irreqular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the

subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 10



Vector Registers

Each vector data register holds N M-bit values
Vector control registers: VLEN, VSTR, VMASK

Maximum VLEN can be N

o Maximum number of elements stored in a vector register
Vector Mask Register (VMASK)
o Indicates which elements of vector to operate on
o Set by vector test instructions
e.g., VMASK[i] = (V,[i] == 0)
M-bit wide M-bit wide

V0,0 V1,0
V0,1 V1,1

VO,N-1 V1,N-1

11



Loading/Storing Vectors from/to Memory

Requires loading/storing multiple elements

Elements separated from each other by a constant distance
(stride)
o Assume stride = 1 for now

Elements can be loaded in consecutive cycles if we can
start the load of one element per cycle

o Can sustain a throughput of one element per cycle

Question: How do we achieve this with a memory that
takes more than 1 cycle to access?

Answer: Bank the memory; interleave the elements across

banks
12



Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR || MDR| | MAR

EEEEEEEEEEEEEEEEEEEEEEETR Bank

15

MDR| | MAR

Data bus

Picture credit: Derek Chiou

Address bus

CPU
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Vectorizable Loops

A loop is vectorizable if each iteration is independent of any
other

For I =0 to 49

o C[i] = (A[i] + B[i]) / 2

Vectorized loop (each instruction and its latency):
MOVI VLEN = 50

/ dynamic instructions

MOVI VSTR =1

VLD VO = A 11 + VLEN -1
VLD V1 =B 11 + VLEN -1
VADD V2 = V0 + V1 4 + VLEN - 1
VSHFRV3 =V2 >> 1 1+ VLEN -1

VST C =V3 11 + VLEN -1

14



Basic Vector Code Performance

Assume no chaining (no vector data forwarding)

o i.e., output of a vector functional unit cannot be used as the
direct input of another

a The entire vector register needs to be ready before any
element of it can be used as part of another operation

One memory port (one address generator)
16 memory banks (word-interleaved)

49 11 49

1 1 11 49 11 49 4 49
|
|
|

1
| | ] ]
|

VO = A[0..49] \ V1 = B[0..49] \ ADD SHIFT STORE \

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3

285 cycles

15



Vector Code Performance - Chaining

= Vector chaining: Data forwarding from one vector
functional unit to another

1 1 11 49 11 49

Strict assumption:

VLD 0=A v v1 B : Each memory bank
has a single port
(memory bandwidth

y DD Voe v0+\x1 bottleneck)

These two VLDs cannot be
pipelined. WHY? :
‘ .

VSH LRV3 \72>>1 ‘
v 49

VLD and VST cannot be Kf@w ‘

= 182 cycles i lined. why?

16



Vector Code Pertormance — Multiple Memory Ports

Chaining and 2 load ports, 1 store port in each bank

1 1 11 49

VADD V2=V0+V1
1 49

VSHFR V3=V2>>1

11 49

79 cycles
19X perf. improvement! | vty |

17



Conditional Operations 1n a Loop

What if some operations should not be executed on a vector
(based on a dynamically-determined condition)?

loop: for (i=0; i<N; i++)
if (a[i] '= 0) then b[i]=al[i]*bl[i]

Idea: Masked operations

o VMASK register is a bit mask determining which data element
should not be acted upon

VLD VO = A
VLD V1 = B
VMASK = (VO != 0)
VMUL V1 = VO * V1
VST B = V1

o This is predicated execution. Execution is predicated on mask bit.
18



Another Example with Masking

for (i=0; i < 64; ++i)

if (ali] >= bl[i]) Steps to execute the loop in SIMD code
cfi] = ali]
1. Compare A, B to get
else | VMASK
cfi] = bli]
2. Masked store of Ainto C
A B VMASK 3. Complement VMASK
1 2 0
2 2 1 4. Masked store of B into C
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

19



Some Issues

Stride and banking

o As long as they are relatively prime to each other and there
are enough banks to cover bank access latency, we can
sustain 1 element/cycle throughput

Storage format of a matrix

o Row major: Consecutive elements in a row are laid out
consecutively in memory

o Column major: Consecutive elements in a column are laid out
consecutively in memory

o You need to change the stride when accessing a row versus
column

20



Vector Stride Example: Matrix Multiply

A and B matrices, both stored in memory in row-major order jnearemory

»
>

A 0
Aol O 1 2 3 4 5 Bo| O 1 2 3 4 5 6 7 8 9 1
6 7 8 9 | 10 | 11 10|11 |12 |13 |14 | 15|16 | 17 | 18 | 19 2
20 3
4
30 5
40 6
Auxs Bex1o — C4x10 50
Dot product of each row vector of
A with each column vector of B
Load A’s row 0 (A, through Ays) into vector register V, B m
o Each time, increment address by 1 to access the next column

to bank conflicts
Load B’s column 0 (Byg through Bspyrreovectorregrscer—s

o Each time, increment address
o Accesses have a stride of 10

How do we minimize them?

