P&S Heterogeneous Systems

Parallel Patterns: Convolution

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021

25 November 2021

Parallel Patterns

Reduction Operation

A reduction operation reduces a set of values to a single
value

o Sum, Product, Minimum, Maximum are examples

Properties of reduction

o Associativity
o Commutativity
o Identity value

Reduction is a key primitive for parallel computing
o E.g., MapReduce programming model

Dean and Ghemawat, “MapReduce: Simplified Data Processing of Large Clusters,” OSDI 2004

Divergence-Free Mapping (1)

= All active threads belong to the same warp

Thread 0 Thread 1 Thread 2 - Thread 14 Thread 15

iterations

Slide credit: Hwu & Kirk 4

Divergence-Free Mapping (11)

= Program with high SIMD utilization

__shared float partialSum]]

unsigned int t = threadIdx.x;

for(int stride = blockDim.x; stride > 0; stride >> 1){
__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

[Wap 1

§§§§§§§§ §§§§ §§§§ﬂ
R 1

“-o jiii

Histogram Computation

Histogram is a frequently used computation for reducing
the dimensionality and extracting notable features and
patterns from large data sets

o Feature extraction for object recognition in images
o Fraud detection in credit card transactions
o Correlating heavenly object movements in astrophysics

Q ...

Basic histograms - for each element in the data set, use the
value to identify a “bin” to increment

o Divide possible input value range into “bins”

o Associate a counter to each bin

o For each input element, examine its value and determine the
bin it falls into and increment the counter for that bin

Slide credit: Hwu & Kirk

Parallel Histogram Computation: Iteration 2

= All threads move to the next section of the input
o Each thread moves to element threadID + #threads

I _ C A L CU L AT E

We need to use atomic operations

AN

_ A _H I ST OGR AWM

1|1 2 1 2 1

_ A BCDEFGHTIIJIKILMNOPOQQRSTU V.

7

Histogram Privatization

= Privatization: Per-block sub-histograms in shared memory
o Threads use atomic operations in shared memory

Shared memory

Block Qs sub-histo Block 1's sub-histo Block 2’s sub-histo Block 3's sub-histo

b0

b1

b2

b3

b0

b1

b2

b3

b0

b1

b2 | b3 bO | b1 [b2 | b3

MI reduction

b0

b1

b2

b3

Final histogram

Global memory

Convolution

Convolution Applications

Convolution is a widely-used operation in signal processing,
image processing, video processing, and computer vision

Convolution applies a filter or mask or kernel* on each
element of the input (e.g., a signal, an image, a frame) to
obtain a new value, which is a weighted sum of a set of
neighboring input elements

o Smoothing, sharpening, or blurring an image
o Finding edges in an image
o Removing noise, etc.

Applications in machine learning and artificial intelligence
o Convolutional Neural Networks (CNN or ConvNets)

* The term “kernel” may create confusion in the context of GPUs (recall a CUDA/GPU kernel is a function executed by a GPU) 10

1D Convolution Example

= Commonly used for audio processing

= Mask size is usually an odd number of elements for
symmetry (5 in this example)

= Calculation of P[2]:

N N[O] N[1] N[2] N[3] N[4] N[5] NI[6] P P[O] P[1] P[2] P[3] P[4] PI[5] PI[6]

1 2 3 4 'S5 KN

Sum

M M[O] M[1] M[2] M[3] M[4]

34543 3 8 15 16 15

Partial products

11

Slide credit: Hwu & Kirk

1D Convolution Example: Next Element

= Calculation of P[3]

N N[O] N[1] N[2] N[3] N[4] N[5] NI[6] P P[O] P[1] P[2] P[3] P[4] PI[5] PI[6]

" I

Sum

M M[O] M[1] M[2] M[3] M[4]

34543 6 12 20 20 18

Partial products

Slide credit: Hwu & Kirk 12

1D Convolution Boundary Condition

= Calculation of output elements near the boundaries
(beginning and end) of the input array need to deal with
“ghost” elements

o Different policies (0, replicates of boundary values, etc.)

