P&S Heterogeneous Systems

GPU Performance Considerations

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021

4 November 2021

GPU Memories

Traditional Program Structure

= CPU threads and GPU kernels
o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Slide credit: Hwu & Kirk

Memory Hierarchy in CUDA Programs

Block (0, 0) Block (1, 0)

Shared memory

Registers | Registers |

; Thread (0, 0) ; Thread (1, 0)

Shared memory

Registers | Registers |

é Thread (0, 0) ; Thread (1, 0)

Tiled Matrix Multiplication (I1I)

= Tiled implementation operates on submatrices (tiles or
blocks) that fit fast memories (cache, scratchpad, RF)

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (I = 0; I < M; I += tile dim) { B f
for (J = 0; J < N; J += tile dim) {

Set to zero(&C(I, J)); // Set to zero

for (K = 0; K< P; K += tile dim) D

Multiply tiles(&C(I, J), &A(I, K), &B(K, J)); K

o —
S

Multiply small submatrices (tiles or
blocks) of size tile dim x tile dim

tile dim

< > < >

P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 5
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix-Matrix Multiplication (V)

_ shared__ float A_S[TILE_DIM][TILE_DIM]; Ded " chared
__shared__ float B_S[TILE_DIM][TILE_DIM]; €clare arrays In shared memory

unsigned int row
unsigned int col

blockIdx.y*blockDim.y + threadIdx.y;
bTockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;
(unsigned 1nt tile = 0; tile < N/TILE_DIM; ++tile) {
// Load tile to shared memory

A_s[threadIdx.y][threadIdx.x]
B_s[threadIdx.y][threadIdx.x]

A[Lrow*N + tile*TILE_DIM + threadIdx.x];
BL(tile*TILE_DIM + threadIdx.y)*N + col];

__syncthreads();
Y O T Threads wait for each other to finish loading before computing
// Compute with tile
(unsigned int 1 = 0; 1 < TILE_DIM; ++1) {
sum += A_s[threadIdx.y][1]1*B_s[i][threadIdx.x];

}

__syncthreads();
Y T Threads wait for each other to finish computing before loading
}

Clrow*N + col] = sum;

Slide credit: 1zzat El Hajj

Performance Considerations

Performance Considerations

= Main bottlenecks
a Global memory access
o CPU-GPU data transfers

= Memory access
o Latency hiding
= Occupancy
o Memory coalescing

o Data reuse
= Shared memory usage

= SIMD (Warp) Utilization: Divergence
= Other considerations
o Atomic operations: Serialization

o Data transfers between CPU and GPU
= Overlap of communication and computation

Memory Access

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

Y
Thread Warp 3

Thread Warp 8

| ThreadIWarp 7 |

v

Warps available
for scheduling

SIMD Pipeline

| |-Fetch |
Y
| Decode |
L 4 L 4 L 2
2 P RN
Yy 'V L 2 Warps accessing
AR & memory hierarchy
s S s Miss?
| .D-Cache n Thread Warp 1
All H't?l | Data Thread Warp 2
™ Writeback] | Thread Warp 6 |

10

Latency Hiding and Occupancy

= FGMT can hide long latency operations (e.g., memory accesses)

= Occupancy: ratio of active warps to the maximum number of
warps per GPU core

4 active warps 2 active warps

Instruction 3 Instruction 3

Instruction 2 .
Instruction 2

Warp 0 Warp 0

Instruction 1
Instruction 3

Instruction 4
(Long latency)

Instruction 4

Instruction 1 (Long latency)

Instruction 3

Instruction £

Instruction £

W e e 1 T
"

11

Occupancy

GPU core, a.k.a. SM, resources (typical values)
a Maximum number of warps per SM (64)

o Maximum number of blocks per SM (32)

o Register usage (256KB)

o Shared memory usage (64KB)

Occupancy calculation

o Number of threads per block (defined by the programmer)
o Registers per thread (known at compile time)

a Shared memory per block (defined by the programmer)

