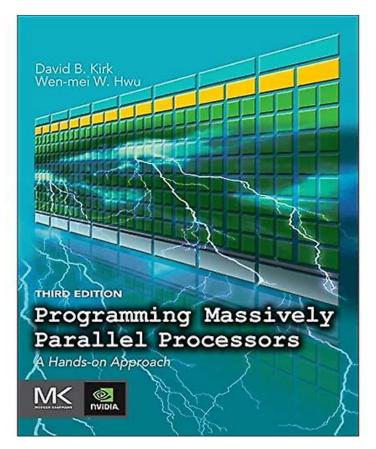
P&S Heterogeneous Systems GPU Memory Hierarchy

> Dr. Juan Gómez Luna Prof. Onur Mutlu ETH Zürich Fall 2021 28 October 2021

GPU Programming

Recommended Readings (I)

Hwu and Kirk, "Programming Massively Parallel Processors," Third Edition, 2017



Recommended Readings (II)

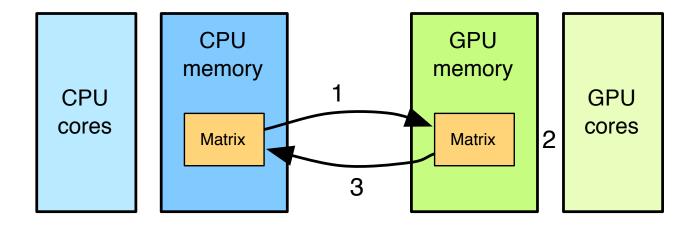
CUDA Programming Guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

	CUDA TOOLKIT DOCUMENTATION				
CUDA Toolkit v11.4.2	Programming Guide (<u>PDF</u>) - v11.4.2 (<u>older</u>) - Last updated September 7, 2021 - <u>Send Feed</u>				
Programming Guide					
▷ 1. Introduction	CUDA C++ Programming Guide				
≥ 2. Programming Model	The programming guide to the CUDA model and interface.				
3. Programming Interface					
▷ 4. Hardware Implementation	Changes from Version 11.3				
5. Performance Guidelines					
A. CUDA-Enabled GPUs	Added <u>Graph Memory Nodes</u> . Examplined Aurophysics SHAT Decomposing Model				
B. C++ Language Extensions	Formalized <u>Asynchronous SIMT Programming Model</u> .				
C. Cooperative Groups	1. Introduction				
D. CUDA Dynamic Parallelism					
E. Virtual Memory Management	1.1. The Benefits of Using GPUs				
F. Stream Ordered Memory Allocator	The Graphics Processing Unit (GPU) ¹ provides much higher instruction throughput and memory bandwidth than the CPU within a similar price and power envelope. Many applications leverage these higher capabilities to run faster on the GPU than on the CPU (see <u>GPU Applications</u>).				
▷ G. Graph Memory Nodes	Other computing devices, like FPGAs, are also very energy efficient, but offer much less programming flexibility than GPUs.				
> H. Mathematical Functions	This difference in capabilities between the GPU and the CPU exists because they are designed with different goals in mind. While the CPU is				
▷I. C++ Language Support	designed to excel at executing a sequence of operations, called a thread, as fast as possible and can execute a few tens of these threads in				
▷ J. Texture Fetching	parallel, the GPU is designed to excel at executing thousands of them in parallel (amortizing the slower single-thread performance to a				
▷ K. Compute Capabilities	greater throughput).				
▷ L. Driver API	The GPU is specialized for highly parallel computations and therefore designed such that more transistors are devoted to data processing				
M. CUDA Environment Variables	rather than data caching and flow control. The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a GPU.				

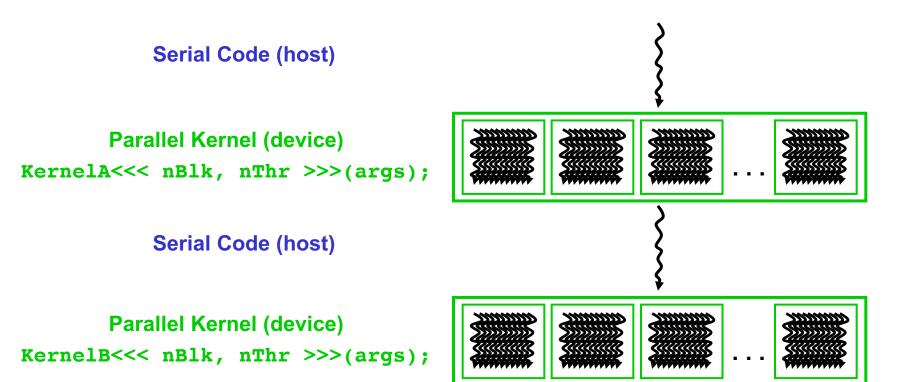
GPU Computing

- Computation is offloaded to the GPU
- Three steps
 - CPU-GPU data transfer (1)
 - □ GPU kernel execution (2)
 - GPU-CPU data transfer (3)



Traditional Program Structure

- CPU threads and GPU kernels
 - Sequential or modestly parallel sections on CPU
 - Massively parallel sections on GPU



Traditional Program Structure in CUDA

Function prototypes

float serialFunction(...);
 global void kernel(...);