) N N[O] N[1] N[2] N[3] N[4] N[5] NI[6] P P[O] P[1] P[2] P[3] P[4] PI[5] PI[6]

30N 1 2 3 4 EREEN]

Sum

M M[O] M[1] M[2] M[3] M[4]

34543 0O 4 10 12 13

Partial products

Slide credit: Hwu & Kirk 13

1D Convolution Kernel
with Boundary Condition Handling*

~_global void convolution 1D basic kernel(float *N, float *M, float *P,
int Mask Width, int Width) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
float Pvalue = 0;
int N_start point = i - (Mask Width/2);

for(int j = 0; j < Mask Width; j++) {

1f(N_start point + j >= 0 && N _start point + j < Width) {

Pvalue += N[N start point + j] * M[]];
}

} N N[0] N[1] N[2] N[3] N[4] N[5] N[6] P P[O] P[1] P[2] P[3] P[4] P[5] P[6]

1 2 13 4 EEECE

P[i] = Pvalue;

M M[0] M[1] M[2] M[3] M[4]

Partial products

* All elements outside the image are 0 in this kernel 14

Recall: Memory Hierarchy in CUDA Programs

Block (0, 0) Block (1, 0)

Shared memory

Registers | Registers |

; Thread (0, 0) ; Thread (1, 0)

Shared memory

Registers | Registers |

é Thread (0, 0) ; Thread (1, 0)

15

Memory in the GPU Architecture

=1 cycle

=5 cycles Constant Cache

Shared
=5 | L1 Cach

Shared
Memory

L2 Cache

Shared

L1 Cach
Memory ache

=500 cycles Global Memory

Slide credit: 1zzat El Hajj

Storing the Mask in Constant Memory

We can store the mask in constant memory

o The mask is small

o It is constant

o It is accessed by all threads

Constant memory is cached inside each GPU core and it is

particularly fast when all threads of a warp access the same
value

1. Declare the mask as a global variable
#define MASK WIDTH 5
~_constant float M[MASK WIDTH];

2. Initialize the mask from the host
cudaMemcpyToSymbol (M, M h, Mask Width* (float));

T

Destination Source Size

17

1D Convolution Kernel
with Boundary Condition Handling and Constant Cache for M

~_global void convolution 1D basic kernel(float *N, float *P,
int Mask Width, int Width) {

int i = blockIdx.x * blockDim.x + threadIdx.x;
float Pvalue = 0;
int N_start point = i - (Mask Width/2);

for (int j = 0; j < Mask Width; j++) {

if (N _start point + j >= 0 && N _start point + j < Width) {

Pvalue += N[N start point + j] * M[]];

}
} (N NOLNEL N2 NS NG NS) NG P Pl0] P[1] P2} P[3] Pl4] Pls] Ple]
1 23 4 K
P[i] = Pvalue; »
}
Use it with caution! Constant

M M(0] M[1] M[2] M[3] M[4]
cache is small (e.g., 64 KB) B —>

18

Recall: Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1_data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

19

Tiled 1D Convolution Basic Idea

Block 0 Block 1 Block 2 Block 3

Tile 0 gh%st 0|1
Tile 1 231415 halo
e P

Tile 3 i 10 I 1f112| 13

Slide credit: Hwu & Kirk

Loading the Left Halo

n= 2 threadIdx.x = 2

11121314 | 15

int n = Mask Width/2;
int halo index left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;

1f (threadIdx.x >= blockDim.x - n) {

N ds[threadIdx.x - (blockDim.x - n)] =
(halo _index left < 0) ? 0 : N[halo index left];
}

Slide credit: Hwu & Kirk 21

Loading the Internal Elements

n= 2 threadIdx.x = 2

11121314 | 15

N ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];

Slide credit: Hwu & Kirk

Loading the Right Halo

n= 2 threadIdx.x = 2

halo index right = 10

int halo index right = (blockIdx.x + 1l)*blockDim.x + threadIdx.x;
1f (threadIdx.x < n) {

N ds[n + blockDim.x + threadIdx.x] =
(halo index right >= Width) ? 0 : N[halo index right];