Oo|lo|N|[o|la|[d|lw]|N

—
o



Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR || MDR| | MAR

Data bus

...... Bank

15

MDR| | MAR

Picture credit: Derek Chiou

Address bus

CPU
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Minimizing Bank Contlicts

= More banks
= More ports in each bank

= Better data layout to match the access pattern
a Is this always possible?

= Better mapping of address to bank
o E.g., randomized mapping
o Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.

23



PSEUDO-RANDOMLY INTERLEAVED MEMORY

B. Ramakrishna Rau
Hewlett Packard Laboratories
1501 Page Mill Road

Palo Alto,

ABSTRACT

Interleaved memories are often used to provide the high
bandwidth needed by multiprocessors and high performance
uniprocessors such as vector and VLIW processors. The manner
in which memory locations are distributed across the memory
modules has a significant influence on whether, and for which
types of reference patterns, the full bandwidth of the memory
system is achieved. The most common interleaved memory
architecture is the sequentially interleaved memory in which
successive memory locations are assigned to successive
memory modules. Although such an architecture is the simplest
to implement and provides good performance with strides that
are odd integers, it can degrade badly in the face of even strides,
especially strides that are a power of two.

In a pseudo-randomly interleaved memory architecture,
memory locations are assigned to the memory modules in some
pseudo-random fashion in the hope that those sequences of
references, which are likely to occur in practice, will end up
being evenly distributed across the memory modules. The
notion of polynomial interleaving modulo an irreducible
polynomial is introduced as a way of achieving pseudo-random
interleaving with certain attractive and provable properties.
The theory behind this scheme is developed and the results of
simulations are presented.

Keywords: supercomputer memory, parallel memory,

interleaved memory, hashed memory, pseudo-random
interleaving, memory buffering.

CA 94303

The conventional solution is to provide each processor
with a data cache constructed out of SRAM. The problem is
maintaining cache coherency, at high request rates, across
multiple private caches in a multiprocessor system. The
alternative is to use a shared cache if the additional delay
incurred in going through the processor-cache interconnect is
acceptable. The problem here is that the bandwidth, even with
SRAM chips, is inadequate unless some form of interleaving is
employed in the cache. So once again, the interleaving scheme
used is an issue. Furthermore, data caches are susceptible to
problems arising out of the lack of spatial and/or data locality
in the data reference pattern of many applications. This
phenomenon has been studied and reported elsewhere, e.g., in
[4,5]. Since data caches are essential to achieving good
performance on scalar computations with little parallelism, the
right compromise is to provide a data cache that can be
bypassed when referencing data structures with poor locality.
This is the solution employed in various recent products such
as the Convex C-1 and Intel's i860.

Interleaved memory systems. Whether or not a data
cache is present, it is important to provide a memory system
with bandwidth to match the processors. This is done by
organizing the memory system as multiple memory modules
which can operate in parallel. The manner in which memory
locations are distributed across the memory modules has a
significant influence on whether, and for which types of
reference patterns, the full bandwidth of the memory system is
achieved.

Engineering and scientific applications include

Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.

Minimizing Bank Contlicts: Recommended Reading

24



SIMD Operations in Modern ISAs




MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image X on top of the background in image y

for (i=0; i<image_size; i++) {

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

MM1

Image x[ | MM3

Bit mask mm1

if (x{i] == Blue) new_imageli] =ylil;
else new_imageli] = x[i;

Blue Blue Blue Blue Blue | Biue Blue Blue
’ »
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2'=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 20



MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
M4 (B Y, #@Y, df@ Y. i Vel YEP Y OP Y, #F V.4 Mm1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000[0~0000]0xFFFF J0xFFFF|
MM 1 ]0><0000}0><0000|0><FFFF|0xFFﬂ0x0000|0x0000|0><FFFﬂOxFFFﬂ MM X, | X | Xs | X | Xg [ X% | X X |
MM4 [0x0000]0x0000]% Y5 9% Y, 410x0000[0x0000(% Y;%P Yo& MM1| X, | Xs [0x0000/0x0000] X5 | X, [0x0000|0x0006|

g

POR MM4, MM1

MMA] X, | X [BY T Y8 Xa | Xo [P Y 9P Y4

for (i=0; i<image_size; i++) {
if (x[i] == Blue) new_imagelil =ylil;
else new_imageli] = x[il;

}

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movg ~ mm3,memi - /* Load eight pixels from
o I woman'’s image -
Movg ~ mmd4, mem2  /*Load eight pixels from the

o ' blossom image
Pcmpegb. mm1, mm3

Pand  mmd4, mm1.
Pandn  mmi, mm3

Por mmd, mmt.

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 27




Lecture on SIMD Processing
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Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous
systems

More suitable devices for each type of workload
Increased performance and energy efficiency

( CPU CPU CPU ) q )
core || core | .| core FPGA
|\ 0 1 N'l J GPU
e ][ L1 ][ 1 | J) Scratchpad | DMA
L2 | | L2 ) 4
A A |
| | |
I ( Coherent interconnect ) |
VoL o
( Crossbar )
[ DRAM controller ]

A
[ DRAM ] [ DRAM ] [ DRAM ] [ DRAM ] ‘ Non-coherent bus

I Coherent bus

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017. 29



GPUs (Graphics Processing Units)




NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

Memory Ct

Memory Controller | Memory C

13jj03u09 Alouwnp

Memory C

Memory C

13)j0u09 Alowapy

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache




Recall: Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Different ti
LD VR € A[3:0] Lpo| D1 [LD2 D3  Lpp Drerenters@tme
ADD VR ¢ VR, 1
’ ADO| AD1 |AD2
MUL VR € VR 2 0 AD3 LD1 | ADO
ST A[3:0] € VR MUO| MU1 IMU2 MU3 LD2 | AD1 [MUO
STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
—
Different ops @ same space AD3 |MU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—™> «<——Space———>
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NVIDIA A100 Core

L1 Instruction Cache

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 [FP32 FP64
INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

TENSOR CORE TENSOR CORE
INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32  FP64 INT32INT32 FP32FP32  FP64 Sparse Tensor I
Input activations
Core P
INT32 INT32 FP32 FP32  FP64 INT32INT32 FP32FP32  FP64
Select

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

=

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32  FP64

FP32 FP32  FP64

FP32[FP32  FPo4

FP32 FP32  FPes

TENSOR CORE

FP32 FP32  FP64

FP32FP32  FPes4

FP32 FP32 FP64

FP32 FP32  FPo4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FP32  FPe4
FP32FP32  FPoa
FP32FP32  FPos4

FP32 FP32  FPe4

TENSOR CORE

FP32[FP32  FPos4

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32  FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

192KB L1 Data Cache / Shared Memory

Tex

Tex

Dot-product

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

Dense trained
weights

g ¥

Fine-tune weights

Non-zero
data values
Fine-tuned sparse and

compressed weights

g
=

Output activations

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR || MDR| | MAR

Data bus

...... Bank

15

MDR| | MAR

Picture credit: Derek Chiou

Address bus

CPU
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GPUs are SIMD Engines Underneath

= The instruction pipeline operates like a SIMD pipeline (e.g.,
an array processor)

= However, the programming is done using threads, NOT
SIMD instructions

= To understand this, let’'s go back to our parallelizable code
example

= But, before that, let’s distinguish between
a Programming Model (Software)
VS.
a Execution Model (Hardware)

35



Programming Model vs. Hardware Execution Model

Programming Model refers to how the programmer expresses
the code

o E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow,
Multi-threaded (MIMD, SPMD), ...

Execution Model refers to how the hardware executes the
code underneath

o E.g., Out-of-order execution, Vector processor, Array processor,
Dataflow processor, Multiprocessor, Multithreaded processor, ...