- main()
 - 1) Allocate memory space on the device cudaMalloc(&d_in, bytes);
 - 2) Transfer data from host to device cudaMemCpy(d_in, h_in, ...);
 - a 3) Execution configuration setup: #blocks and #threads
 - 4) Kernel call kernel << execution configuration >>> (args...);
 - 5) Transfer results from device to host cudaMemCpy(h_out, d_out, ...);
- Kernel __global___ void kernel(type args,...)
 - Automatic variables transparently assigned to registers
 - Shared memory: _____shared____
 - Intra-block synchronization: _____syncthreads();

s need

epeat

CUDA Programming Language

Memory allocation

cudaMalloc((void**)&d_in, #bytes);

Memory copy

cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

Kernel launch

kernel<<< #blocks, #threads >>>(args);

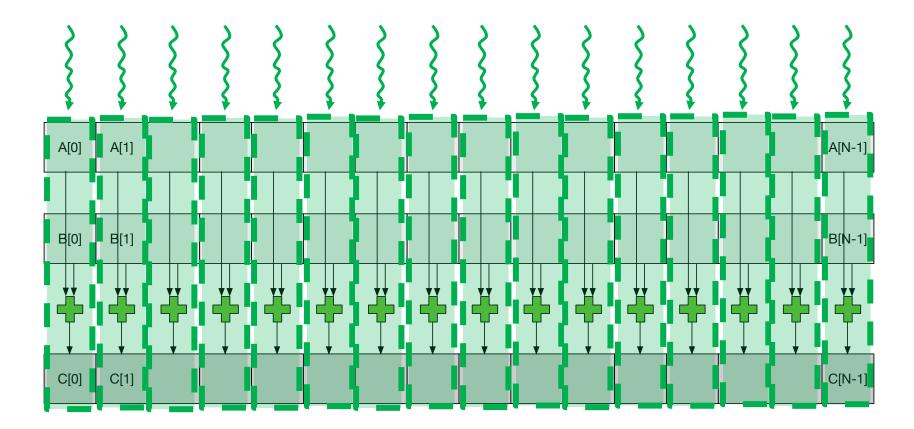
Memory deallocation cudaFree(d_in);

• Explicit synchronization

cudaDeviceSynchronize();

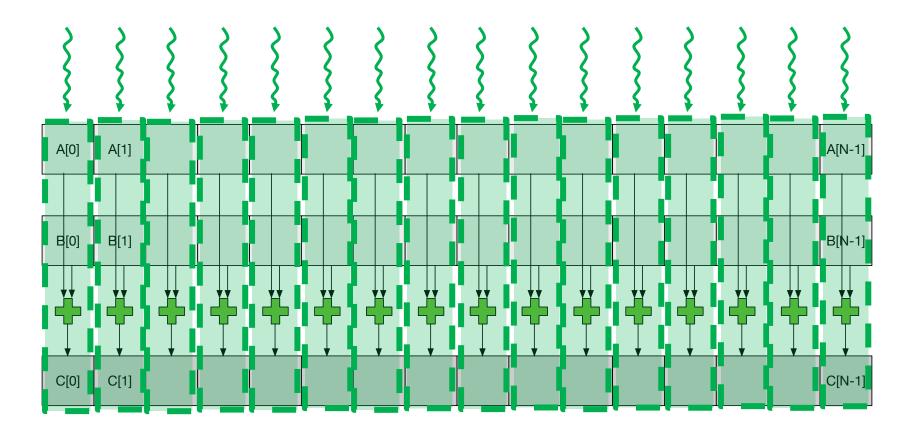
Vector Addition (I)

- Our first GPU programming example
- We assign one GPU thread to each element-wise addition



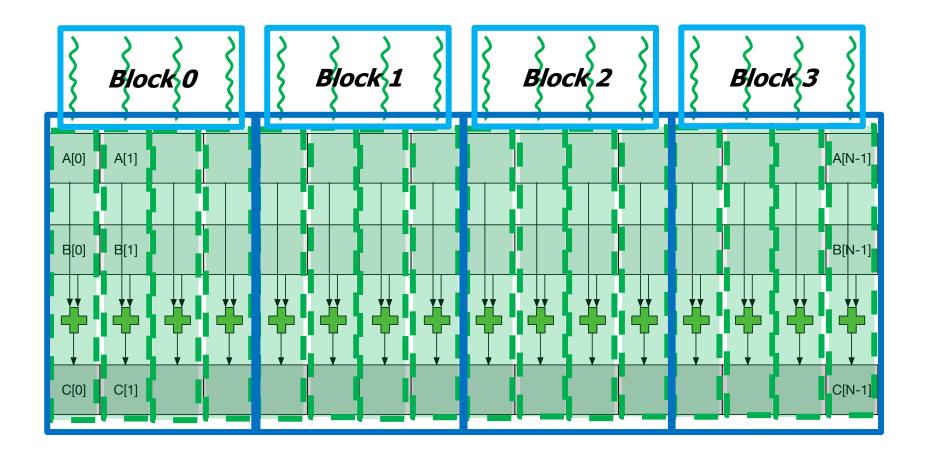
Vector Addition (II)

- The whole set of threads is called a grid
- We need a way to assign threads to GPU cores



Vector Addition (III)

We group threads into blocks



Host Code Example: Vector Addition

void vecadd(float* A, float* B, float* C, int N) {

// Allocate GPU memory

float *A_d, *B_d, *C_d; cudaMalloc((void**) &A_d, N*sizeof(float)); cudaMalloc((void**) &B_d, N*sizeof(float)); cudaMalloc((void**) &C_d, N*sizeof(float));

```
// Copy data to GPU memory
cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);
```

```
// Perform computation on GPU
const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;
```

```
vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);
// Copy data from GPU memory
cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);
```

```
// Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);
```