Slide credit: Hwu & Kirk 23

Tiled 1D Convolution Kernel

~_global void convolution_ 1D basic_kernel(float *N, float *P, int Mask_Width, int Width) {

int i = blockIdx.x*blockDim.x + threadIdx.x;
_ shared float N ds[TILE SIZE + MAX MASK WIDTH - 1];

int n = Mask Width/2;

int halo_index left = (blockIdx.x - 1)*blockDim.x + threadIdx.x;
if(threadIdx.x >= blockDim.x - n) {
N ds[threadIdx.x - (blockDim.x - n)] = (halo_index left < 0) ? 0 : N[halo index left];
}
N ds[n + threadIdx.x] = N[blockIdx.x*blockDim.x + threadIdx.x];
int halo_index right = (blockIdx.x + 1)*blockDim.x + threadIdx.x;
if(threadIdx.x < n) {
N ds[n + blockDim.x + threadIdx.x] = (halo_index_right >= Width) ? 0 : N[halo_index_right];
}

__syncthreads();

float Pvalue = 0;

for(int j = 0; j < Mask Width; j++) {
Pvalue += N_ds[threadIdx.x + Jj] * M[]];

}

P[i] = Pvalue;

Slide credit: Hwu & Kirk 24

2D Convolution (I)

= The mask is 2D
o For example, a Gaussian filter

Gaussian mask

25

2D Convolution (I1I)

= Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; Jj++){
sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

}

26

Tiling 1n 2D Convolution

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1_data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

27

Loading Tiles into Shared Memory

output tile dimension
——

mask dimension .
—

input tile dimension

mask radius ==
INpute
(in shared
memory) mask
(in constant
memory)

output

Challenge: Input and output tiles have different dimensions
(input tile dimension = output tile dimension + 2 x mask radius)

Solution: Launch enough threads per block to load the input tile to
shared memory, then use a subset of them to compute and store the

output tile

28
Slide credit: Izzat El Hajj

Ditterence 1n Tile Sizes (1)

output tile dimension
——

input tile dimension

»

mask dimension

A—
mask radius ===l
INpute
(in shared
memory) mask
(in constant
input tile dimension memory)

output

thread block

29
Slide credit: Izzat El Hajj

Ditterence 1n Tile Sizes (I1)

output tile dimension
——

input tile dimension

»

mask dimension

A—
mask radius ===l
INpute
(in shared
memory) mask
(in constant
input tile dimension memory)

output

thread block

30
Slide credit: Izzat El Hajj

Ditterence in Tile Sizes (111)

input tile dimension

INputije
(in shared
memory)

input tile dimension (in constant

mask dimension
—

mask radius

output tile dimension
—

">

threads active

when computing

and storing the

output tile

thread block

Slide credit: Izzat El Hajj

output tile dimension
——

=

memory)

mask

output

2D Convolution Examples

= Original

#define filterwWidth 5
#define filterHeight 5

double filter[filterHeight][filterWidth] =
{

m Blur 070 10507
o, 1, 1, 1, 0O,
1, 1, 1,1, 1,
o, 1, 1, 1, 0O,
o, 0, 1, 0, O,

#define filterwWidth 9
#define filterHeight 9

double filter[filterHeight][filterWidth] =
1

= Motion blur

}i

#define filterWidth 3
#define filterHeight 3

= Sharpen

double filter[filterHeight][filterWidth] =
¢

il il ok
=i, 9, =i,
=il =il =i

}i

https://lodev.org/cgtutor/filtering.html

https://lodev.org/cgtutor/filtering.html

Canny Edge Detection

= Gaussian filtering
o Smooth the image to remove noise
= Sobel filtering
o Find the intensity gradients of the image
= Non-maximum suppression
o Suppress spurious response to edge detection
= Hysteresis threshold
o Strong edges + weak edges connected to a strong edge

e

Canny, "A Computational Approach To Edge Detection," IEEE TPAMI, 1986 33

Convolutions are Stencils

Stencil Computation

Stencils are a class of

algorithms where each £
output element is
calculated from a set of
neighboring input [1]
elements in a :_H_:_:
structured grid aaan
o Widely-used in high -
performance 30 33 point
computing to solve A

partial differential

equations (PDESs)

35

Stencil Computation and Applications

Stencil computations update
values in a grid using a fixed Jﬁ :
pattern of grid points y

