Parallel Patterns: Histogram

Dr. Juan Gómez Luna
Prof. Onur Mutlu
ETH Zürich
Fall 2021
18 November 2021
Reduction Operation
Reduction Operation

- A **reduction** operation reduces a set of values to a single value
 - Sum, Product, Minimum, Maximum are examples

Properties of reduction

- Associativity
- Commutativity
- Identity value

- Reduction is a key primitive for parallel computing
 - E.g., MapReduce programming model

Dean and Ghemawat, “MapReduce: Simplified Data Processing of Large Clusters,” OSDI 2004
Sequential Reduction

- A sequential implementation of reduction only needs a for loop to go through the whole input array
 - N elements → N iterations

```
sum = 0; // Initialize with identity value
for(i = 0; i < N; ++i) {
    sum += A[i]; // Accumulate elements of input array A[]
}
```

- Many independent operations
 - A parallel implementation can calculate multiple partial sums, and then reduce them
Tree-Based Reduction on GPU

Block 0

1. **Warp 0**
 - A[0]
 - Partial results in shared memory (or registers)
 - Intra-block synchronization
 - `__syncthreads();`

2. **Warp 1**
 - A[1]
 - Intra-block synchronization
 - `__syncthreads();`

Block 1

- **Warp 0**
- **Warp 1**
- A[N-1]
- Partial results in shared memory (or registers)
- Intra-block synchronization
 - `__syncthreads();`

Inter-block synchronization
- Kernel termination and
 - Final reduction on CPU, or
 - Launch new reduction kernel on GPU
- Atomic operations in global memory

5
Vector Reduction: Naïve Mapping (I)

<table>
<thead>
<tr>
<th>Thread 0</th>
<th>Thread 2</th>
<th>Thread 4</th>
<th>Thread 6</th>
<th>Thread 8</th>
<th>Thread 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0+1</td>
<td>2+3</td>
<td>4+5</td>
<td>6+7</td>
<td>8+9</td>
<td>10+11</td>
</tr>
<tr>
<td>0...3</td>
<td>4..7</td>
<td>8..11</td>
<td>8..15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0..7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slide credit: Hwu & Kirk
Program with **low SIMD utilization**

```c
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for(int stride = 1; stride < blockDim.x; stride *= 2){
    __syncthreads();

    if (t % (2*stride) == 0)
        partialSum[t] += partialSum[t + stride];
}
```

How to avoid the warp underutilization?
Divergence-Free Mapping (I)

- All active threads belong to the same warp
Divergence-Free Mapping (II)

- Program with **high SIMD utilization**

```c
__shared__ float partialSum[];

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >>= 1){
    __syncthreads();
    if (t < stride)
        partialSum[t] += partialSum[t + stride];
}
```

Warp utilization is maximized
Warp Shuffle Functions

- **Built-in warp shuffle functions** enable threads to share data with other threads in the same warp
 - Faster than using shared memory and `__syncthreads()` to share across threads in the same block

- **Variants:**
 - `__shfl_sync(mask, var, srcLane)`
 - Direct copy from indexed lane
 - `__shfl_up_sync(mask, var, delta)`
 - Copy from a lane with lower ID relative to caller
 - `__shfl_down_sync(mask, var, delta)`
 - Copy from a lane with higher ID relative to caller
 - `__shfl_xor_sync(mask, var, laneMask)`
 - Copy from a lane based on bitwise XOR of own lane ID
Reduction with Warp Shuffle

```c
__global__ void reduce_kernel(float* input, float* partialSums, unsigned int N) {

    unsigned int segment = 2*blockDim.x*blockIdx.x;
    unsigned int i = segment + threadIdx.x;

    // Load data to shared memory
    __shared__ float input_s[BLOCK_DIM];
    input_s[threadIdx.x] = input[i] + input[i + BLOCK_DIM];
    __syncthreads();

    // Reduction tree in shared memory
    for(unsigned int stride = BLOCK_DIM/2; stride > WARP_SIZE; stride /= 2) {
        if(threadIdx.x < stride) {
            input_s[threadIdx.x] += input_s[threadIdx.x + stride];
        }
        __syncthreads();
    }

    // Reduction tree with shuffle instructions
    float sum;
    if(threadIdx.x < WARP_SIZE) {
        sum = input_s[threadIdx.x] + input_s[threadIdx.x + WARP_SIZE];
    }
    for(unsigned int stride = WARP_SIZE/2; stride > 0; stride /= 2) {
        sum += __shfl_down_sync(0xffffffff, sum, stride);
    }

    // Store partial sum
    if(threadIdx.x == 0) {
        partialSums[blockIdx.x] = sum;
    }
}
```
Atomic Operations
Atomic Operations (I)