12

CUDA Occupancy Calculator (I)

A B [D
1 CUDA Occupancy Calculator
2
3
4
5
6 elp)
7
8
9
10
1
12 elp)
13
14
15
16 (Don't edit anything below this line)
17
18 3.) GPU Occ: Data is di: here and in the
19 Active Threads per Multiprocessor 1536 (Help)
20 Active Warps per Multiprocessor 48
21 Active Thread Blocks per Multiprocessor 6
22 Occupancy of each Multiprocessor 100%
23
24
25 Physical Limits for GPU Compute Capability: 8.6
26 Threads per Warp 32
27 Max Warps per Multiprocessor 48
28 Max Thread Blocks per Multiprocessor 16
29 Max Threads per Multiprocessor 1536
30 Maximum Thread Block Size 1024
31 Registers per Multiprocessor 65536
32 Max Registers per Thread Block 65536
33 Max Registers per Thread 255
34 Shared Memory per Multiprocessor (bytes) 65536
35 Max Shared Memory per Block 65536
36 Register allocation unit size 256
37 Register allocation granularity warp
38 Shared Memory allocation unit size 128
39 Warp allocation granularity 4
40 Shared Memory Per Block (bytes) (CUDA runtime use) 1024

41 Allocated Resources

= Allocatable

Per Block Limit Per SM__ Blocks Per SM
8 48 6

42 Warps (Threads Per Block / Threads Per Warp) |
isters /arp limit per SM due to count) | 8 | 64| 8|
44 Shared Memory (Bytes) | 2048 | 65536 | 32|

45 [Note: s an abbreviaion for (Srearming) Mlipocesor

46

47 Maximum Thread Blocks Per Multiprocessor Blocks/SM__* Warps/Block = Warps/SM
48
49 ed by Registers per Multiprocessor 8

50 | Limited by Shared Memory per Multiprocessor

[s > | | |

Physical Max Warps/SM = 48
Occupancy = 48 / 48 = 100%

511 Noe: Qocapeny limite s showe i corngs
52
53
54 CUDA Occupancy Calculator | |
55 Version: | 111
56
57

E G H U J

K L M N o P Q R s v u

Click Here for detailed instructions on how to use this occupancy calculator.

Eor more on NVIDIA CUDA, visit

nvidia

Your chosen resource usage is indicated by the red triangle on the graphs. The other data points
represent the range of possible block sizes, register counts, and shared memory allocation.

Impact of Varying Block Size Impact of Varying Shared Memory Usage Per Block
My Block Size, 256
48 ‘Shared Memory, 2048
> / - —h
g
£ £
- T 1Y |] A
3 40
S w 3 \ \
- — -
5 3 L/ g2 32
>8 24 25
S I H é
2 16 @ 24
§ ; T |
g s £ 18
2 E \
0 5
0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
Threads Per Block 0 |
2 R 3 4 & & 2
8 8 g 3 8 a H
g 2 B k4 3 5
Impact of Varying Register Count Per Thread
Shared Memory Per Block
My Register Count, 32
48 e NAME? A 812 —— 1634 —as ——es536 —t02000
>
2 40
g
g
8§ 2
§T
£ 24
g 4
P
3
=
R L R L L VIV
PENCXIENCRIRIRRERRBBIREEE8INEEES
Registers Per Thread

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls 13

CUDA Occupancy Calculator (I1I)

< j‘ DEVELOPER CUDA TOOLKIT DOCUMENTATION 'II:J'\ Search
nvinia ZONE

CUDA Toolkit v11.5.0 CUDA Occupancy Calculator (PDF) - v11.5.0 (older) - Last updated October 20, 2021 - Send Feedback
CUDA Occupancy Calculator

Overview CUDA Occupancy Calculator
The CUDA Occupancy Calculator allows you to compute the multiprocessor occupancy of a GPU by a given CUDA kernel.

