
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

28 October 2021

P&S Heterogeneous Systems

GPU Memory Hierarchy



GPU Programming



Recommended Readings (I)

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017

3



Recommended Readings (II)

n CUDA Programming Guide
q https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

4

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


GPU Computing
n Computation is offloaded to the GPU
n Three steps

q CPU-GPU data transfer (1)
q GPU kernel execution (2)
q GPU-CPU data transfer (3)

CPU 
memory

CPU 
cores Matrix

GPU 
memory

GPU 
coresMatrix

1

3

2

5



n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure

6Slide credit: Hwu & Kirk



n Function prototypes
float serialFunction(…);
__global__ void kernel(…);

n main()
q 1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);
q 2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);
q 3) Execution configuration setup: #blocks and #threads

q 4) Kernel call – kernel<<<execution configuration>>>(args…);
q 5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …);

n Kernel – __global__ void kernel(type args,…)
q Automatic variables transparently assigned to registers

q Shared memory:  __shared__
q Intra-block synchronization: __syncthreads();

re
pe

at
as

 n
ee

de
d

Traditional Program Structure in CUDA

7Slide credit: Hwu & Kirk



CUDA Programming Language
n Memory allocation

cudaMalloc((void**)&d_in, #bytes);

n Memory copy
cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

n Kernel launch
kernel<<< #blocks, #threads >>>(args);

n Memory deallocation
cudaFree(d_in);

n Explicit synchronization
cudaDeviceSynchronize();

8



Vector Addition (I)
n Our first GPU programming example
n We assign one GPU thread to each element-wise addition

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

9



Vector Addition (II)
n The whole set of threads is called a grid
n We need a way to assign threads to GPU cores

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

10



Vector Addition (III)
n We group threads into blocks

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

Block 0 Block 1 Block 2 Block 3

11



Host Code Example: Vector Addition
void vecadd(float* A, float* B, float* C, int N) {

// Allocate GPU memory
float *A_d, *B_d, *C_d;
cudaMalloc((void**) &A_d, N*sizeof(float));
cudaMalloc((void**) &B_d, N*sizeof(float));
cudaMalloc((void**) &C_d, N*sizeof(float));

// Copy data to GPU memory
cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);

// Perform computation on GPU
...

// Copy data from GPU memory
cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);

// Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);

}

12
Slide credit: Izzat El Hajj

const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);



Boundary Conditions
n What if the size of the input is not a multiple of the number 

of threads per block?
q Solution: use the ceiling to launch extra threads then omit the 

threads after the boundary

n Kernel code

const unsigned int numBlocks = (N +numThreadsPerBlock – 1)/numThreadsPerBlock;

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

int i = blockDim.x*blockIdx.x + threadIdx.x;

if(i < N) {
C[i] = A[i] + B[i];

}
}

13



Indexing and Memory Access
n Images are 2D data structures

q height x width
q Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width

Image[0][1]

Image[1][2]

14

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7



Image Layout in Memory
n Row-major layout
n Image[j][i] = Image[j x width + i] 

Image[0][1] = Image[0 x 8 + 1]

Image[1][2] = Image[1 x 8 + 2]

15

Stride = width



Indexing and Memory Access: 2D Grid
n 2D blocks

q gridDim.x, gridDim.y

Block (0, 0)

blockIdx.x = 2
blockIdx.y = 1

Row = blockIdx.y * 
blockDim.y + threadIdx.y

Row = 1 * 2 + 1 = 3

threadIdx.x = 1
threadIdx.y = 0

Col = blockIdx.x * 
blockDim.x + threadIdx.x

Col = 0 * 2 + 1 = 1

Image[3][1] = Image[3 * 8 + 1]

16



GPU Memories



NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

18



NVIDIA A100 Core
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

19

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Memory in the GPU Architecture

20

…

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

SM

Core

Control

Core

Core Core

Core Core

Core Core

L2 Cache

Global Memory

Registers

Shared 
Memory L1 Cache

Constant Cache

Registers

Shared 
Memory L1 Cache

Constant Cache

Registers

Shared 
Memory L1 Cache

Constant Cache

≈1 cycle

≈5 cycles

≈5 cycles

≈500 cycles

Slide credit: Izzat El Hajj



n Example of data movement between GPU global memory 

(DRAM) and GPU cores.