- CUDA provides **atomic instructions** on shared memory and global memory
 - They perform **read-modify-write** operations atomically

- Arithmetic functions
 - Add, sub, max, min, exch, inc, dec, CAS
    ```c
    int atomicAdd(int*, int);
    ```
 - Return value (old value)
 - Pointer to shared memory or global memory
 - Value to add

- Bitwise functions
 - And, or, xor

- Datatypes: int, uint, ull, float (half, single, double)*

* Datatypes for different atomic operations in https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions
Atomic Operations (II)

- Atomic operations serialize the execution if there are atomic conflicts

No atomic conflict = concurrent updates

Atomic conflict = serialized updates
Uses of Atomic Operations

- **Computation**
 - Atomics on an array that will be the output of the kernel
 - Example
 - Histogram, reduction

- **Synchronization**
 - Atomics on memory locations that are used for synchronization or coordination
 - Example
 - Counters, locks, flags...

- Use them to prevent **data races** when more than one thread need to update the same memory location
Data Races

- A **data race** occurs when multiple threads access the same memory location concurrently without ordering and at least one access is a write.
- Data races may result in unpredictable program output.

Example:

<table>
<thead>
<tr>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>oldVal = bins[b]</td>
<td>oldVal = bins[b]</td>
</tr>
<tr>
<td>newVal = oldVal + 1</td>
<td>newVal = oldVal + 1</td>
</tr>
<tr>
<td>bins[b] = newVal</td>
<td>bins[b] = newVal</td>
</tr>
</tbody>
</table>

- If both threads have the same `b` and `bins[b]` is initially 0, the final value of `bins[b]` could be **2** or **1**.
Data Races Example (I)

<table>
<thead>
<tr>
<th>Time</th>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>oldVal = bins[b]</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>newVal = oldVal + 1</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>bins[b] = newVal</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td><code>oldVal = bins[b]</code></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td><code>newVal = oldVal + 1</code></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td><code>bins[b] = newVal</code></td>
</tr>
</tbody>
</table>

In these two scenarios, the final value of bins[b] will be 2

<table>
<thead>
<tr>
<th>Time</th>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td><code>oldVal = bins[b]</code></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td><code>newVal = oldVal + 1</code></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td><code>bins[b] = newVal</code></td>
</tr>
<tr>
<td>4</td>
<td><code>oldVal = bins[b]</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>newVal = oldVal + 1</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>bins[b] = newVal</code></td>
<td></td>
</tr>
</tbody>
</table>
Data Races Example (II)

<table>
<thead>
<tr>
<th>Time</th>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>oldVal = bins[b]</td>
<td>oldVal = bins[b]</td>
</tr>
<tr>
<td>2</td>
<td>newVal = oldVal + 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>newVal = oldVal + 1</td>
</tr>
<tr>
<td>4</td>
<td>bins[b] = newVal</td>
<td>bins[b] = newVal</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In these two scenarios (and many others), the final value of bins[b] will be 1

<table>
<thead>
<tr>
<th>Time</th>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>oldVal = bins[b]</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>newVal = oldVal + 1</td>
</tr>
<tr>
<td>3</td>
<td>oldVal = bins[b]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>bins[b] = newVal</td>
</tr>
<tr>
<td>5</td>
<td>newVal = oldVal + 1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>bins[b] = newVal</td>
<td></td>
</tr>
</tbody>
</table>

Slide credit: Izzat El Hajj
Mutual Exclusion

- To avoid data races, concurrent read-modify-write operations to the same memory location need to be made mutually exclusive to enforce ordering.