}

Boundary Conditions

- What if the size of the input is not a multiple of the number of threads per block?
 - Solution: use the ceiling to launch extra threads then omit the threads after the boundary

const unsigned int numBlocks = (N +numThreadsPerBlock - 1)/numThreadsPerBlock;

```
Mernel code
__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
    int i = blockDim.x*blockIdx.x + threadIdx.x;
    if(i < N) {
        C[i] = A[i] + B[i];
    }
}</pre>
```

Indexing and Memory Access

Images are 2D data structures

- height x width
- □ Image[j][i], where $0 \le j < \text{height}$, and $0 \le i < \text{width}$

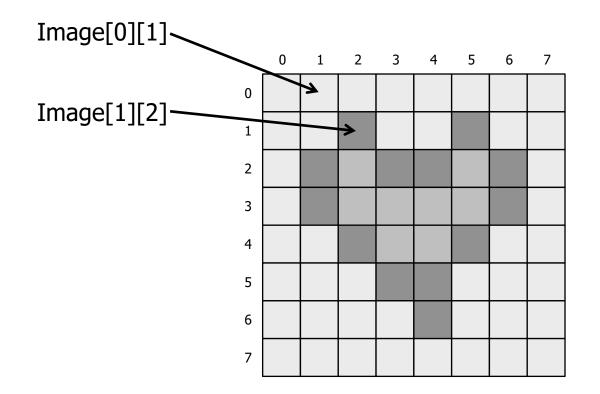
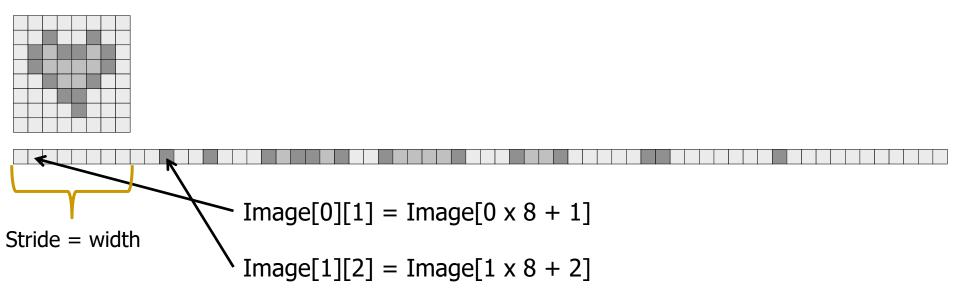


Image Layout in Memory

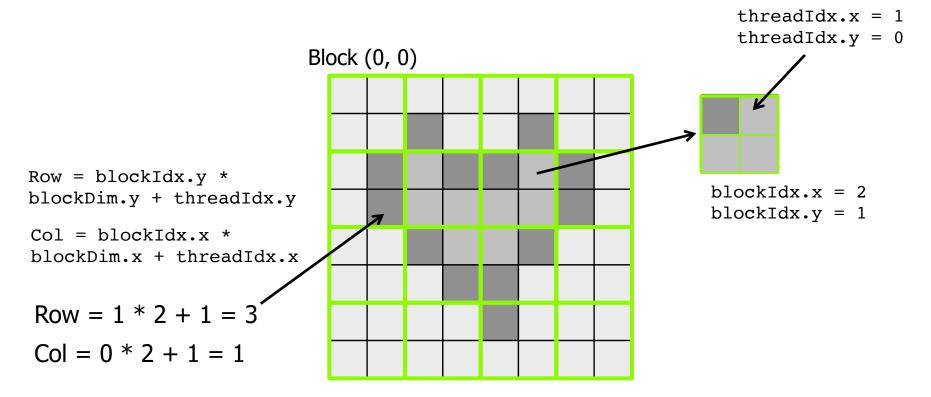
- Row-major layout
- Image[j][i] = Image[j x width + i]



Indexing and Memory Access: 2D Grid

2D blocks

□ gridDim.x, gridDim.y



Image[3][1] = Image[3 * 8 + 1]

GPU Memories

NVIDIA A100 Block Diagram

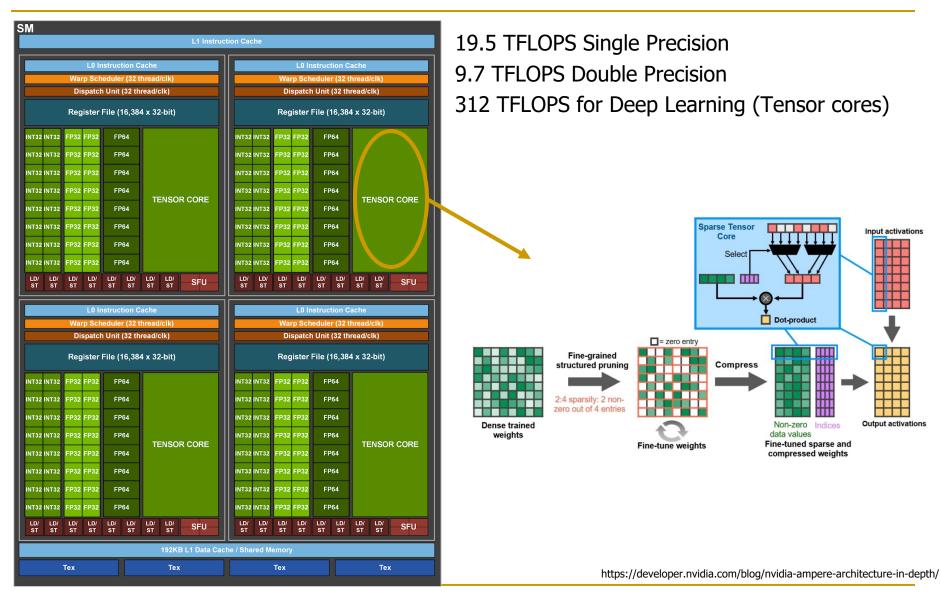
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

