P&S Heterogeneous Systems

GPU Memory Hierarchy

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich
Fall 2021
28 October 2021
GPU Programming
Recommended Readings (I)

Recommended Readings (II)

- CUDA Programming Guide

CUDA C++ Programming Guide
The programming guide to the CUDA model and interface.

Changes from Version 11.3
- Added Graph Memory Nodes.
- Formalized Asynchronous SIMT Programming Model.

1. Introduction

1.1. The Benefits of Using GPUs
The Graphics Processing Unit (GPU) provides much higher instruction throughput and memory bandwidth than the CPU within a similar price and power envelope. Many applications leverage these higher capabilities to run faster on the GPU than on the CPU (see GPU Applications). Other computing devices, like FPGAs, are also very energy efficient, but offer much less programming flexibility than GPUs.

This difference in capabilities between the GPU and the CPU exists because they are designed with different goals in mind. While the CPU is designed to excel at executing a sequence of operations, called a thread, as fast as possible and can execute a few tens of these threads in parallel, the GPU is designed to excel at executing thousands of them in parallel (amortizing the slower single-thread performance to achieve greater throughput).

The GPU is specialized for highly parallel computations and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control. The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a GPU.
GPU Computing

- Computation is **offloaded to the GPU**
- Three steps
 - CPU-GPU data transfer (1)
 - GPU kernel execution (2)
 - GPU-CPU data transfer (3)
Traditional Program Structure

- CPU threads and GPU kernels
 - Sequential or modestly parallel sections on CPU
 - Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Slide credit: Hwu & Kirk
Traditional Program Structure in CUDA

- **Function prototypes**

  ```
  float serialFunction(...);
  __global__ void kernel(...);
  ```

- **main()**

 1. Allocate memory space on the device – `cudaMalloc(&d_in, bytes)`;
 2. Transfer data from **host to device** – `cudaMemCpy(d_in, h_in, ...)`;
 3. Execution configuration setup: #blocks and #threads
 4. **Kernel call** – `kernel<<<execution configuration>>>(args...)`;
 5. Transfer results from **device to host** – `cudaMemCpy(h_out, d_out, ...)`;

- **Kernel** – `__global__ void kernel(type args,...)`

 - Automatic variables transparently assigned to **registers**
 - **Shared memory**: `__shared__`
 - Intra-block **synchronization**: `__syncthreads()`;
CUDA Programming Language

- **Memory allocation**

  ```c
cudamalloc((void**)&d_in, #bytes);
  ```

- **Memory copy**

  ```c
cudamempcpy(d_in, h_in, #bytes, cudamempcpyHostToDevice);
  ```

- **Kernel launch**

  ```c
  kernel<<< #blocks, #threads >>>(args);
  ```

- **Memory deallocation**

  ```c
cudafree(d_in);
  ```

- **Explicit synchronization**

  ```c
cudadevicesynchronize();
  ```
Vector Addition (I)

- Our first GPU programming example
- We assign one GPU thread to each element-wise addition
Vector Addition (II)

- The whole set of threads is called a grid
- We need a way to assign threads to GPU cores
We group threads into blocks
void vecadd(float* A, float* B, float* C, int N) {

 // Allocate GPU memory
 float *A_d, *B_d, *C_d;
 cudaMalloc((void**)&A_d, N*sizeof(float));
 cudaMalloc((void**)&B_d, N*sizeof(float));
 cudaMalloc((void**)&C_d, N*sizeof(float));

 // Copy data to GPU memory
 cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);

 // Perform computation on GPU
 const unsigned int numThreadsPerBlock = 512;
 const unsigned int numBlocks = N/numThreadsPerBlock;
 vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

 // Copy data from GPU memory
 cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);

 // Deallocate GPU memory
 cudaFree(A_d);
 cudaFree(B_d);
 cudaFree(C_d);
}

const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;
vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);
}
Boundary Conditions

- What if the size of the input is not a multiple of the number of threads per block?
 - Solution: use the ceiling to launch extra threads then omit the threads after the boundary

```c
const unsigned int numBlocks = (N + numThreadsPerBlock - 1)/numThreadsPerBlock;

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
    int i = blockDim.x*blockIdx.x + threadIdx.x;
    if(i < N) {
        C[i] = A[i] + B[i];
    }
}
```
Indexing and Memory Access

- Images are 2D data structures
 - height \times width
 - Image[j][i], where 0 \leq j < height, and 0 \leq i < width
Image Layout in Memory