Overview

The CUDA Occupancy Calculator allows you to compute the multiprocessor occupancy of a GPU by a given CUDA kernel. The multiprocessor
occupancy is the ratio of active warps to the maximum number of warps supported on a multiprocessor of the GPU. Each multiprocessor on the
device has a set of N registers available for use by CUDA program threads. These registers are a shared resource that are allocated among the
thread blocks executing on a multiprocessor.

The CUDA compiler attempts to minimize register usage to maximize the number of thread blocks that can be active in the machine simultaneously.
If a program tries to launch a kernel for which the registers used per thread times the thread block size is greater than N, the launch will fail.

Click CUDA Occupancy Calculator[XLS] to download the spreadsheet.

14

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

Memory Layout of a Matrix in C

I Mo,1 M1 M1 M3g Mgy Myo Mo M3, LK

Slide credit: Hwu & Kirk

15

The DRAM Subsystem
The Top-Down View

DRAM Subsystem Organization

= Channel

= DIMM

= Rank

= Chip

= Bank

= Row/Column

17

The DRAM Subsystem

“Channel” DIMM (Dual in-line memory module)

Processor

Memory channel Memory channel

18

Breaking down a DIMM (module)

DIMM (Dual in-line memory module)

Front of DIMM Back of DIMM

19

Breaking down a Rank

Data <0:63>

20

Breaking down a Chip

Inside a DRAM Chip

Bitline ~
- Wordline
Subarray -~ g /DRAM Cells
-l Wordline
(2D Array of DRAN{ Cells) —T | Access
R <=7 | Transistor
| £
Sense Amplifiers - . S
. : U
Row Buffer — -~ 1 : N~ ‘ ~
- X ‘\ Storage
. DRAM Bank Rl Capacitor

DRAM Chips -

DRAM Module 8

DRAM Cell Operation

wordline
e Y Vpp
bitline
storage acce:ss
transistor

capacitor

enable D

sense
amplifier

1. ACTIVATE (ACT)
2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - ACTIVATE

wordline

1. Raise wordline 4 W+ S

dCCesSS

storage _
transistor

capacitor

3. Capacitor sharge is restored
charge with bitline

4. Amplify deviation

in the bitline
3. Enable

bitline

sense amplifier enable

[]

sense

amplifier

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

6. Row buffer stores the cell value

10

DRAM Cell Operation — READ/WRITE

wordline
=1L Voo
bitline
storage trz‘;fs"iz:or 1. ACTIVATE (ACT)
capacitor
2. READ/WRITE
3. PRECHARGE (PRE)
enable . = Read/Write the value
sense latched in sense amplifier
amplifier

11

DRAM Cell Operation - PRECHARGE

1. Lower wordline

wordline 1 12 Vpp 2.Precharge bitline for next access
bitline
access
Czt;:;%sr transistor 1. ACTIVATE (ACT)
2. READ/WRITE
3. PRECHARGE (PRE)
3. Disable
sense amplifier €énable .
sense
amplifier

12

DRAM Bank Operation

Access Address:
(Row 0, Column 0)

(Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address 0 ———

Row decoder

Columns

Column address 85—»\ Column mux/

-—q-=-°---

-—L
1
1
_—— -
1
1
1
_————
1
1
--r--
1
-l -

———————————————————

l

Data

SMOY

Row Buffer EAONFLICT !

27

DRAM Burst

Accessing data in different bursts (rows)
o Need to access the array again

Timeline: - -

Accessing data in the same burst (row)
o No need to access the array again, just the multiplexer

Timeline: [T]

Accessing data in the same burst is faster than accessing
data in different bursts

Slide credit: Izzat El Hajj

28

Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR || MDR| | MAR

Data bus

...... Bank

15

MDR| | MAR

Picture credit: Derek Chiou

Address bus

CPU
29

Multiple Banks (Interleaving) and Channels

Multiple banks

o Enable concurrent DRAM accesses

o Bits in address determine which bank an address resides in
Multiple independent channels serve the same purpose

o But they are even better because they have separate data buses
o Increased bus bandwidth