Stencils are used in ~30% of
high-performance computing
applications

7-point Jacobi in 3D plane

http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics
Naoe et al., "Secure Key Generation for Static Visual Watermarking by Machine Learning in Intelligent Systems and Services," IJSSOE, 2010

36

http://www.flometrics.com/fluid-dynamics/computational-fluid-dynamics

Heterogeneous System: CPU+FPGA

i NN il i

A

Source: IBM Source: AlphaData

POWER9 AC922 |HBM-based AD9H?7 board

We evaluate two POWERS+FPGA systems:
1. HBM-based board AD9H7 2. DDR4-based board AD9V3
Xilinx Virtex Ultrascale+™ XCVU37P-2 Xilinx Virtex Ultrascale+™ XCVU3P-2

Singh et al., NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling, FPL 2020

NERO Application Framework

. i COSMO APl | libCXL
NERO communicates to Host COSMO WEATHER| Host POWER R

over CAPI2 (Coherent i System Processor Proxy (CAPP)
Accelerator Processor Interface) rpca =cAP =

——

PCled CAPI2 POWER Service Layer (PSL)
AXI Full Bus AXI Lite Bus
SNAP

1
1
1
1
1
1
1
:
1
: t A A ~ !
! L
1
1
1
1
1
1
1
1
1
1

« COSMO API handles offloading
jobs to NERO

\/ S
- SNAP (Storage, Network, and 0D || oream | | AxiDMA [P | o [P]
g ! 4 Manager | (Scheduler Partitioned On-chip Memory
i - EEEEE=EmmEmEm
Analytics Programming) allows

HBM Memory Controller

for seamless integration of the ... ’3 BT = I lgmxﬂ ______
H

COSMO API HBM2 Stack 1 BM2 Stack 2

https://github.com/open-power/snap

Singh et al., NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling, FPL 2020

https://github.com/open-power/snap

Accelerating Climate Modeling

= Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for

Weather Prediction Modeling"”
Proceedings of the 30th International Conference on Field-Programmable Logic

and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling
Gagandeep Singh®?¢ Dionysios Diamantopoulos® Christoph Hagleitner Juan Gémez-Luna”

Sander Stuijk? Onur Mutlu® Henk Corporaal?
9Eindhoven University of Technology PETH Ziirich ‘IBM Research Europe, Zurich

39

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Convolutions in Machine Learning

Convolutions 1n Machine Learning

= Convolutions are traditionally used for feature detection in image
processing
o They can be used as neural network layers

= Convolutions have an advantage over fully connected layers
(e.g., in multilayer perceptron, MLP)
o Local weights: They compute on only a window around the element
of interest
o Data sharing via on-chip memories is feasible

@\ Convolutional layer
\\

U
\
,/’I \ S

Weight sharing

41

Convolutional Neural Networks: Demo

Back to Yann's
Home
Publications

LeNet-5 Demos

Unusual
Patterns
unusual styles
weirdos

Invariance
translation (anim)
scale (anim)
rotation (anim)
squeezing_(anim)
stroke width
(anim)

Noise
Resistance
noisy 3 and 6
noisy 2 (anim)
noisy 4 (anim)

Multiple
Character
various stills
dancing 00 (anim)
dancing 384
(anim)

Complex cases
(anim)

35->53
12->4-> 21

23 ->32

30 + noise
31-51-57-61

LeNet-5, convolutional

neural networks

Convolutional Neural Networks are are a special kind of
multi-layer neural networks. Like almost every other
neural networks they are trained with a version of the
back-propagation algorithm. Where they differ is in the

Convolutional Neural Networks are designed to
recognize visual patterns directly from pixel images with
minimal preprocessing.

They can recognize patterns with extreme variability
(such as handwritten characters), and with robustness to
distortions and simple geometric transformations.

LeNet-5 is our latest convolutional network designed for
handwritten and machine-printed character recognition.
Here is an example of LeNet-5 in action.