Execution Model can be very different from the Programming
Model

o E.g., von Neumann model implemented by an OoO processor
o E.g., SPMD model implemented by a SIMD processor (a GPU)

36



How Can You Exploit Parallelism Here?

for (1i=0; i < N; i++)
Scalar Sequential Code  C[1l = Ali]l + B[1];

Let’s examine three programming
options to exploit instruction-level
parallelism present in this sequential
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)

37



Prog. Model 1: Sequential (SISD) ™ ¢i) = atsy + s1i1;

Scalar Sequential Code ™ Can be executed on a:

= Pipelined processor

= Out-of-order execution processor

o Independent instructions executed
when ready

a Different iterations are present in the
instruction window and can execute in
parallel in multiple functional units

o In other words, the loop is dynamically
unrolled by the hardware

= Superscalar or VLIW processor

o Can fetch and execute multiple
instructions per cycle

38



Prog. Model 2: Data Parallel (SIMDJ™ i) = ati) + ati1;

Scalar Sequential Code Vectorized Code

VLD A->V1

Iter. VLD B->V2

VADD V1+V2->V3

VST V3-=>C

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD
instruction to execute the same instruction from
all iterations across different data

Best executed by a SIMD processor (vector, array)
39




for (i=0; i < N; i++)

Prog. Model 3: Multithreaded C[i] = A[i] + B[il;

Scalar Sequential Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread
to execute each iteration. Each thread does the
same thing (but on different data)

Can be executed on a MIMD machine

40



for (i=0; i < N; i++)

Prog. Model 3: Multithreaded C[i] = A[i] + B[il;

1 > Realization: Each iteration is independent

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMT machine

Single Instruction Multiple Thread




A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

42



for (i=0; i < N; i++)

SPMD Oon SIMT Machine C[i] = A[i] + B[il;

(i.e., at the same PC)

This particular model is also called:

SPMD: Single Program Multiple Data

A GPU executes it using the SIMT model:

Single Instruction Multiple Thread




Graphics Processing Units

SIMD not |

“xposed to Programmer (SIMT)




SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently (on any type of scalar pipeline) > MIMD processing

o Can group threads into warps flexibly - 1.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing
45



Fine-Grained Multithreading of = for 1=0; 1+ < 57 144
C[i] = A[i] + B[1i];

Warps
= Assume a warp consists of 32 threads

= If you have 32K iterations, and 1 iteration/thread = 1K warps

= Warps can be interleaved on the same pipeline = Fine grained
multithreading of warps

Warp 20 at PC X+2

Iter:. Iter.
23*32 + 1 20*%32 + 2

46



Fine-Grained Multithreading




Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough
threads to cover the whole pipeline

Instruction Operands

Stream 3 Instruction
Instruction Fetch

Stream 2 Instruction
Operand Fetch

Stream 1 Instruction
Executicn Phase

tream B Instruction
Execution Phase

Stream 4 Instruction

Resuit Store
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Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Idea: Hardware has multiple thread contexts (PC+register
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and Instruction Fetch

Stream 2 Instruction

data dependences within a thread Operand Fatoh

tream ! Instruction
Execution Phase

-- Single thread performance suffers tream BTnstroction

-- Extra logic for keeping thread contexts fpesten Shast

-- Does not overlap latency if not enough
threads to cover the whole pipeline

Resuit Store

[St.ream 4 Instruction

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

1,193 views * Streamed live on Apr 22, 2021 |b 42 0 SHARE SAVE

@ Onur Mutlu »Lectures ANALYTICS EDIT VIDEO
&> 16.2K subscribers

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2s0XY2Zi_uej3aY39YB5pfW4SJ7LIN&index=16 50



Lectures on Fine-Grained Multithreading

= Digital Design & Computer Architecture, Spring 2021, Lecture 14

o Pipelined Processor Design (ETH, Spring 2021)

o https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL50Q2s0XY2Zi uej3aY39Y
B5pfW4SJ7LIN&index=16

= Digital Design & Computer Architecture, Spring 2020, Lecture 18c

o Fine-Grained Multithreading (ETH, Spring 2020)

o https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL502s0XY2Zi FRrloMa2fU
YWPGiZUBQo2&index=26

https:/ /www.youtube.com/onurmutlulectures 51



https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

Warps and Warp-Level FGMT

Warp: A set of threads that execute the same instruction
(on different data elements) > SIMT (Nvidia-speak)

All threads run the same code
Warp: The threads that run lengthwise in a woven fabric ...