Enabling more concurrency requires reducing
o Bank conflicts
o Channel conflicts
How to select/randomize bank/channel indices in address?
o Lower order bits have more entropy
o Randomizing hash functions (XOR of different address bits)
30

Latency Hiding with Multiple Banks

= With one bank, time still wasted in between bursts

= Latency can be hidden by having multiple banks

= Need many threads to simultaneously access memory to
keep all banks busy

o Achieved with having high occupancy in GPU cores (SMs)
= Similar idea to hiding pipeline latency in the core

Slide credit: 1zzat El Hajj

Lecture on Memory Organization & Technology

Breaking down a Chip

©
,b(‘

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Digital Design & Comp. Arch. - Lecture 22: Memory Organization & Technology (ETH Ziirich, Spring '21)

2,906 views ¢ Streamed live on May 21, 2021 |‘ 83 L[j] 1 A} SHARE =4 SAVE

@ ?9":; ZL’:L‘:‘;‘:M“ ANALYTICS | EDIT VIDEO
L i 4

Digital Design and Computer Architecture, ETH Ziirich, Spring 2021 (
https://safari.ethz.ch/digitaltechnik...)

32
DDCA - Lecture 22: Memory Organization & Technology (Spring 2021) https://youtu.be/ahPQLempLRM

Memory Coalescing (1)

When threads in the same warp access consecutive

memory locations in the same burst, the accesses can be
combined and served by one burst

2 One DRAM transaction is needed
o Known as memory coalescing

If threads in the same warp access locations not in the
same burst, accesses cannot be combined

o Multiple transactions are needed

o Takes longer to service data to the warp
o Sometimes called memory divergence

Slide credit: Izzat El Hajj

33

Memory Coalescing (1I)

= When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

= Peak bandwidth utilization occurs when all threads in a

warp access one cache line (or several consecutive cache
lines)

Not coalesced Coalesced

Thread 1

Thread 2 ‘ |

Slide credit: Hwu & Kirk 34

Uncoalesced Memory Accesses

Access
direction
in Kernel
code
Time Period 2
T, T, T T,
7Y - _ ﬁ 7Y
Time Period
T, T, T T4
M

!

|

]

‘Mo,o

M 1,0‘M2,0‘M3,o Mo,1M; 1M; 1M3 1Mo 2 M4 ,M; o M3 5, Mo,3‘M 1,3‘M2,3‘M3,3

Slide credit: Hwu & Kirk

Coalesced Memory Accesses

Access
direction
in Kernel
code

Time Period 1|| Time Period 2
T, T, T3 T4|| Ty T, T3 T4

LN Mo 1 My 1 My 1 M3 1 Mg 2 My 2 Mp 5 M3 5 G

Slide credit: Hwu & Kirk

36

AoS vs. SOA

Array of Structures vs. Structure of Arrays

struct foo{
Structure of
Arrays

(SoA) int d[8];
} A;

struct foo{

Array of
Structures
(AOS) int d;
} A[8];
Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012 37

Gdémez-Luna+, “Ch.8: Application Use Cases: Platform Atomics. Heterogeneous System Architecture,” 2016

CPUs Prefer AoS, GPUs Prefer SoA

= Linear and strided accesses

GPU

CPU

12.0 5.0
Ol
11.0 ——GPU | 45 1 ——1CPU ——2CPU —4—4CPU
10.0 \\ 40 »—*
z 9.0 \ s
5 80 > 35
< 0 \ =30 /<> —X
%‘0 5.0 >1 l"é‘:'z'o
S 4.0 o / % . -6 o o
< < 15
= 30 N\ = ¢
2.0 \'[1.0 o//0/
1.0 \EL 0.5
OO
0.0 ' ' ' ' ' ' ' ' ' ' . 0.0 ' ' ' ' ' ' ' .
1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Stride (Structure size) Stride (Structure size)
AMD Kaveri A10-7850K
Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012 38