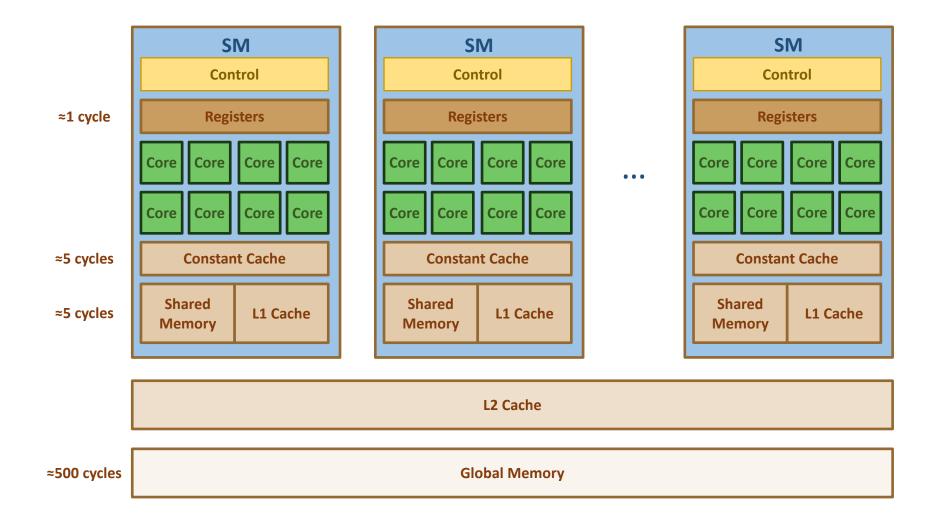
(Up to 128 cores in the full-blown chip)

40MB L2 cache

NVIDIA A100 Core

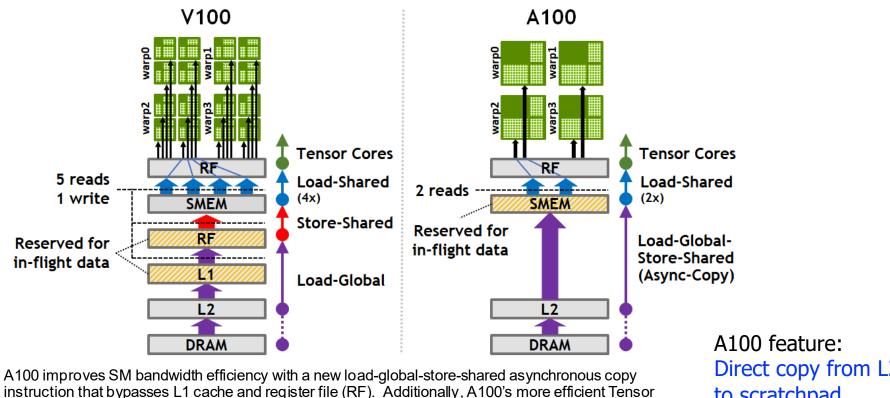


Memory in the GPU Architecture



NVIDIA V100 & A100 Memory Hierarchy

 Example of data movement between GPU global memory (DRAM) and GPU cores.



Cores reduce shared memory (SMEM) loads.

Direct copy from L2 to scratchpad, bypassing L1 and register file.

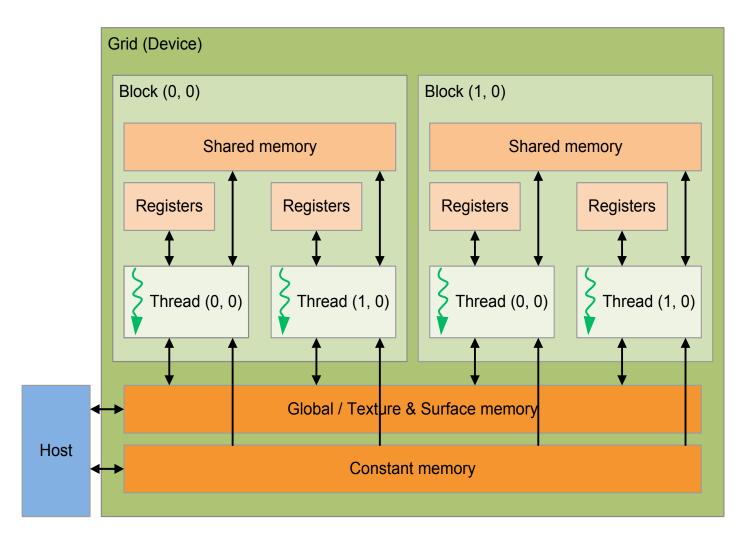
CUDA Variable Type Qualifiers

Variable dec	Memory	Scope	Lifetime	
	<pre>int LocalVar;</pre>	register	thread	thread
	<pre>int localArr[N];</pre>	global	thread	thread
	<pre>int SharedVar;</pre>	shared	block	block
device	<pre>int GlobalVar;</pre>	global	grid	application
deviceconstant	int ConstantVar;	constant	grid	application

device is optional when used with __shared _, Or __constant __

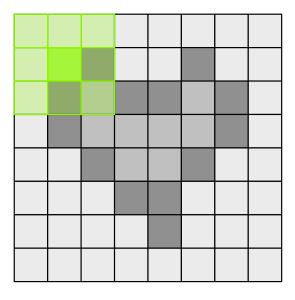
- Recall cudaMalloc(...) allocates memory from the host
 - Constant memory can also be allocated and initialized from the host
- Automatic variables without any qualifier reside in a register
 - Except arrays that reside in global memory