NVIDIA A100 Tensor Core GPU Architecture In-Depth 

40 
NVIDIA A100 Tensor Core GPU Architecture 
 

 
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy 
instruction that bypasses L1 cache and register file (RF).  Additionally, A100’s more efficient Tensor 
Cores reduce shared memory (SMEM) loads. 

Figure 15. A100 SM Data Movement Efficiency 

New asynchronous barriers work together with the asynchronous copy instruction to enable 
efficient data fetch pipelines, and A100 increases maximum SMEM allocation per SM 1.7x to 
164 KB (vs 96 KB on V100). With these improvements A100 SMs continuously data stream 
data to keep the L2 cache constantly utilized. 
 
L2 Cache and DRAM Bandwidth improvements - The NVIDIA A100 GPU’s increased 
number of SMs and more powerful Tensor Cores in turn increase the required data fetch rates 
from DRAM and L2 cache. To feed the Tensor Cores, A100 implements a 5-site HBM2 memory 
subsystem with bandwidth of 1555 GB/sec, over 1.7x faster than V100. A100 further provides 
2.3x the L2 cache read bandwidth of V100.  
 
Alongside the raw data bandwidth improvements, A100 improves data fetch efficiency and 
reduces DRAM bandwidth demand with a 40 MB L2 cache that is almost 7x larger than that of 
Tesla V100. To fully exploit the L2 capacity A100 includes improved cache management 
controls. Optimized for neural network training and inferencing as well as general compute 
workloads, the new controls ensure that data in the cache is used more efficiently by minimizing 
writebacks to memory and keeping reused data in L2 to reduce redundant DRAM traffic. 
  

NVIDIA V100 & A100 Memory Hierarchy

A100 feature: 

Direct copy from L2 

to scratchpad, 

bypassing L1 and 

register file.

21https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf



CUDA Variable Type Qualifiers

n __device__ is optional when used with __shared__, or __constant__

n Recall cudaMalloc(…) allocates memory from the host
q Constant memory can also be allocated and initialized from the host

n Automatic variables without any qualifier reside in a register
q Except arrays that reside in global memory

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread
int localArr[N]; global thread thread

__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application

22



Memory Hierarchy in CUDA Programs

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host

23



Data Reuse
n Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){

sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
}

}

24



Data Reuse: Tiling
n To take advantage of data reuse, we divide the input into tiles 

that can be loaded into shared memory

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
…
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

}
}

25



n void __syncthreads();
n Synchronizes all threads in a block

n Once all threads in a block have reached this point, 
execution resumes normally

n Used to avoid RAW / WAR / WAW hazards when 
accessing shared or global memory

26

Synchronization Function



Tiling/Blocking in On-chip Memories
n Tiling or Blocking

q Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache (or other on-
chip memory, e.g., scratchpad)

q Avoids cache conflicts between different chunks of 
computation

q Essentially: Divide the working set so that each piece fits in 
the cache

q Let’s first see an example for CPUs

27



Naïve Matrix Multiplication (I)
n Matrix multiplication: C = A x B
n Consider two input matrices A and B in row-major layout

q A size is M x P
q B size is P x N
q C size is M x N

28

A

B

C

P

M

P N

i
jk

k



Naïve Matrix Multiplication (II)
n Naïve implementation of matrix multiplication has poor 

cache locality

29

#define A(i,j) matrix_A[i * P + j] 
#define B(i,j) matrix_B[i * N + j] 
#define C(i,j) matrix_C[i * N + j]

for (i = 0; i < M; i++){ // i = row index
for (j = 0; j < N; j++){ // j = column index

C(i, j) = 0; // Set to zero
for (k = 0; k < P; k++) // Row x Col

C(i, j) += A(i, k) * B(k, j); 
} 

} 

A

B

C

P

M

P N

i
jk

k

Consecutive accesses to B are far from 
each other, in different cache lines. 
Every access to B is likely to cause a 
cache miss



Tiled Matrix Multiplication (I)
n We can achieve better cache 

locality by computing on 
smaller tiles or blocks that fit in 
the cache
q Or in the scratchpad memory 

and register file if we compute 
on a GPU

30

A

B

C

P

M

P N

k

k
tile_dim

ti
le
_d
im i

j

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4


Tiled Matrix Multiplication (II)
n Tiled implementation operates on submatrices (tiles or 

blocks) that fit fast memories (cache, scratchpad, RF)