%W LeNel 5 | qesearcu
answer: 7

it

T &Layer~5 ,\

Layer-3 Input
Layer-1

Many more examples are available in the column on the
left:

Several papers on LeNet and convolutional networks are
available on my publication page:

[LeCun et al., 1998]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, november 1998.
Psgz

[Bottou et al., 1997]
L. Bottou, Y. LeCun, and Y. Bengio. Global training of

%
;

~
Di-
Pl

3

e

& 7
iy

http://yann.lecun.com/exdb/lenet/index.html

42

LeNet-5, a Convolutional Neural Network
for Hand-Written Digit Recognition

This is a 1024*8 bit input, which will
have a truth table of 2819 entries

C3:f. maps 16@10x10
Input C1: feature maps PR 18@ S4: f. maps 16@5x5

6@28x28 : :
32x32 @28x S2:f. maps r C25. layer F6:layer OUTPUT

6@14x14 I— 84 10

\ r
D - Wi T |
| | == | Gaussian
| Full connection connections
Convolutions Subsampling Convolutions Subsampling Full connection

Slide credit: Hwu & Kirk 4‘3

An Example of 2D Convolution

Output feature map

Structure information
Input: 5*5 (blue)
Kernel (filter): 3*3 (grey)
Output: 5*5 (green)

Computation information
Stride: 1
Padding: 1 (white)

Output Dim = (Input + 2*Padding
Input feature map - Kernel) / Stride + 1

44

An Example of 2D Convolution

45

Another Example of 2D Convolution

Input
X Layer
1 2 3 4 5 RN
2 3 4 5 6 HNMER
3 4 5 6 7 EEE
4 5 6 7 8 EEK
S 6 7 8 5 KEM
6171819101 17]2
718191011]2]3

CNN
filter

Partial products

Output
Layer

Sum

Slide credit: Hwu & Kirk

46

A Basic Conv. Layer Forward Kernel

(Code 1s Incomplete!)

~_global void ConvLayerForward Basic Kernel(int C, int W _grid,
int K, float* X, float* W, float* Y){

int m = blockIdx.x;
int h = blockIdx.y / W grid + threadIdx.y;
int w = blockIdx.y % W grid + threadIdx.x;

float acc = 0.;

for(int c 0; ¢ < C; c++) {
for(int p = 0; p < K; p++)
for(int g = 0; g < K; qg++)

acc += X[c, h + p, w + g] * W[m, ¢, p, d];

}

Y[m, h, w] = acc;

Slide credit: Hwu & Kirk 47

Power of Convolutions and Applied Courses

In 2010, Prof. Andreas Moshovos adopted Professor Hwu'’s
ECE498AL Programming Massively Parallel Processors Class

Several of Prof. Geoffrey Hinton’s graduate students took
the course

These students developed the GPU implementation of the
Deep CNN that was trained with 1.2M images to win the
ImageNet competition

Slide credit: Hwu & Kirk 48

Example: AlexNet (2012)

= AlexNet wins the ImageNet classification competition with

~10% points higher accuracy than state-of-the-art

o Krizhevsky et al., "ImageNet Classification with Deep Convolutional

Neural Networks”, NIPS 2012.

Neural Networks

ImageNet Classification with Deep Convolutional

Alex Krizhevsky Ilya Sutskever
University of Toronto University of Toronto
kriz@cs.utoronto.ca ilya@cs.utoronto.ca

Abstract

compared to 26.2% achieved by the second-best entry.

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the

ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,

49

Neural Network Layer Examples

LeNet AlexNet
| Image: 28 (height) x 28 (width) x 1 (channel) ||Image: 224 (height) x 224 (width) x 3 (channels)|
v v
| Convolution with 5x5 kernel+2padding:28x28x6 | | Convolution with11x11kernel+4stride:54x54x96 |
. sigmoid v RelLu
| Pool with 2x2 average kernel+2 stride:14x14x6 || Pool with 3x3 max. kernel+2 stride: 26x26x96 |
v v
| Convolution with 5x5 kernel (no pad):10x10x16 | | Convolution with 5x5 kernel+2 pad:26x26x256 |
. sigmoid v RelLu
| Pool with 2x2 average kernel+2 stride: 5x5x16 || Pool with 3x3 max.kernel+2stride:12x12x256 |
J flatten v
| Dense: 120 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
. sigmoid v ReLu
| Dense: 84 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x384 |
. sigmoid v RelLu
| Dense: 10 fully connected neurons || Convolution with 3x3 kernel+1 pad:12x12x256 |
v v ReLu
Output: 1 of 10 classes \ Pool with 3x3 max.kernel+2stride:5x5x256 \
v flatten

| Dense: 4096 fully connected neurons |
v Relu, dropout p=0.5

| Dense: 4096 fully connected neurons |
v RelLu, dropout p=0.5

\ Dense: 1000 fully connected neurons \

v

Output: 1 of 1000 classes

By Cmglee - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=104937230

Example: Googl.eNet (2014)