- One way to do this on CPUs is using locks (mutex):
 - Example:

    ```c
    mutex_lock(lock);
    ++bins[b];
    mutex_unlock(lock);
    ```

Using locks with SIMD execution may cause deadlock.
Mutexes in a FGMT Architecture

- **UPMEM Processing-in-Memory cores are fine-grained multithreaded**
- **Threads (called *tasklets*) can use mutexes for concurrent read-modify-write operations**

DPU Pipeline

- In-order pipeline
 - Up to 350 MHz
- Fine-grain multithreaded
 - 24 hardware threads
- 14 pipeline stages
 - DISPATCH: Thread selection
 - FETCH: Instruction fetch
 - READOP: Register file
 - FORMAT: Operand formatting
 - ALU: Operation and WRAM
 - MERGE: Result formatting

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

Juan Gómez-Luna¹ Izzat El Haji² Ivan Fernandez¹,³ Christina Giannoula¹,⁴ Geraldo F. Oliveira¹ Onur Mutlu¹

¹ETH Zürich ²American University of Beirut ³University of Malaga ⁴National Technical University of Athens

Figure 20: Execution times (ms) of two versions of histogram (HST-L, HST-S) on 1 DPU.
Atomic Operations: Architectural Support

- The GPU ISA evolves with GPU architecture generations

- CUDA: `int atomicAdd(int*, int);`
- PTX: `atom.shared.add.u32 %r25, [%rd14], %r24;`
- SASS:

Tesla, Fermi, Kepler

```assembly
/*00a0*/ LDSLK P0, R9, [R8];
/*00a8*/ @P0 IADD R10, R9, R7;
/*00b0*/ @P0 STSCUL P1, [R8], R10;
/*00b8*/ @!P1 BRA 0xa0;
```

Maxwell, Pascal, Volta...

```assembly
/*01f8*/ ATOMS.ADD RZ, [R7], R11;
```

Native atomic operations for 32-bit integer, and 32-bit and 64-bit atomicCAS
Recall: Uses of Atomic Operations

- **Computation**
 - Atomics on an array that will be the output of the kernel
 - Example
 - Histogram, reduction

- **Synchronization**
 - Atomics on memory locations that are used for synchronization or coordination
 - Example
 - Counters, locks, flags...

- Use them to prevent **data races** when more than one thread need to update the same memory location
Optimized Parallel Reduction

- 7 versions in CUDA samples: Tree-based reduction in shared memory
 - Version 0: No whole warps active
 - Version 1: Contiguous threads, but many bank conflicts
 - Version 2: No bank conflicts
 - Version 3: First level of reduction when reading from global memory
 - Version 4: Warp shuffle or unrolling of final warp
 - Version 5: Warp shuffle or complete unrolling
 - Version 6: Multiple elements per thread sequentially

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-parallel-reduction
Reduction with Atomic Operations

- 3 new versions of reduction based on 3 previous versions
 - Version 0: No whole warps active
 - Version 3: First level of reduction when reading from global memory
 - Version 6: Multiple elements per thread sequentially

- New versions 7, 8, and 9
 - Replace the `for` loop (tree-based reduction) with one shared memory atomic operation per thread
Over 85 different versions possible!
Automatic Generation of Parallel Reduction

Automatic Generation of Warp-Level Primitives and Atomic Instructions for Fast and Portable Parallel Reduction on GPUs

Simon Garcia De Gonzalo
CS and Coordinated Science Lab
UIUC
grcdgnz2@illinois.edu

Sitao Huang
ECE and Coordinated Science Lab
UIUC
shuang91@illinois.edu

Juan Gómez-Luna
Computer Science
ETH Zurich
juang@ethz.ch

Simon Hammond
Scalable Computer Architecture
Sandia National Laboratories
sdhammo@sandia.gov

Onur Mutlu
Computer Science
ETH Zurich
omutlu@ethz.ch

Wen-mei Hwu
ECE and Coordinated Science Lab
UIUC
w-hwu@illinois.edu
Histogram Computation
Histogram Computation

- Histogram is a frequently used computation for **reducing the dimensionality and extracting notable features and patterns** from large data sets
 - Feature extraction for object recognition in images
 - Fraud detection in credit card transactions
 - Correlating heavenly object movements in astrophysics
 - ...

- **Basic histograms** - for each element in the data set, use the value to identify a “bin” to increment
 - Divide possible input value range into “bins”
 - Associate a counter to each bin
 - For each input element, examine its value and determine the bin it falls into and increment the counter for that bin
Sequential Histogram Computation

- A sequential implementation of histogram computation reads all input elements one by one and updates the corresponding histogram bins.

