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GPU Programming




Recommended Readings (I)

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
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Recommended Readings (II)

= CUDA Programming Guide

o https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html
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> 1. Introduction

> 2. Programming Model
P> 3. Programming Interface
> 4. Hardware Implementation
> 5. Performance Guidelines
A. CUDA-Enabled GPUs
> B. C++ Language Extensions
> C. Cooperative Groups
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> H. Mathematical Functions
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> J. Texture Fetching
> K. Compute Capabilities
> L. Driver API
M. CUDA Environment Variables
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CUDA C++ Programming Guide
The programming guide to the CUDA model and interface.

Changes from Version 11.3

e Added Graph Memory Nodes.
e Formalized Asynchronous SIMT Programming Model.

1. Introduction
1.1. The Benefits of Using GPUs

The Graphics Processing Unit (GPU)' provides much higher instruction throughput and memory bandwidth than the CPU within a similar price
and power envelope. Many applications leverage these higher capabilities to run faster on the GPU than on the CPU (see GPU Applications).
Other computing devices, like FPGAs, are also very energy efficient, but offer much less programming flexibility than GPUs.

This difference in capabilities between the GPU and the CPU exists because they are designed with different goals in mind. While the CPU is
designed to excel at executing a sequence of operations, called a thread, as fast as possible and can execute a few tens of these threads in
parallel, the GPU is designed to excel at executing thousands of them in parallel (amortizing the slower single-thread performance to achieve
greater throughput).

The GPU is specialized for highly parallel computations and therefore designed such that more transistors are devoted to data processing
rather than data caching and flow control. The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a GPU.



https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU Computing

Computation is offloaded to the GPU

Three steps

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)
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Traditional Program Structure

= CPU threads and GPU kernels
o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Slide credit: Hwu & Kirk



Traditional Program Structure in CUDA

Function prototypes

float serialFunction(..);

__global  void kernel(..);

main()

1) Allocate memory space on the device — cudaMalloc(&d _in, bytes);
2) Transfer data from host to device — cudaMemCpy (d_in, h in, ..);

3) Execution configuration setup: #blocks and #threads

4) Kernel call — kernel<<<execution configuration>>>(args..);

5) Transfer results from device to host — cudaMemCpy (h_out, d out, ..);

I I R N

Kernel — global  void kernel(type args,..)

o Automatic variables transparently assigned to registers
o Shared memory:  shared
o Intra-block synchronization:  syncthreads();

Slide credit: Hwu & Kirk

repeat

as needed



CUDA Programming ILanguage

Memory allocation
cudaMalloc( (void**)&d in, #bytes);

Memory copy

cudaMemcpy(d in, h in, #bytes, cudaMemcpyHostToDevice);

Kernel launch

kernel<<< #blocks, #threads >>>(args);

Memory deallocation

cudaFree(d 1in);

Explicit synchronization

cudaDeviceSynchronize();



Vector Addition (I)

= Our first GPU programming example
= We assign one GPU thread to each element-wise addition
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Vector Addition (1I)

= The whole set of threads is called a grid
= We need a way to assign threads to GPU cores

RRRRRRRRRRRRERE




Vector Addition (I1I)

= We group threads into blocks




Host Code Example: Vector Addition

void vecadd(float* A, float* B, float* C, int N) {

// Allocate GPU memory
float *A_d, *B_d, *C_d;

cudamalloc((void**) &A_d, N* (float));
cudaMalloc((void**) &B_d, N* (float));
cudaMalloc((void**) &C_d, N* (float));

// Copy data to GPU memory

cudamemcpy (A_d, A, N¥ (float), );
cudaMemcpy(B_d, B, N¥ (float), );

// Perform computation on GPU
const unsigned int numThreadsPerBlock = :

const unsigned int numBlocks = N/numThreadsPerBlock;

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

// Copy data from GPU memory
cudaMemcpy(C, C_d, N* (float), );

// Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);

}
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Boundary Conditions

= What if the size of the input is not a multiple of the number
of threads per block?

o Solution: use the ceiling to launch extra threads then omit the
threads after the boundary

const unsigned int numBlocks = (N +numThreadsPerBlock - 1)/numThreadsPerBlock;

= Kernel code
__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
int 1 = blockDim.x*blockIdx.x + threadIdx.x;

it < N) {
c[i] = A[1] + B[1];
¥

13



Indexing and Memory Access

= Images are 2D data structures
o height x width
o Image[j][i], where 0 < j < height, and 0 < i < width