- **Row-major layout**
- \(\text{Image}[j][i] = \text{Image}[j \times \text{width} + i] \)

Stride = width

Image[0][1] = Image[0 \times 8 + 1]

Image[1][2] = Image[1 \times 8 + 2]
Indexing and Memory Access: 2D Grid

- **2D blocks**
 - `gridDim.x`, `gridDim.y`

```plaintext
Row = blockIdx.y * blockDim.y + threadIdx.y
Row = 1 * 2 + 1 = 3

Col = blockIdx.x * blockDim.x + threadIdx.x
Col = 0 * 2 + 1 = 1

Image[3][1] = Image[3 * 8 + 1]
```
GPU Memories
NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
NVIDIA A100 Core

<table>
<thead>
<tr>
<th>SM</th>
<th>L1 Instruction Cache</th>
<th>L0 Instruction Cache</th>
<th>Warp Scheduler (32 thread/clock)</th>
<th>Dispatch Unit (32 thread/clock)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1 Instruction Cache</td>
<td>L0 Instruction Cache</td>
<td>Warp Scheduler (32 thread/clock)</td>
<td>Dispatch Unit (32 thread/clock)</td>
</tr>
<tr>
<td></td>
<td>Register File (16,384 x 32-bit)</td>
<td>Register File (16,384 x 32-bit)</td>
<td>Warp Scheduler (32 thread/clock)</td>
<td>Dispatch Unit (32 thread/clock)</td>
</tr>
</tbody>
</table>

- **19.5 TFLOPS Single Precision**
- **9.7 TFLOPS Double Precision**
- **312 TFLOPS for Deep Learning (Tensor cores)**

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
Memory in the GPU Architecture

Slide credit: Izzat El Hajj
NVIDIA V100 & A100 Memory Hierarchy

- Example of data movement between GPU global memory (DRAM) and GPU cores.

A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy instruction that bypasses L1 cache and register file (RF). Additionally, A100’s more efficient Tensor Cores reduce shared memory (SMEM) loads.

A100 feature: Direct copy from L2 to scratchpad, bypassing L1 and register file.

CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>int LocalVar;</td>
<td>register</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>int localArr[N];</td>
<td>global</td>
<td>thread</td>
<td>thread</td>
</tr>
<tr>
<td>device shared int SharedVar;</td>
<td>shared</td>
<td>block</td>
<td>block</td>
</tr>
<tr>
<td>device int GlobalVar;</td>
<td>global</td>
<td>grid</td>
<td>application</td>
</tr>
<tr>
<td>device constant int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
<td>application</td>
</tr>
</tbody>
</table>

- **__device__** is optional when used with **__shared__**, or **__constant__**

- Recall **cudaMalloc(...)** allocates memory from the host
 - Constant memory can also be allocated and initialized from the host
- **Automatic variables** without any qualifier reside in a **register**
 - Except arrays that reside in global memory
Memory Hierarchy in CUDA Programs
Data Reuse

- Same memory locations accessed by neighboring threads

```c
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
    }
}
```
To take advantage of data reuse, we divide the input into tiles that can be loaded into shared memory.

```c
__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
...
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
    for (int j = 0; j < 3; j++){
        sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];
    }
}
```
Synchronization Function

- void __syncthreads();
- Synchronizes all threads in a block

- Once all threads have reached this point, execution resumes normally

- Used to avoid RAW / WAR / WAW hazards when accessing shared or global memory
Tiling/Blocking in On-chip Memories

- **Tiling or Blocking**
 - Divide loops operating on arrays into computation chunks so that each chunk can hold its data in the cache
 - Avoids cache conflicts between different chunks of computation
 - Essentially: *Divide the working set so that each piece fits in the cache*
 - Let’s first see an example for CPUs
Naïve Matrix Multiplication (I)

- Matrix multiplication: $C = A \times B$
- Consider two input matrices A and B in row-major layout
 - A size is $M \times P$
 - B size is $P \times N$
 - C size is $M \times N$
Naïve Matrix Multiplication (II)

- **Naïve implementation** of matrix multiplication has **poor cache locality**

```c
#define A(i,j) matrix_A[i * P + j]
#define B(i,j) matrix_B[i * N + j]
#define C(i,j) matrix_C[i * N + j]

for (i = 0; i < M; i++) { // i = row index
    for (j = 0; j < N; j++) { // j = column index
        C(i, j) = 0; // Set to zero
        for (k = 0; k < P; k++) { // Row x Col
            C(i, j) += A(i, k) * B(k, j);
        }
    }
}
```