Thread 0

Iteration 1
Iteration 2
Iteration 3
Iteration 4
void histogram_calculation(unsigned int *histo,
 unsigned int *input,
 unsigned int input_size) {

 int i = 0; // Loop index

 while (i < input_size) {

 unsigned int val = input[i];

 histo[val] += 1;

 i++;
 }
}
Parallel Histogram Computation: Iteration 1

- Adjacent threads read adjacent input characters
 - Reads from the input array are coalesced
(Wrong) Parallel Histogram Kernel

```c
__global__ void histogram_kernel(unsigned int *histo,
                                  unsigned int *input,
                                  unsigned int input_size){

    int i = blockIdx.x * blockDim.x + threadIdx.x; // Thread index

    int stride = blockDim.x * gridDim.x; // Total number of threads

    while(i < input_size){

        unsigned int val = input[i];

        histo[val] += 1;

        i += stride;
    }
}
```
Parallel Histogram Computation: Iteration 2

- All threads move to the next section of the input
 - Each thread moves to element threadID + #threads

We need to use atomic operations
(Correct) Parallel Histogram Kernel

```c
__global__ void histogram_kernel(unsigned int *histo,
                                  unsigned int *input,
                                  unsigned int input_size)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x; // Thread index

    int stride = blockDim.x * gridDim.x; // Total number of threads

    while(i < input_size){
        unsigned int val = input[i];

        atomicAdd(&histo[val], 1);

        i += stride;
    }
}
```
Atomic Operations on DRAM

- Each Load-Modify-Store has two full memory access delays
 - All atomic operations on the same variable (RAM location) are serialized
Hardware Improvements

- Atomic operations on Fermi L2 cache
 - Medium latency, but still serialized
 - Global to all blocks
 - “Free improvement” on Global Memory atomics

Slide credit: Hwu & Kirk
Hardware Improvements (Cont.)

- Atomic operations on Shared Memory
 - Very short latency, but still serialized
 - Private to each thread block
 - Need algorithm work by programmers (more later)
Histograms are widely used in image processing

- Some computation before voting in the histogram may be needed

For (each pixel i in image I)

- $\text{Pixel} = I[i]$ // Read pixel
- $\text{Pixel'} = \text{Computation(Pixel)}$ // Optional computation
- $\text{Histogram}[\text{Pixel'}]++$ // Vote in histogram bin

- Parallel threads frequently incur atomic conflicts in image histogram computation
Histogram Computation of Natural Images

- **Frequent atomic conflicts** due to the spatial similarity of the pixel value distribution in natural images

- By using **multiple sub-histograms** (which are merged at the end), we can reduce the frequency of atomic conflicts
- This optimization technique is called **privatization**
Privatization

- **Privatization** is an optimization technique where multiple private copies of an output are maintained, then the global copy is updated on completion
 - Operations on the output must be **associative and commutative** because the order of updates has changed

- **Advantages:**
 - Reduces contention on the global copy
 - If the output is small enough, the **private copy can be placed in shared memory** reducing access latency
Privatization: Per-block sub-histograms in shared memory

- Threads use atomic operations in shared memory

![Diagram of Histogram Privatization]

Block 0’s sub-histo

Shared memory

b0 b1 b2 b3

Block 1’s sub-histo

b0 b1 b2 b3

Block 2’s sub-histo

b0 b1 b2 b3

Block 3’s sub-histo

b0 b1 b2 b3

Final histogram

b0 b1 b2 b3

Global memory

Parallel reduction
Histogram Privatization + Coarsening

- **Coarsening**: Each block processes several image chunks
 - Fewer sub-histograms to initialize and to merge at the end