= Google improves accuracy by adding more network layers
o From 8 in AlexNet to 22 in GooglLeNet
o Szegedy et al., "Going Deeper with Convolutions”, CVPR 2015.

Going Deeper with Convolutions

Christian Szegedy', Wei Liu?, Yangqing Jia', Pierre Sermanet!, Scott Reed?,
Dragomir Anguelov!, Dumitru Erhan!, Vincent Vanhoucke!, Andrew Rabinovich?
1Google Inc. ?University of North Carolina, Chapel Hill
$University of Michigan, Ann Arbor *“Magic Leap Inc.

'{szegedy, jiayq, sermanet,dragomir, dumitru, vanhoucke}@google.com

2 5 3 ; 4 ; ; ;
wliu@cs.unc.edu, “"reedscott@umich.edu, “arabinovich@magicleap.com

51

Example: ResNet (2015)

= He et al., "Deep Residual Learning for Image Recognition”, CVPR 2016.

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang Shaoqging Ren Jian Sun
Microsoft Research
{kahe, v-xiangz, v-shren, jiansun} @ microsoft.com

ImageNet experiments 282

25.8
152 layers

2 First CNN

\
\
\
22 layers ‘ 19 Iayers
\ 6.7

Human: 5.1% /i II : sﬁrssmirs lShauow.

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)
21eevis 52

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015

Reducing Convolution Layers to
Matrix Multiplications

= Convolution layers are the compute intensive parts of a
CNN

= GPUs have extremely high-performance implementations of
matrix multiplications

= Tiling techniques for matrix multiplication naturally reuse
input features across output feature maps

= Converting convolutions in a convolution layer to a matrix
multiplication helps to keep the level of parallelism stable
across CNN layers

Slide credit: Hwu & Kirk 53

Implementing a Convolutional Layer

with Matrix Multiplication

2|2 101 0
"1 12Y0 (0| 2Y1
18 0 |12
0|2 1110

Output
Features
Y

Convolution
Filters
w

Input
Features
X

1]1]2]2]1]1][1]1]o]1]1]0
k

Convolution
Filters
W!

Slide credit: Reproduced from Hwu & Kirk

Output
Features
Y

= lo]m = T
o[[~ [n]e]+]o]x]

Input
Features
X (unrolled)

54

Tiled Matrix-Matrix Multiplication (I)

C=AxB

pe
o

Step 1: Load
the first tile of

\ - each input
matrix to
shared memory
(each thread
A n N C loads one
element)

55
Slide credit: Izzat El Hajj

Tiled Matrix-Matrix Multiplication (II)

Ciile = Atile X Byjle

Slide credit: Izzat El Hajj

BtiIe

Step 2: Each
thread

computes its
partial sum
from the tiles in
shared memory
(threads wait
Ciile for each other
to finish)

56

Deep Learning Matrix Multiplication

Hierarchical Decomposition

|
— DEEE . (T
Bl O[O L
Blocked GEMM Thread Block Tile . Warp Tile Thread Tile
> > >
Global Memory Shared Memory Register File SM CUDA Cores

https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive/3

57

https://www.anandtech.com/show/12673/titan-v-deep-learning-deep-dive/3

Joint Register and Shared Memory Tiling

- - Example:
- S_tore input M_tlle a|_1d output P TILE WIDTH M = 4
tile elements in registers TILE WIDTH N = 2
= Store input N tile elements in —