Memory Hierarchy in CUDA Programs



Data Reuse

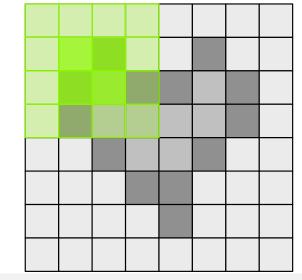
Same memory locations accessed by neighboring threads



```
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}</pre>
```

Data Reuse: Tiling

 To take advantage of data reuse, we divide the input into tiles that can be loaded into shared memory



```
__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
```

Synchronization Function

- void __syncthreads();
- Synchronizes all threads in a block
- Once all threads in a block have reached this point, execution resumes normally
- Used to avoid RAW / WAR / WAW hazards when accessing shared or global memory

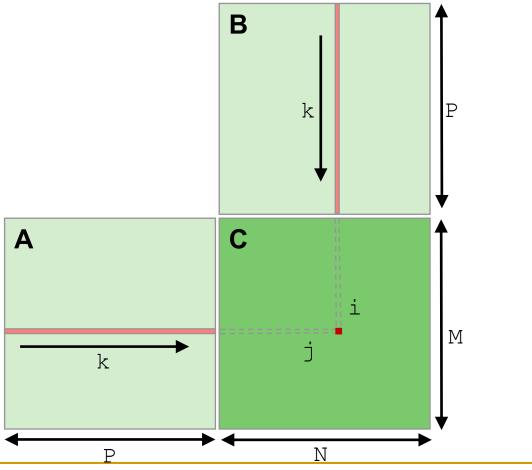
Tiling/Blocking in On-chip Memories

Tiling or Blocking

- Divide loops operating on arrays into computation chunks so that each chunk can hold its data in the cache (or other onchip memory, e.g., scratchpad)
- Avoids cache conflicts between different chunks of computation
- Essentially: Divide the working set so that each piece fits in the cache
- Let's first see an example for CPUs

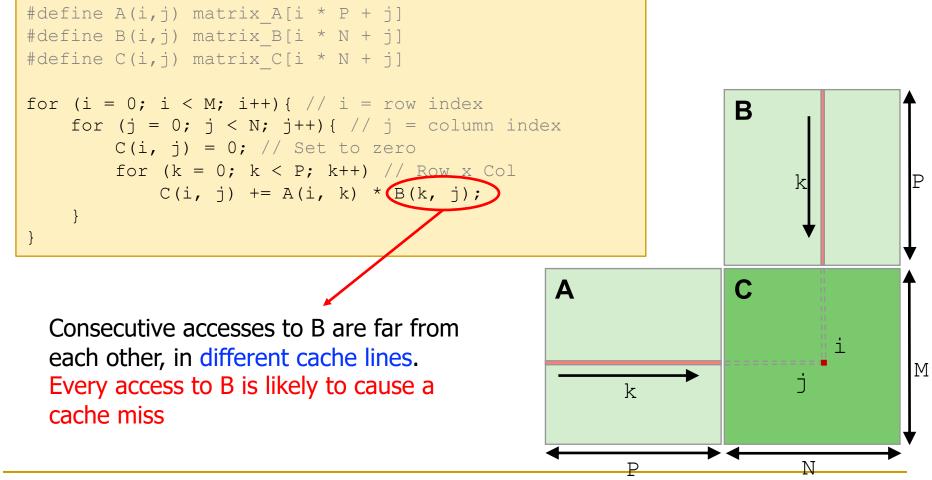
Naïve Matrix Multiplication (I)

- Matrix multiplication: C = A x B
- Consider two input matrices A and B in row-major layout
 - A size is M x P
 - B size is P x N
 - C size is M x N



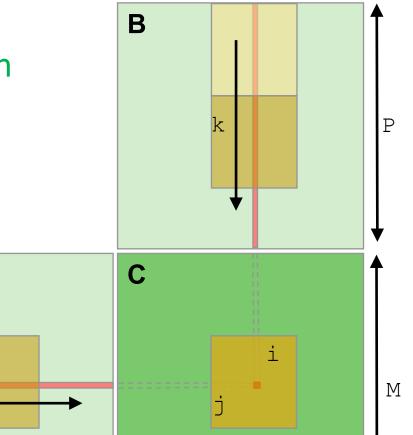
Naïve Matrix Multiplication (II)

Naïve implementation of matrix multiplication has poor cache locality



Tiled Matrix Multiplication (I)

- We can achieve better cache locality by computing on smaller tiles or blocks that fit in the cache
 - Or in the scratchpad memory and register file if we compute on a GPU