-~ | Thread Warp 3
-~ | Thread Warp 8
Thread Warp Common PC 7 :
Scalar Scalar| Scalar Scalar ,-' Thread Warp 7
ThreadThreadThreads « « |Thread | , v
W X Y Z ' T
R SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



High-Level View of a GPU

(PC, Mask) H
I-Cache
Shader| Shader| |Shader| ,,, | Shader +
Core Core Core Core
Decode
b1 S o e e
. \ '
Interconnection Network \ : 8_3 & 5_3 8_3 |
t t t \\ I 2 g 2 2 .
\ |
Memory = | Memory Memory | :-aq Sl &
Controller| |Controller Controller] '\ | '\ & |2| & |&])]
4 ¢ A SHEEREEE
\| 1 SIMD Execution )
GDDR3 GDDR3 GDDR3| | - 77T~ =—=—-—-

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

Y
Thread Warp 3
Thread Warp 8

| ThreadIWarp 7 |

Warps available
for scheduling

SIMD Pipeline

.
| |-Fetch |
\ 4

Decode |
L 2

S ESE

<NV ¢ N €
<N ¢ 3

D-Cache |-

Al Hit?l [ Do |
%/

Warps accessing

memory hierarchy
Miss?

Thread Warp 1
Thread Warp 2

| Thread Warp 6 |

|  Writeback |

54



Warp Execution

A[6]
A[5]
Al4]
A[3]

l
\

Execution using
one pipelined
functional unit
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} 19T

Time
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Slide credit: Krste Asanovic
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SIMD Execution Unit Structure

Registers
for each
Thread

Lane

(
LU ) L L
AL W i [ AN Y AN ) I A
"1 "1 "1 "1
| | | | ¥ | | ¥ | | L
Registers for Registers for Registers for Registers for
thread IDs thread IDs thread IDs thread IDs
0,4,8, .. 1,5,09, .. 2,6, 10, ... 3,7, 11, ...
V| V| V| V|
AV G i VNN G LMY A B A &
JAVEY I i RV I PN I B LU
) . . .

Memory Subsystem

Slide credit: Krste Asanovic




Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
oooooq‘vﬁjﬂ
OOOOO(L--e--g'AAAAAH-A-LN/l
time olo|o|o|o|o]e[blalalala[a[iVZ Au(m/EEE]E[E[E
veu CICICIEIEIEIE AlAAAAAIAAEDmE|E D E DD
O[O[O[O[O|F~""NA[A[A|AIAAAA|EIEEBBEEE
OQQOQ(L--e--g'AAAAA4--A- e DD
olo]olololo]o|blalalalalaliV> AnE|mEm|E[E[m
olojo|o|o|o|ololalalalalalalaAlAlm|m|iE|m i E DD
AlAA|A|AA|A|AlBE|E|E DB DD
I

| Warp issue >

Slide credit: Krste Asanovic 57



SIMT Memory Access

= Same instruction in different threads uses thread id to
index and access different data elements

Let's assume N=16, 4 threads per warp = 4 warps

10 11 12 13 14 15 Threads

10 11 12 13 14 15 Data elements

Slide credit: Hyesoon Kim 58



Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args); FEERL

SRREER

RRLLR

Slide credit: Hwu & Kirk
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Amdahl’s Law

Amdahl’s Law

o f: Parallelizable fraction of a program
o N: Number of processors

Speedup =

f
N

1-f +

o Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” AFIPS 1967.

Maximum speedup limited by serial portion: Serial bottleneck

All parallel machines “suffer from” the serial bottleneck
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Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args); FEERL

SRREER

RRLLR

Slide credit: Hwu & Kirk
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Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + BJii];

b
CUDA code I

[// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadldx.x;
int varA = aal[tid];
int varB = bb[tid];
C[tid] = varA + varB;

W J

Slide credit: Hyesoon Kim



From Blocks to Warps

N G PU CO res : SI M D pi pel i nes Streaming Multiprocessor
o Streaming Multiprocessors (SM) | rtcton o |

| Warp Scheduler || Warp Scheduler |
. | Dispatch Unit I Dispatch Unit |
o Streaming Processors (SP)
SP | sP SP | sp I—,,%l
Block divided i e
= Blocks are divided Into warps A
. LD/ST
o SIMD unit (32 threads) N =
LD/ST ST
sP | spP SP | spP S
LD/ST
Block 0’s warps Block 1’s warps Block 2’s warps SRR SRR SR SE Lot |
I l I SFU
SP | sP SP | SP %
t0t1t2..t31 t0t1t2..t31 t0tlt2..t31 LD/ST
NNNNNNNNNY NNNNNNNNNNY NNNNNNNNN SP SP SP SP
SO S [ tosT ] SFU
p : p 3 ¢ 3 LD/ST
| & 4 || & 4 u P e 4 SP | sP SP | SP EEEE
Shared Memory / L1 Cache

| Constant Cache |

NVIDIA Fermi architecture
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Warp-based SIMD vs. Traditional SIMD