31

#define A(i,j) matrix_A[i * P + j] 
#define B(i,j) matrix_B[i * N + j] 
#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){
for (J = 0; J < N; J += tile_dim){ 

Set_to_zero(&C(I, J)); // Set to zero 
for (K = 0; K < P; K += tile_dim) 

Multiply_tiles(&C(I, J), &A(I, K), &B(K, J)); 
} 

} 

Multiply small submatrices (tiles or 
blocks) of size tile_dim x tile_dim

A

B

C

P

M

P N

k

k
tile_dim

ti
le
_d
im i

j

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4


Lecture on Advanced Caches

32
DDCA - Lecture 24: Advanced Caches (Spring 2021) https://youtu.be/89Q7OdhmQ9o



N

N

Example: Matrix-Matrix Multiplication (I)

C = A x B

A

B

C

N

N

N

N

Slide credit: Izzat El Hajj
33



N

N

Example: Matrix-Matrix Multiplication (II)

A

B

C

N

N

N

N

Parallelization approach: assign one thread to each element in the output matrix (C)

Slide credit: Izzat El Hajj

C = A x B

34



Example: Matrix-Matrix Multiplication (III)

__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;
for(unsigned int i = 0; i < N; ++i) {

sum += A[row*N + i]*B[i*N + col];
}
C[row*N + col] = sum;

}

Slide credit: Izzat El Hajj
35

N

N

A

B

C

N

N

N

N

C = A x B



N

N

Reuse in Matrix-Matrix Multiplication (I)

A

B

C

N

N

N

N

Some of the 
threads in the 
same thread 
block use the 

same input data

Slide credit: Izzat El Hajj

C = A x B

36



N

N

Reuse in Matrix-Matrix Multiplication (II)

A

B

C

N

N

N

N

Some of the 
threads in the 
same thread 
block use the 

same input data

Slide credit: Izzat El Hajj

C = A x B

37



Reuse in Matrix-Matrix Multiplication (III)
n Sometimes, we are lucky:

q The thread finds the data in the L1 cache because it was 
recently loaded by another thread

n Sometimes, we are not lucky:
q The data gets evicted from the L1 cache before another 

thread tries to load it
n Solution:

q Let the threads work together to load part of the data and 
ensure that all threads that need it use it before loading more 
data

q Use shared memory to ensure data stays close
q Optimizing called tiling because divides input to tiles

Slide credit: Izzat El Hajj
38



N

N

Tiled Matrix-Matrix Multiplication (I)

A

B

C

N

N

N

N

Step 1: Load 
the first tile of 

each input 
matrix to 

shared memory 
(each thread 

loads one 
element)

Slide credit: Izzat El Hajj

C = A x B

39



Tiled Matrix-Matrix Multiplication (II)

Ctile = Atile x Btile

Atile

Btile

Ctile

Step 2: Each 
thread 

computes its 
partial sum 

from the tiles in 
shared memory 
(threads wait 
for each other 

to finish)

Slide credit: Izzat El Hajj
40



N

N

Tiled Matrix-Matrix Multiplication (III)

A

B

C

N

N

N

N

…repeat for 
the next tile

Slide credit: Izzat El Hajj

C = A x B

41



N

N

Tiled Matrix-Matrix Multiplication (IV)

A

B

C

N

N

N

N

…and the 
next tile

Slide credit: Izzat El Hajj

C = A x B

42



Tiled Matrix-Matrix Multiplication (V)
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

// Load tile to shared memory
A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
__syncthreads();

// Compute with tile
for(unsigned int i = 0; i < TILE_DIM; ++i) {

sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
}
__syncthreads();

}

C[row*N + col] = sum;

Declare arrays in shared memory

Threads wait for each other to finish loading before computing

Threads wait for each other to finish computing before loading

Slide credit: Izzat El Hajj
43



Tiled Matrix Multiplication on GPU

44
Computer Architecture - Lecture 9: GPUs and GPGPU Programming (Fall 2017) https://youtu.be/mgtlbEqn2dA?t=8157



Recommended Readings

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 4: Memory and data locality

45



Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

28 October 2021

P&S Heterogeneous Systems

GPU Memory Hierarchy