Ν

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1016/B978-0-12-803819-2.00011-2 Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2 Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-803819-2.00011-2 Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-803819-2.00011-2

tile dim

k

Ρ

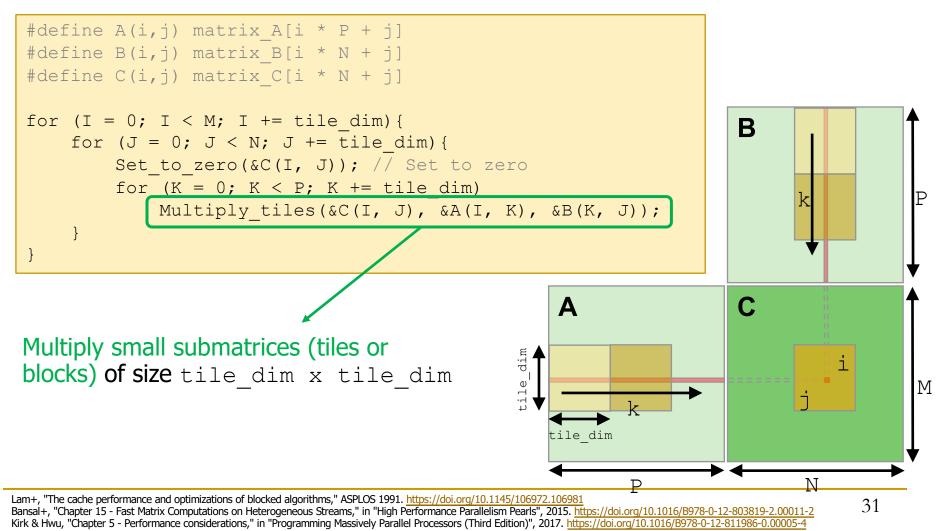
Α

dim

tile

Tiled Matrix Multiplication (II)

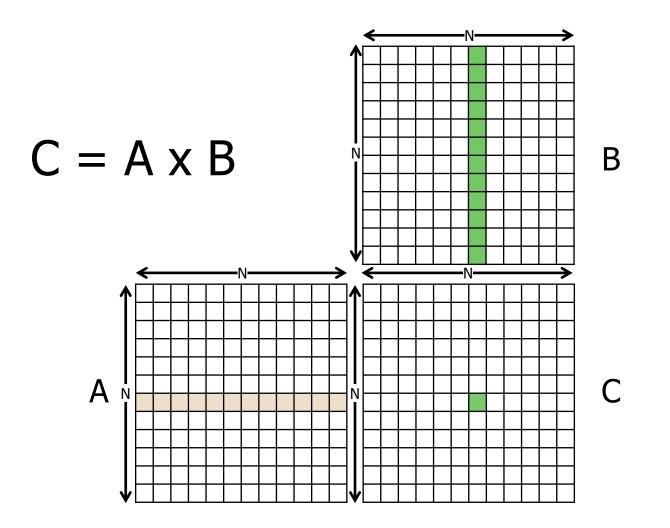
 Tiled implementation operates on submatrices (tiles or blocks) that fit fast memories (cache, scratchpad, RF)



Lecture on Advanced Caches

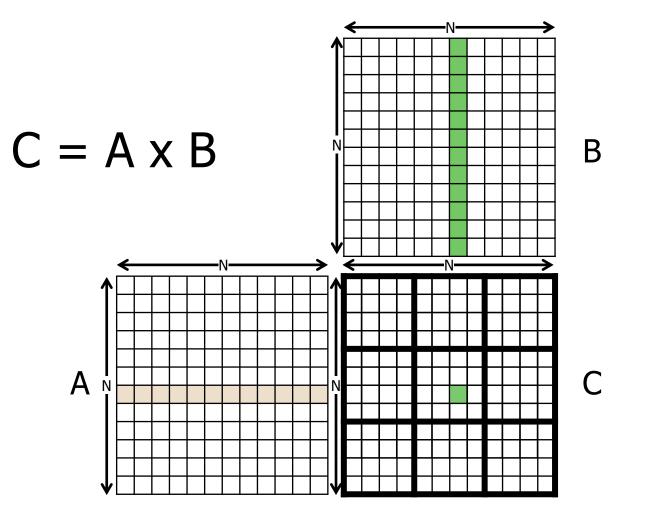
DDCA - Lecture 24: Advanced Caches (Spring 2021) https://youtu.be/89Q7OdhmQ9o

Example: Matrix-Matrix Multiplication (I)



Example: Matrix-Matrix Multiplication (II)

Parallelization approach: assign one thread to each element in the output matrix (C)

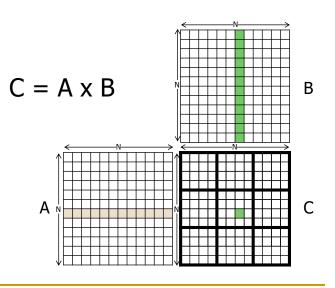


Example: Matrix-Matrix Multiplication (III)

```
___global___ void mm_kernel(float* A, float* B, float* C, unsigned int N) {
```

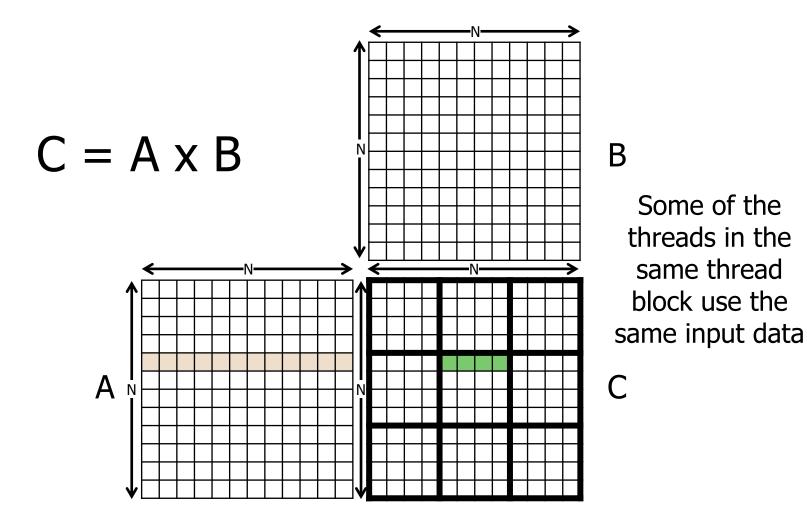
```
unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
```

```
float sum = 0.0f;
for(unsigned int i = 0; i < N; ++i) {
    sum += A[row*N + i]*B[i*N + col];
}
C[row*N + col] = sum;
```