shared memory W

= Decouple of M and N input tile
widths

a

= Key quantities

a

a

TILE_WIDTH_M , TILE_WIDTH_N

Number of threads = TILE. WIDTH_M

Output tile size = TILE_WIDTH_M *
TILE_WIDTH_N

Reuses for each N element =
TILE_ WIDTH_M

Reuses for each M element =
TILE_ WIDTH_N

Each thread calculates
TILE_ WIDTH_N P elements

Slide credit: Hwu & Kirk 58

NVIDIA A100 Core

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FPos

FP32 FP32 FP64
FP32 FP32 FP64

FP32FP32 FPo4

TENSOR CORE

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FPe4

FP32FP32 FPos4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64

FP32 FP32 FP64
FP32 FP32 FP64

FP32 FP32 FPes

TENSOR CORE

FP32 FP32 FP64

FP32 FP32 FP64
FP32 FP32 FP64
P S T

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

L1 Instruction Cache

SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FPe4

FP32 FP32 FPo4
FP32FP32 FP64

FP32[FP32 FPes4

19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision

TENSOR CORE

FP32[FP32 FPoa4

FP32 FP32 FPes

FP32[FP32 FPoa

FP32[FP32 FPos4

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32FP32 FPe4

FP32 FP32 FPe4
FP32 FP32 FPo4

FP32 FP32 FP64

TENSOR CORE

FP32[FP32 FPos4

FP32 FP32 FP64

FP32 FP32 FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST

192KB L1 Data Cache / Shared Memory

Tex

Tex

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

312 TFLOPS for Deep Learning (Tensor cores)

Sparse Tensor
Core

Select

T

SFU

I Input activations

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

Dense trained
weights

D

Fine-tune weights

SFU

..
=

Output activations

Non-zero
data values
Fine-tuned sparse and
compressed weights

59

Tensor Core Microarchitecture (Volta)

= Each warp utilizes two tensor cores
= Each tensor core contains two “octets”
o 16 SIMD units per tensor core (8 per octet)
0 4x4 matrix-multiply and accumulate each cycle per tensor core

FP16 Multiplier

Pipeline
\Y/ FP32 Adder

Registers
Accumulator Buffer

SIMD unit

DP

V (Dot Prc.)duct)
o] Register File e
<I\:§ — | IOoerand Bus1 —]
% — | IOnerand Bus 2 = o —]
5 = —— MnerandBuqS & g_g_z (\ P
e 2 3 g L P I - I N
L |7 N o N v N CORE T = = S = : . .
X S TENSOR 57 X_,“/ 5 M/ N7 \\& Unlike conventional SIMD,
< 7 CORE p > atrix atrix VI A H
HEFEH register contents are not
Octet 3 Octet 2 Octet 1 DEDDiEEE private to each thread, but
. — | —hreadeique— —Thregderpup shared inside the warp
w; e N g LIe] @n S ctetd 124
§ FabJEg 5 e z =a
SL< A A
Writeback

Proposed* tensor core microarchitecture

* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019. 60

Tensor Core Operations

= Load/Store from
TensorCore

WMMA 32x8x16

= Fixed size matrix
multiplication: usually
4x4, 16x16, or 64x64 ——

= NVIDIA supports non-
square matrix dimensions

Slide credit: Hwu & Kirk (PUMPS 2021) 61

TensorCore WMMA
(WARP Matrix Multiply Accumulate) API

wmma: : fragment< Use, M, N, K, Type, _Layout>;
wmma: :fill fragment(fragment<..> &, const Type &);

wmma: :load matrix_sync(fragment<..> &, const Type *, unsigned,
_Layout);

wmma: :store_matrix_sync(_Type *, const fragment<..> &, unsigned,
_Layout);

wmma: :mma_sync(fragment<..> &, const fragment<..> &, const

fragment<..> &,
const fragment<..> &, bool);

Fairly simple low level API that operates on memory fragments
(internally registers)

Slide credit: Hwu & Kirk (PUMPS 2021) 62

Matrix Fragments

wmma: : fragment<
typename _Use, /* matrix_a | matrix b | accumulator */
int M, /* Fragment dimensions */
int N,
int K,
typename _Type, /* Data type (half | float | ..) */
type Layout = void /* row_major | col major */

A memory fragment (internally a set of registers)

Slide credit: Hwu & Kirk (PUMPS 2021)

03

Matrix Fragment Initialization
with Constant Values

wmma: :fill fragment(
fragment<..> & fragment, /* Fragment to fill */
const Type & C /* Constant value to fill with */

)s

Fills the fragment with some constant value C

Slide credit: Hwu & Kirk (PUMPS 2021)

04

Loading Matrix Fragment from Memory

wmma: :load _matrix_sync(

fragment<..> & fragment, /* Fragment to load */
const Type * mptr, /* Staring address to load from */
unsigned lda, /* Leading matrix dimension */
_Layout layout; /* Matrix layout */

)s

wmma: :load matrix _sync(a_frag, &a[a_row + a_col * lda], 1lda);

Loads data from global or shared memory with specified stride
into the fragment.