![Diagram showing coarsening and privatization](image-url)
Parallel Histogram Kernel with Privatization (+ Coarsening)

```c
__global__ void histogram_kernel(unsigned int *histo, unsigned int *input, unsigned int input_size) {

    int tid = blockIdx.x * blockDim.x + threadIdx.x; // Thread index
    int stride = blockDim.x * gridDim.x; // Total number of threads

    __shared__ unsigned int histo_s[BINS]; // Private per-block sub-histogram

    // Sub-histogram initialization
    for (int i = threadIdx.x; i < BINS; i += blockDim.x) {
        histo_s[i] = 0;
    }
    __syncthreads(); // Intra-block synchronization

    // Main loop to compute per-block sub-histograms
    for (int i = tid; i < input_size; i += stride) {

        unsigned int val = input[i]; // Global memory read (coalesced)

        atomicAdd(&histo_s[val], 1); // Atomic addition in shared memory
    }
    __syncthreads(); // Intra-block synchronization

    // Merge per-block sub-histograms and write to global memory
    for (int i = threadIdx.x; i < BINS; i += blockDim.x) {

        // Atomic addition in global memory
        atomicAdd(histo + i, histo_s[i]);
    }
}
```
Warp-Synchronous Programming for Atomic Operations
Warp Shuffle Functions

- **Built-in warp shuffle functions** enable threads to share data with other threads in the same warp
 - Faster than using shared memory and __syncthreads() to share across threads in the same block

- **Variants:**
 - __shfl_sync(mask, var, srcLane)
 - Direct copy from indexed lane
 - __shfl_up_sync(mask, var, delta)
 - Copy from a lane with lower ID relative to caller
 - __shfl_down_sync(mask, var, delta)
 - Copy from a lane with higher ID relative to caller
 - __shfl_xor_sync(mask, var, laneMask)
 - Copy from a lane based on bitwise XOR of own lane ID
Other Warp-Synchronous Primitives

- `__syncwarp(unsigned)`

 Forces the reconvergence of the threads in the mask

- `__activemask()`

 Returns the mask of converged threads

- `__all_sync(unsigned, bool)` and `__any_sync(unsigned, bool)`

 Returns true if all or any of the participating threads pass true

Slide credit: Hwu & Kirk (PUMPS 2021)
Other Warp-Synchronous Primitives

- `__ballot_sync(unsigned, bool)`
 Returns the mask of threads that passed true

- `__match_all_sync(unsigned, _T)`
 Returns true if all participating threads pass the same value

- `__match_any_sync(unsigned, _T)`
 Returns the mask of participating threads passing the same value

Slide credit: Hwu & Kirk (PUMPS 2021)
Coalesced Atomic Operations

- Identify threads operating on the same atomic and use a reduction

```c
int atomic_add(int * ptr, int value){

    unsigned active_mask = __activemask();
    unsigned active_mask = __match_any_sync(active_mask, ptr);

    int value = reduce_warp(active_mask, value);

    if(__ffs(active_mask) - 1) == lane) {
        value = atomicAdd(ptr, value);
    }

    value = __shfl_sync(active_mask, value, __ffs(active_mask) - 1);
    return value;
}
```
Evolution of the Architectural Support for Atomic Operations
Atomic Operations on Shared Memory

- The architectural support for atomic operations evolves across GPU generations

- **CUDA**: int atomicAdd(int*, int);
- **PTX**: atom.shared.add.u32 %r25, [%rd14], %r24;
- **SASS**:

  ```
  /*00a0*/ LDSLK P0, R9, [R8];
  /*00a8*/ @P0 IADD R10, R9, R7;
  /*00b0*/ @P0 STSCUL P1, [R8], R10;
  /*00b8*/ @!P1 BRA 0xa0;
  ```

 Tesla, Fermi, Kepler

- **Maxwell, Pascal, Volta**...

  ```
  /*01f8*/ ATOMS.ADD RZ, [R7], R11;
  ```

 Native atomic operations for 32-bit integer, and 32-bit and 64-bit atomicCAS
Lock-Free Mechanism for Shared Memory Atomics

- Tesla, Fermi, and Kepler architectures
 - Parallel processing unit (PPU) = GPU core

```c
/*00a0*/ LDSLK P0, R9, [R8];
/*00a8*/ @P0 IADD R10, R9, R7;
/*00b0*/ @P0 STSCUL P1, [R8], R10;
/*00b8*/ @!P1 BRA 0xa0;
```

Coon et al., “Lock Mechanism to Enable Atomic Updates to Shared Memory,” US8055856
Assembly Code for Shared Memory Atomics
(pre Maxwell)