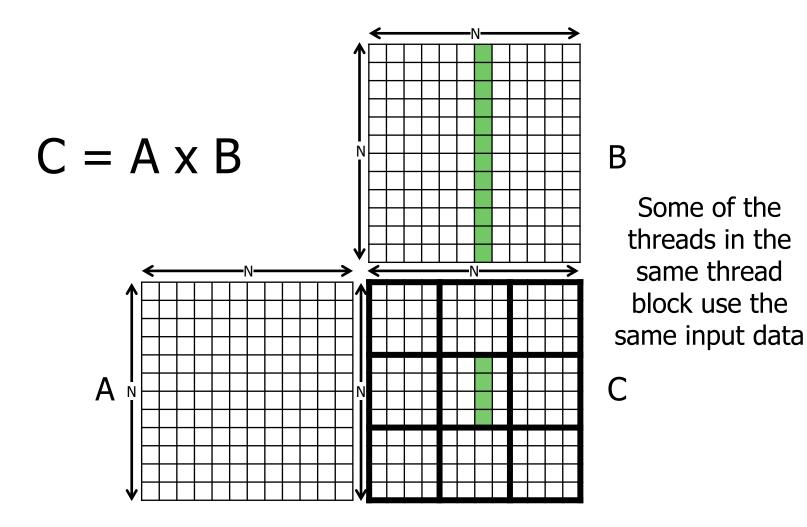


}

Reuse in Matrix-Matrix Multiplication (I)



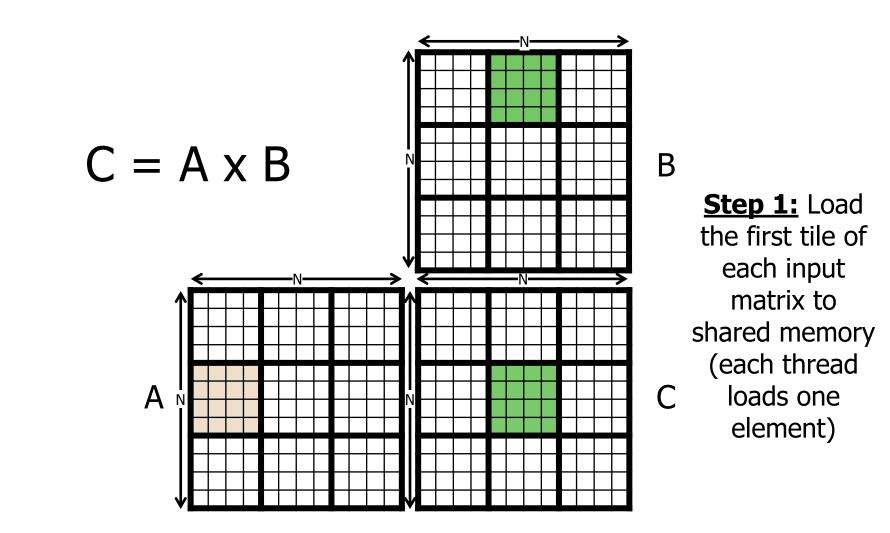
Reuse in Matrix-Matrix Multiplication (II)

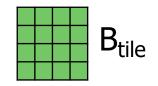


Reuse in Matrix-Matrix Multiplication (III)

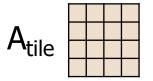
- Sometimes, we are lucky:
 - The thread finds the data in the L1 cache because it was recently loaded by another thread
- Sometimes, we are not lucky:
 - The data gets evicted from the L1 cache before another thread tries to load it
- Solution:
 - Let the threads work together to load part of the data and ensure that all threads that need it use it before loading more data
 - Use shared memory to ensure data stays close
 - Optimizing called tiling because divides input to tiles

Tiled Matrix-Matrix Multiplication (I)