Image[0][1]
\‘ 0 1 2 3 4 5 6 7

\$

Image[1][2]—

0
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2
3
4
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Image Layout in Memory

= Row-major layout
= Image[j][i] = Image[j x width + i]

[T [T T[T [T T T T IT]

\
| Image[0][1] = Image[0 x 8 + 1]
Stride = width
Image[1][2] = Image[1l x 8 + 2]
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Indexing and Memory Access: 2D Grid

= 2D blocks

0 gridDim.x, gridDim.y

threadIdx.x
threadIdx.y

Block (0 0)

blockIdx.x
blockIdx.y
Col = blockIdx.x *
blockDim.x + threadIdx.x __....__

Row = blockIdx.y *
blockDim.y + threadIdx.y

Row=1*2+1=3
Col=0*2+1=1

Image[3][1] = Image[3 * 8 + 1]
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GPU Memories




VIDIA A100 Block Diagram

PCI Express 4.0 Host Interface
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Memory Controller

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache




NVIDIA A100 Core
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312 TFLOPS for Deep Learning (Tensor cores)
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Memory in the GPU Architecture

=1 cycle

=5 cycles Constant Cache Constant Cache

Shared Shared
=5 | L1

L2 Cache

Shared

L1 Cach
Memory ache

=500 cycles Global Memory

Slide credit: 1zzat El Hajj



NVIDIA V100 & A100 Memory Hierarchy

= Example of data movement between GPU global memory
(DRAM) and GPU cores.

Tensor Cores

I Tensor Cores

Sreads Load-Shared Load-Shared
1 write (4) 2 reads T ShEM (2x)
Store-Shared o
Reserved for
Reserved for . in-flight data Load-Global-

Store-Shared

in-flight data ™

Load-Global (Async-Copy)
I L2 I
[ DRAM | @ [ DRAM | @ A100 feature:
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy Direct copy from L2
instruction that bypasses L1 cache and register file (RF). Additionally, A100’s more efficient Tensor to scratchpad,

Cores reduce shared memory (SMEM) loads.

bypassing L1 and
register file.

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf 21



CUDA Variable Type Qualifiers

Variable declaration Memory | Scope | Lifetime
int LocalVar; register | thread thread
int localArr[N]; global | thread thread

__device_ ~ shared int SharedVar; shared block block
__device int GlobalVar; gIobaI grid application
__device = constant  int ConstantVar; constant grid application

device is optional when used with  shared ,or  constant

Recall cudaMalloc (..) allocates memory from the host

o Constant memory can also be allocated and initialized from the host
Automatic variables without any qualifier reside in a register

o Except arrays that reside in global memory

22



Memory Hierarchy in CUDA Programs

Block (0, 0) Block (1, 0)

Shared memory

Registers | Registers |

; Thread (0, 0) ; Thread (1, 0)

Shared memory

Registers | Registers |

é Thread (0, 0) ; Thread (1, 0)
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Data Reuse

= Same memory locations accessed by neighboring threads

O
0

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; Jj++){
sum += gauss[i][j] * Image[ (i+row-1)*width + (j+col-1)];

}

24



Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1_data[ (L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

25



Synchronization Function

void __ syncthreads() ;
Synchronizes all threads in a block

Once all threads in a block have reached this point,
execution resumes normally

Used to avoid RAW / WAR / WAW hazards when
accessing shared or global memory

26



Tiling/Blocking in On-chip Memories

Tiling or Blocking

Q

Divide loops operating on arrays into computation chunks so
that each chunk can hold its data in the cache (or other on-
chip memory, e.g., scratchpad)

Avoids cache conflicts between different chunks of
computation

Essentially: Divide the working set so that each piece fits in
the cache

Let's first see an example for CPUs

27



Naive Matrix Multiplication (I)

= Matrix multiplication: C=A x B
= Consider two input matrices A and B in row-major layout

o AsizecisMxP 5 A

o BsizeisP xN
o CsizeisMx N

28



Naive Matrix Multiplication (II)

= Naive implementation of matrix multiplication has poor
cache locality

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (i = 0; i < M; i++){ // i = row index B ‘f
for (j = 0; j < N; j++){ // j = column index
C(i, j)y = 0; // Set to zero

for (k = 0; k < P; k++) // Rou
C(i, j) += A(1i, k) *

/

Consecutive accesses to B are far from
each other, in different cache lines.
Every access to B is likely to cause a
cache miss

Col




Tiled Matrix Multiplication (I)