- **Lock-free mechanism**
 - Predicated execution
- **LDSLK** loads from shared memory and sets one lock bit
 - Predication register P_0 set if lock succeeds
- **STSCUL** stores and releases the lock
- **BRA** jumps to start a new attempt to acquire the lock

```
/*0090*/ PSETP.AND.AND P1, PT, !PT, PT, PT;  // Predicate set predicate
/*0098*/ SSY 0xd0;                      // Set synchronization point
/*00a0*/ LDSLK P0, R9, [R8];          // Load and lock
/*00a8*/ @P0 IADD R10, R9, R7;        // Integer addition
/*00b0*/ @P0 STSCUL P1, [R8], R10;    // Store conditionally and unlock
/*00b8*/ @!P1 BRA 0xa0;               // Predicated unconditional branch
/*00c8*/ Instruction.S
/*00d0*/ ...
```
Limited Number of Lock Bits

- The limited number of locks may cause high contention
 - 256 lock bits in Tesla, 1024 lock bits in Fermi and Kepler

Gomez-Luna+, “Performance Modeling of Atomic Additions on GPU Scratchpad Memory,” IEEE TPDS, 2013 (supplemental material)
Example Execution Timeline

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Active threads</th>
<th>Addresses involved</th>
<th>In processing unit...</th>
<th>In lock unit...</th>
<th>In memory...</th>
<th>Latency penalties</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDSLK P0</td>
<td>0 2 4 7 8 ... 31</td>
<td>0 1 7 8 ... 31</td>
<td></td>
<td></td>
<td></td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>1 3</td>
<td>32 33</td>
<td></td>
<td></td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1056</td>
<td></td>
<td></td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td>@P0 IADD</td>
<td>0 1 2 3 7 8 ... 31</td>
<td>0 1 7 8 ... 31</td>
<td>Predicated addition</td>
<td></td>
<td></td>
<td>Write access</td>
</tr>
<tr>
<td>@P0 STSUL</td>
<td>0 2 7 8 ... 31</td>
<td>0 1 7 8 ... 31</td>
<td></td>
<td>Release locks</td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td></td>
<td>1 3</td>
<td>32 33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!@P0 BRA</td>
<td>4 5 6</td>
<td></td>
<td>Predicated branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDSLK P0</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>Read access</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1056</td>
<td></td>
<td></td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td>@P0 IADD</td>
<td>4 6</td>
<td>0 1056</td>
<td>Predicated addition</td>
<td></td>
<td></td>
<td>Write access</td>
</tr>
<tr>
<td>@P0 STSUL</td>
<td>4</td>
<td>0</td>
<td></td>
<td>Release locks</td>
<td></td>
<td>Bank conflict</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!@P0 BRA</td>
<td>5</td>
<td></td>
<td>Predicated branch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDSLK P0</td>
<td>5</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@P0 IADD</td>
<td>5</td>
<td>1024</td>
<td>Predicated addition</td>
<td></td>
<td></td>
<td>Write access</td>
</tr>
<tr>
<td>@P0 STSUL</td>
<td>5</td>
<td>1024</td>
<td></td>
<td>Release locks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>!@P0 BRA</td>
<td>5</td>
<td></td>
<td>Predicated branch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Microbenchmarking Atomic Operations

- Microbenchmark
 - Hs is a shared memory array
 - \texttt{clock()} returns the cycle count

```c
for(int i = begin; i < size; i += num_threads) {
    // Read from global memory
    vote = input_data[i];

    start_time = clock(); // Start timing

    // Macro repeats atomicAdd 256 times
    repeat256(atomicAdd(&Hs[vote], 1));

    stop_time = clock(); // Stop timing
}
```

Microbenchmarking Results (I)

- **Position conflict**: n is the number of threads accessing the same address

Microbenchmarking Results (II)

- **Bank conflicts**: m is the number of threads accessing the same bank (stride 32)

Bank conflicts: m is the number of threads accessing the same bank (stride 256)
Limited Number of Lock Bits

- The limited number of locks may cause high contention
 - 256 lock bits in Tesla, 1024 lock bits in Fermi and Kepler

We can use configurable hash functions

Gomez-Luna+, “Performance Modeling of Atomic Additions on GPU Scratchpad Memory,” IEEE TPDS, 2013 (supplemental material)
Configurable Hash Functions

- Configurable hash functions can reduce the number of bank conflicts and lock conflicts