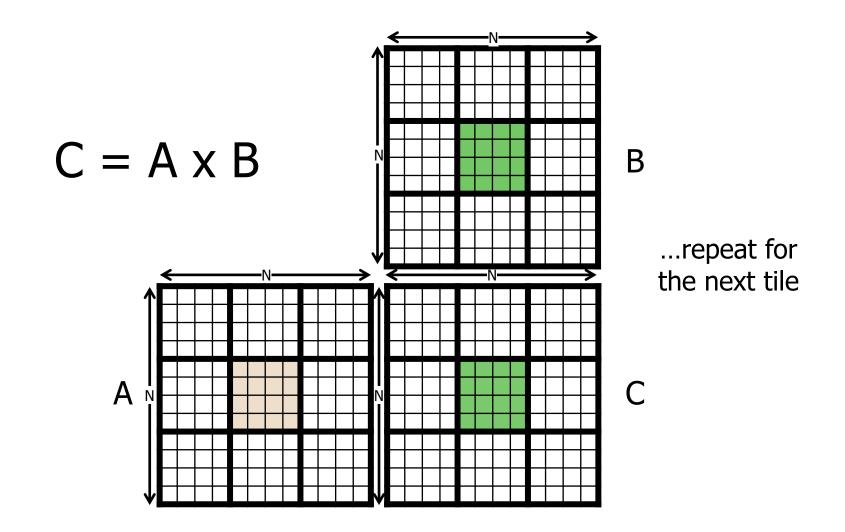


$C_{tile} = A_{tile} \times B_{tile}$

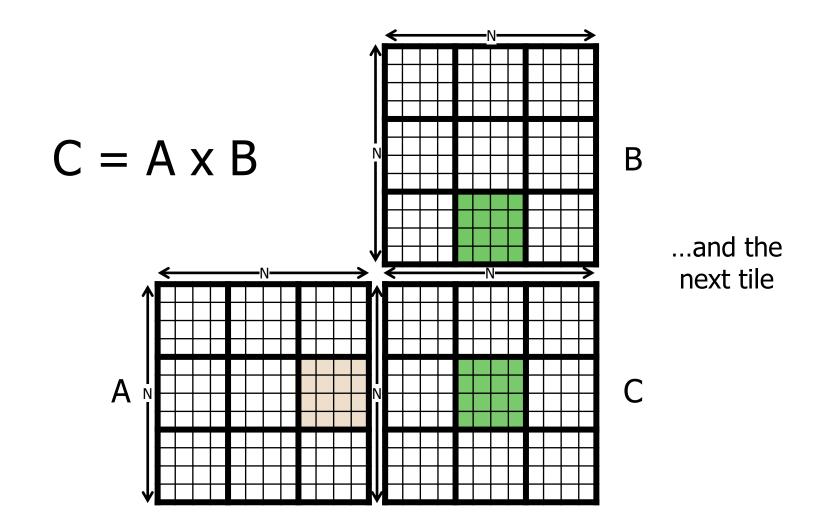


Step 2: Each thread computes its partial sum from the tiles in shared memory (threads wait for each other to finish)

Tiled Matrix-Matrix Multiplication (III)



Tiled Matrix-Matrix Multiplication (IV)

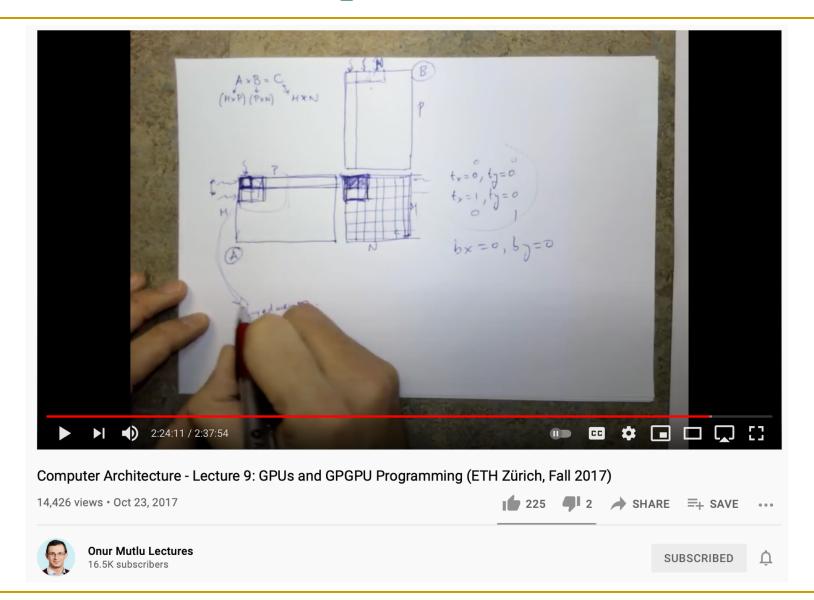


Tiled Matrix-Matrix Multiplication (V)

```
____shared____float A_s[TILE_DIM][TILE_DIM];
                                                     Declare arrays in shared memory
____shared____float B_s[TILE_DIM][TILE_DIM];
unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;
float sum = 0.0f;
for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {</pre>
    // Load tile to shared memory
    A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
    B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
    ____syncthreads();
                           Threads wait for each other to finish loading before computing
    // Compute with tile
    for(unsigned int i = 0; i < TILE_DIM; ++i) {</pre>
        sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
    }
    ____syncthreads(); ~
                           Threads wait for each other to finish computing before loading
}
```

C[row*N + co] = sum;

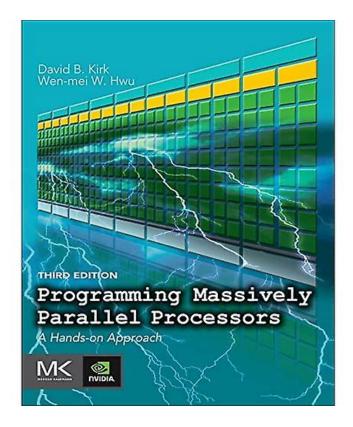
Tiled Matrix Multiplication on GPU



Computer Architecture - Lecture 9: GPUs and GPGPU Programming (Fall 2017) https://youtu.be/mgtlbEqn2dA?t=8157

Recommended Readings

- Hwu and Kirk, "Programming Massively Parallel Processors," Third Edition, 2017
 - Chapter 4: Memory and data locality



P&S Heterogeneous Systems GPU Memory Hierarchy

> Dr. Juan Gómez Luna Prof. Onur Mutlu ETH Zürich Fall 2021 28 October 2021