Goémez-Luna+, “Ch.8: Application Use Cases: Platform Atomics. Heterogeneous System Architecture,” 2016

Use Shared Memory to Improve Coalescing

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad
memory

Perform
multiplication

with scratchpad

values

Slide credit: Hwu & Kirk

39

Data Reuse

= Same memory locations accessed by neighboring threads

O
0

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; Jj++){
sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

}

40

Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1_data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

41

Shared Memory

Shared memory is an interleaved (banked) memory
o Each bank can service one address per cycle

Typically, 32 banks in NVIDIA GPUs

o Successive 32-bit words are assigned to successive banks
Bank = Address % 32

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

42

Shared Memory Bank Conflicts (I)

= Bank conflict free

y 7 y 7
e e el |
TE— “Bank 1 | Thread 1 " Bank 1 |,
- “Bank 2 | Thread 2 e
ThEes 5 “Bank 3 | M Thread 3 " Bank3 |,
iz 4 " Bark 4 | T ET
I " Bank5 | IS e
ThEEE G " Bank 6 | M Thread 6 " Bank 6 |
— " Bank7 | IR Bz |

Linear addressing: stride = 1 Random addressing 1:1

4 Bank 15

Thread 15 Bank 15

Slide credit: Hwu & Kirk 43

Shared Memory Bank Conflicts (II)

= N-way bank conflicts

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5 7

Thread 6 [

Thread 7
Tl & 8

Thread 9
Thread 10
Thread 11 Bank 15

Thread 15 Bank 15

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk 4‘4

Use Shared Memory to Improve Coalescing

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad
memory

Perform
multiplication

with scratchpad

values

Slide credit: Hwu & Kirk

45

Reducing Shared Memory Bank Conflicts

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

If strided accesses are needed, some optimization
techniques can help
o Padding

o Randomized mapping
Rau, “"Pseudo-randomly interleaved memory,” ISCA 1991

o Hash functions

V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

46

SIMD Utilization

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC

Thread| Thread | Thread | Thread
1 2 3 4

48
Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1

o Groups scalar threads

into warps Brangh 1 1 1 1 1 1 vy

Patnal| | | | |
Branch divergence
occurs when threads Path\Bj |
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

49
Slide credit: Tor Aamodt

SIMD Utlization

= Intra-warp divergence

Compute
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){

Do this(threadIdx.x);
}

else/{ If
Do that(threadIdx.x);
}
v v v 4 4 v | 4 v

Else

v 14 v 14 14 | 4 | 4 v

50

Increasing SIMD Utlization

= Divergence-free execution

Compute

Compute(threadIdx.x);
if (threadIdx.x < 32){

Do this(threadIdx.x * 2);
}

else/{
Do that((threadIdx.x%32)*2+1);
}

AAAAAAA

Else

YyvvvvyVyy

51

Vector Reduction: Naive Mapping (I)

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

8+9

iterations

52

Vector Reduction: Naive Mapping (1I)

= Program with low SIMD utilization

__shared float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {
__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

53

Divergence-Free Mapping (1)

= All active threads belong to the same warp

Thread 0 Thread 1 Thread 2 - Thread 14 Thread 15

\
\

iterations
—
W

Slide credit: Hwu & Kirk 54

Divergence-Free Mapping (11)

= Program with high SIMD utilization

__shared float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 0; stride >> 1){
__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

55

Recommended Readings

7

= Hwu and Kirk, “Programming Massively Parallel Processors,
Third Edition, 2017

o Chapter 5: Performance considerations

j THIRD EDITION / . 2
Programmlng Ma351vely

Parallel Processors -
ﬁHands on Abpﬁ ; $ A
A e
N\ A
ML & ST |
i snam NVIDIA S‘;:\ SN Sy

56

P&S Heterogeneous Systems

GPU Performance Considerations

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021

4 November 2021