Traditional SIMD contains a single thread
o Sequential instruction execution; lock-step operations in a SIMD instruction

o Programming model is SIMD (no extra threads) - SW needs to know
vector length

o ISA contains vector/SIMD instructions

Warp-based SIMD consists of multiple scalar threads executing in a
SIMD manner (i.e., same instruction executed by all threads)

o Does not have to be lock step

o Each thread can be treated individually (i.e., placed in a different warp)
- programming model not SIMD

SW does not need to know vector length
Enables multithreading and flexible dynamic grouping of threads
o ISA is scalar > SIMD operations can be formed dynamically

o Essentially, it is SPMD programming model implemented on SIMD

hardware
64



SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model

SIMD: A single sequential instruction stream of SIMD
instructions = each instruction specifies multiple data inputs

o [VLD, VLD, VADD, VST], VLEN

SIMT: Multiple instruction streams of scalar instructions >
threads grouped dynamically into warps

o [LD, LD, ADD, ST], NumThreads

Two Major SIMT Advantages:

o Can treat each thread separately - i.e., can execute each thread
independently on any type of scalar pipeline > MIMD processing

o Can group threads into warps flexibly - i.e., can group threads
that are supposed to fruly execute the same instruction >

dynamically obtain and maximize benefits of SIMD processing




Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Slide credit: Tor Aamodt

Thread Warp

Common PC

Thread

1

Thread
2

Thread

Thread
4

67



Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1

o Groups scalar threads

into warps Brangh 1 1 1 1 1 1 vy

Patnal| | | | |
Branch divergence
occurs when threads Path\Bj |
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

Slide credit: Tor Aamodt 68



Evolution of NVIDIA GPUs

H#HFunctional Units

8000

7000

6000

5000

4000

3000

2000

1000

=@=Functional units (stream processors)

-@-GFLOPS

GTX 285 GTX 480 GTX 780 GTX 980 P100 (2016) V100 (2017) A100 (2020)
(2009) (2010) (2013) (2014)

25000.0

20000.0

15000.0

10000.0

5000.0

0.0

GFLOPS

09



NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

Memory Ct

Memory Controller | Memory C

13jj03u09 Alouwnp

Memory C

Memory C

13)j0u09 Alowapy

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache




NVIDIA A100 Core

L1 Instruction Cache

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64
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INT32 INT32
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Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
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FP32 FP32  FPes

TENSOR CORE

FP32 FP32  FP64
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SFU
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ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
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TENSOR CORE
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FP32 FP32  FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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Tensor Core Microarchitecture (Volta)

= Each warp utilizes two tensor cores
= Each tensor core contains two “octets”
o 16 SIMD units per tensor core (8 per octet)
0 4x4 matrix-multiply and accumulate each cycle per tensor core

FP16 Multiplier

Pipeline
\Y/ FP32 Adder

Registers S I M D u N |t
Accumulator Buffer

DP
V (Dot Product)

o] Register File =t
g | | 1 |
'g OperandBus 1 ]
<l\: é : : : : Operand Bus 2 : : ]
g - — — perand Bus 3 2 : g:i:%iﬁl
g B9 7 T omensoR [T T2 JELTWD o[\ e
_ng TENsORXg‘Z/ XJ %/CORE AV AVARE Unlike conventional SIMD,
< 7 ORE p > atrix V : V] .
: b register contents are not
Octet 3 Octet 2 Octet 1 DDDDEEEO private to each thread, but
. —hreagietoup 0 —Threqdaroup 4 shared inside the warp
m; G ce=o IFE T o| OctetO %
Writeback

Proposed* tensor core microarchitecture

* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019. 72



Lecture on Graphics Processing Units

ETHzirich

Dynamic Warp Formation Example
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Clarification of Some GPU Terms

Vector length

Pipelined
functional unit /
Scalar pipeline

SIMD functional
unit /
SIMD pipeline

GPU core

Warp size

Streaming
processor /
CUDA core

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Streaming
multiprocessor

Wavefront size

Vector ALU

Compute unit

Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Functional unit that executes instructions for one
GPU thread

SIMD functional unit that executes instructions for
an entire warp

It contains one or more warp schedulers and one
or several SIMD pipelines
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