= We can achieve better cache
locality by computing on B
smaller tiles or blocks that fit in
the cache
a Or in the scratchpad memory

and register file if we compute
on a GPU

> «

A

=
-
© I
o) M
—
-
)

<_>

tile dim

\
< > < >
P N
Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 30

Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4
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Tiled Matrix Multiplication (I1I)

= Tiled implementation operates on submatrices (tiles or
blocks) that fit fast memories (cache, scratchpad, RF)

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (I = 0; I < M; I += tile dim) { B f
for (J = 0; J < N; J += tile dim) {

Set to zero(&C(I, J)); // Set to zero

for (K = 0; K< P; K += tile dim) D

Multiply tiles(&C(I, J), &A(I, K), &B(K, J)); K

o —
S

Multiply small submatrices (tiles or
blocks) of size tile dim x tile dim

tile dim

< > < >

P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 31
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4
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Example: Matrix-Matrix Multiplication (I)

<€ N >
AN
C=AXxB N B
\ 4
<€ > € >
A A
A y C
v A 4

Slide credit: Izzat El Hajj
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Example: Matrix-Matrix Multiplication (I1)

Parallelization approach: assign one thread to each element in the output matrix (C)

<€ N >
AN
C=AXxB N B
\ 4
<€ > € >
A
A y C
v

34
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Example: Matrix-Matrix Multiplication (I111)

__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

blockIdx.y*blockDim.y + threadIdx.y;

unsigned int row
1 blockIdx.x*blockDim.x + threadIdx.x;

unsigned int co

float sum = :
(unsigned int i = 0; i < N; ++1) {
sum += ALrow*N + i]*B[i*N + col];
¥
CLrow*N + col] = sum;
¥
C=AxB b B
A c
35
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Reuse in Matrix-Matrix Multiplication (I)

A< N >
C=AXxB “ B
Some of the
! threads in the
< N > € N > same thread

block use the
same input data

A N C

36
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Reuse in Matrix-Matrix Multiplication (II)

A< N >
C=AXxB “ B
Some of the
! threads in the
< N > € N > same thread

block use the
same input data

A N C

37
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Reuse in Matrix-Matrix Multiplication (111)

Sometimes, we are lucky:

o The thread finds the data in the L1 cache because it was
recently loaded by another thread

Sometimes, we are not lucky:

o The data gets evicted from the L1 cache before another
thread tries to load it

Solution:

o Let the threads work together to load part of the data and

ensure that all threads that need it use it before loading more
data

o Use shared memory to ensure data stays close
o Optimizing called tiling because divides input to tiles

38
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Tiled Matrix-Matrix Multiplication (I)

C=AXB N B
Step 1: Load
the first tile of
< \ S - each input
A matrix to

shared memory
(each thread

A N C loads one

element)

39
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Tiled Matrix-Matrix Multiplication (II)

Ciile = Atile X Byjle

Slide credit: Izzat El Hajj

BtiIe

Step 2: Each
thread

computes its
partial sum
from the tiles in
shared memory
(threads wait
Ciile for each other
to finish)

40



Tiled Matrix-Matrix Multiplication (I1I)

O
Il
=
X
vy

...repeat for
<€ N > N the next t||e

. . s 41
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Tiled Matrix-Matrix Multiplication (IV)

A
C=AxB N B
v ...and the
A : = - next tile
A n C
\ 4

42
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Tiled Matrix-Matrix Multiplication (V)

_ shared__ float A_S[TILE_DIM][TILE_DIM]; Ded " chared
__shared__ float B_S[TILE_DIM][TILE_DIM]; €clare arrays In shared memory

unsigned int row
unsigned int col

blockIdx.y*blockDim.y + threadIdx.y;
bTockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;
(unsigned 1nt tile = 0; tile < N/TILE_DIM; ++tile) {
// Load tile to shared memory

A_s[threadIdx.y][threadIdx.x]
B_s[threadIdx.y][threadIdx.x]

A[Lrow*N + tile*TILE_DIM + threadIdx.x];
BL(tile*TILE_DIM + threadIdx.y)*N + col];

__syncthreads();
Y O T Threads wait for each other to finish loading before computing
// Compute with tile
(unsigned int 1 = 0; 1 < TILE_DIM; ++1) {
sum += A_s[threadIdx.y][1]1*B_s[i][threadIdx.x];

}

__syncthreads();
Y T Threads wait for each other to finish computing before loading
}

Clrow*N + col] = sum;

43
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Tiled Matrix Multiplication on GPU
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Recommended Readings

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017

o Chapter 4: Memory and data locality
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