Bank and lock conflicts are greatly reduced with an XOR hash function

Multiple private sub-histograms per block
+ padding to avoid conflicts on banks and lock bits

Optimizing Histogram Computation (II)

- Significant execution time reduction on Fermi and Kepler
 - 100 natural images

Atomic Operations on Shared Memory

- The architectural support for atomic operations evolves across GPU generations

- CUDA: int atomicAdd(int*, int);
- PTX: atom.shared.add.u32 %r25, [%rd14], %r24;
- SASS:

 Tesla, Fermi, Kepler
 /*00a0*/ LDSLK P0, R9, [R8];
 /*00a8*/ @P0 IADD R10, R9, R7;
 /*00b0*/ @P0 STSCUL P1, [R8], R10;
 /*00b8*/ @!P1 BRA 0xa0;

 Maxwell, Pascal, Volta...
 /*01f8*/ ATOMS.ADD RZ, [R7], R11;

 Native atomic operations for 32-bit integer, and 32-bit and 64-bit atomicCAS
Optimizing Histogram Computation (III)

- Improved hardware (since Maxwell) saves programmers’ effort

![Graph showing execution time vs. replication factor and histogram size]

Another Example: Stream Compaction

- 1 single counter per block updated via shared memory atomics

CUDA Pro Tip: Optimized Filtering with Warp-Aggregated Atomics
Atomic Units Near Memory Banks

- AMD GCN architecture: Atomic units near local data share (LDS)

Atomic Operations on Global Memory

- **Tesla**
 - Atomic operations executed on DRAM

- **Fermi**
 - Executed on L2
 - Atomic units near L2

- **Kepler**
 - Atomic units near L2 incorporate a local buffer

- **Pascal**
 - 64-bit FP atomicAdd()
Atomic Units near L2 with Local Buffer

- L2 is divided into partition units
Scatter vs. Gather

- Scatter assigns input elements
- Gather assigns output elements
Scatter vs. Gather: Example Codes

```c
__global__ void s2g_gpu_scatter_kernel(unsigned int* in, unsigned int* out,
unsigned int num_in, unsigned int num_out) {

    unsigned int inIdx = blockIdx.x*blockDim.x + threadIdx.x;

    if(inIdx < num_in) {
        unsigned int intermediate = outInvariant(in[inIdx]);
        for(unsigned int outIdx = 0; outIdx < num_out; ++outIdx) {
            atomicAdd(&(out[outIdx]), outDependent(intermediate, inIdx, outIdx));
        }
    }
}

__global__ void s2g_gpu_gather_kernel(unsigned int* in, unsigned int* out,
unsigned int num_in, unsigned int num_out) {

    unsigned int outIdx = blockIdx.x*blockDim.x + threadIdx.x;

    if(outIdx < num_out) {
        unsigned int out_reg = 0;
        for(unsigned int inIdx = 0; inIdx < num_in; ++inIdx) {
            unsigned int intermediate = outInvariant(in[inIdx]);
            out_reg += outDependent(intermediate, inIdx, outIdx);
        }
        out[outIdx] += out_reg;
    }
}
```
Scatter vs. Gather: Evaluation (I)

- Scatter: Large penalty due to atomic conflicts in DRAM

![Graph showing execution time for Scatter and Gather operations across different hardware architectures. The graph highlights 'Tesla: No L2 cache' with a significant increase in execution time for Scatter with conflicts.]
Scatter vs. Gather: Evaluation (II)

- L2 atomics improve the performance by an order of magnitude
Scatter vs. Gather: Evaluation (III)

- Another 10x speedup with local buffers

Kepler: Buffer in atomic units

Execution time (ms)

- Tesla
- Fermi
- Kepler
- Maxwell
Effect of Hardware Improvements

- 256-bin histogram computation for 100 natural images
 - Shared memory implementation uses 1 private histogram per block
 - Global atomics greatly improved in Kepler
 - Native shared memory atomics since Maxwell

![Bar chart showing execution time comparison between Fermi, Kepler, and Maxwell for shared memory and global memory.](chart.png)
Recommended Readings

 - Chapter 9 - Parallel patterns — parallel histogram computation: An introduction to atomic operations and privatization
P&S Heterogeneous Systems

Parallel Patterns: Histogram

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021
18 November 2021