Consecutive accesses to B are far from each other, in **different cache lines**. Every access to B is likely to cause a cache miss.
Tiled Matrix Multiplication (I)

- We can achieve better cache locality by computing on smaller tiles or blocks that fit in the cache
- Or in the scratchpad memory and register file if we compute on a GPU

Tiled Matrix Multiplication (II)

- **Tiled implementation** operates on submatrices (tiles or blocks) that fit fast memories (cache, scratchpad, RF)

```c
#define A(i,j) matrix_A[i * P + j]
#define B(i,j) matrix_B[i * N + j]
#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){
    for (J = 0; J < N; J += tile_dim){
        Set_to_zero(&C(I, J)); // Set to zero
        for (K = 0; K < P; K += tile_dim)
            Multiply_tiles(&C(I, J), &A(I, K), &B(K, J));
    }
}
```

Multiply small submatrices (tiles or blocks) of size `tile_dim x tile_dim`
Lecture on Advanced Caches

Digital Design & Computer Arch.
Lecture 24a: Advanced Caches

Prof. Onur Mutlu

ETH Zürich
Spring 2021
28 May 2021

Digital Design & Comp. Arch. - Lecture 24: Advanced Caches (ETH Zürich, Spring 2021) - Onur Mutlu

2,958 views • Streamed live on May 28, 2021

Onur Mutlu Lectures
19.6K subscribers

Digital Design and Computer Architecture, ETH Zürich, Spring 2021 (https://safari.ethz.ch/digitaltechnik...)
Example: Matrix-Matrix Multiplication (I)

\[C = A \times B \]
Example: Matrix-Matrix Multiplication (II)

Parallelization approach: assign one thread to each element in the output matrix (C)

\[C = A \times B \]
__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

 unsigned int row = blockIdx.y * blockDim.y + threadIdx.y;
 unsigned int col = blockIdx.x * blockDim.x + threadIdx.x;

 float sum = 0.0f;
 for(unsigned int i = 0; i < N; ++i) {
 sum += A[row*N + i]*B[i*N + col];
 }
 C[row*N + col] = sum;
}

C = A x B
Reuse in Matrix-Matrix Multiplication (I)

\[C = A \times B \]

Some of the threads in the same thread block use the same input data.
Reuse in Matrix-Matrix Multiplication (II)

\[C = A \times B \]

Some of the threads in the same thread block use the same input data.
Reuse in Matrix-Matrix Multiplication (III)

- **Sometimes**, we are lucky:
 - The thread finds the data in the L1 cache because it was recently loaded by another thread

- **Sometimes**, we are not lucky:
 - The data gets evicted from the L1 cache before another thread tries to load it

- **Solution**:
 - Let the threads work together to load part of the data and ensure that all threads that need it use it before loading more data
 - Use shared memory to ensure data stays close
 - Optimizing called *tiling* because divides input to tiles

Slide credit: Izzat El Hajj
Tiled Matrix-Matrix Multiplication (I)

\[C = A \times B \]

Step 1: Load the first tile of each input matrix to shared memory (each thread loads one element)

Slide credit: Izzat El Hajj
Tiled Matrix-Matrix Multiplication (II)

\[C_{\text{tile}} = A_{\text{tile}} \times B_{\text{tile}} \]

Step 2: Each thread computes its partial sum from the tiles in shared memory (threads wait for each other to finish)

Slide credit: Izzat El Hajj
Tiled Matrix-Matrix Multiplication (III)

\[C = A \times B \]

...repeat for the next tile
Tiled Matrix-Matrix Multiplication (IV)

\[C = A \times B \]

...and the next tile

Slide credit: Izzat El Hajj
Tiled Matrix-Matrix Multiplication (V)

__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

 // Load tile to shared memory
 A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
 B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
 __syncthreads();

 // Compute with tile
 for(unsigned int i = 0; i < TILE_DIM; ++i) {
 sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
 }
 __syncthreads();

 C[row*N + col] = sum;
}
Tiled Matrix Multiplication on GPU

Computer Architecture - Lecture 9: GPUs and GPGPU Programming (ETH Zürich, Fall 2017)

14,426 views • Oct 23, 2017

Onur Mutlu Lectures
16.5K subscribers

Recommended Readings

 - Chapter 4: Memory and data locality
P&S Heterogeneous Systems

GPU Memory Hierarchy

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021
28 October 2021