If the fragment is matrix_a or matrix_b, the layout is inferred
from the fragment type.

In the example, we load a tile of a matrix (at
&a[aRow+aCol*1da]) into a_frag with 1da as the stride.

Slide credit: Hwu & Kirk (PUMPS 2021) 65

Storing Matrix Fragment to Memory

wmma: :store_matrix_sync(

_Type * mptr, /* Staring address to store to */
const fragment<..> & fragment, /* Fragment to store */
unsigned lda, /* Leading matrix dimension */
_Layout layout; /* Matrix layout */

)s

Stores the fragment into global or shared memory with specified
stride and layout

Slide credit: Hwu & Kirk (PUMPS 2021) 66

GEMM of Matrix Fragments

wmma: :mma_sync(
fragment<..> & out, /* Output fragment */

const fragment<..> & a, /* Fragment A */
const fragment<..> & b, /* Fragment B */
const fragment<..> & c, /* Fragment C */
bool satf = false /* Saturate to +-MAX_NORM */

)s

Stores in out the result of computingax b + ¢

If satf is true, the following saturation happens:
o Infinite saturates to MAX_NORM
a Minus infinite saturates to -MAX_NORM
a NaN is transformed to O

Slide credit: Hwu & Kirk (PUMPS 2021)

67

GEMM Kernel Using MMA in Halt Precision
(1 of 3)

#include <mma.h>
using namespace nvcuda::wmma;
__global void dot wmma(half * a, half * b, half * c,
int M, int N, int K, float alpha, float beta)) {
int 1da = M; int 1ldb = K; int ldc = M;
int warp_m = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
int warp_n = (blockIdx.y * blockDim.y + threadIdx.y);

fragment<matrix_a, 16, 16, 16, half, col major> a_frag;
fragment<matrix b, 16, 16, 16, half, row_major> b_frag;
fragment<accumulator, 16, 16, 16, half> acc_frag;

fragment<accumulator, 16, 16, 16, half> c_frag;

fill fragment(acc_frag, 0.0f);

Slide credit: Hwu & Kirk (PUMPS 2021)

068

G

MM Kernel Using MMA in Half Precision

(2 of 3)

for (int 1 =0; 1 < K; 1 +=16) {

int a_ row = warp_m * 16; int a _col = ij;
i; int b_col = warp_n * 16;

int b_row

if (a_row < M & a col < K & b row < K & b _col < N) {
/* Load fragments in the tile */
load matrix _sync(a_frag, a + a_row + a_col * lda, lda);
load matrix _sync(b_frag, b + b row + b_col * 1ldb, 1ldb);

/* Compute partial result and accumulate */
mma_sync(acc_frag, a_frag, b _frag, acc _frag);

Slide credit: Hwu & Kirk (PUMPS 2021)

GEMM Kernel Using MMA in Halt Precision
(3 of 3)

int ¢_row = warp_m * 16; int ¢ col = warp _n * 16;

if (c_row < M & c_col < N) {
/* Load output fragment from memory */
load matrix_sync(c_frag, ¢ + c_ row + c_ol * ldc, ldc, mem _col major);

/* Update fragment with computed result */
for(int 1 = 9; i < c_frag.num_elements; i++) {
c_frag.x[1i] = alpha * acc_frag.x[1i] + beta * c _frag.x[1i];
}
/* Store output fragment */
store_matrix_sync(c + c_row + c_col * 1ldc, c frag, ldc, mem_col major);

Slide credit: Hwu & Kirk (PUMPS 2021) 70

Systolic Arrays

Google TPU Generation I (~2010)

—> —> —>» Data

R

VR

i Partial Sums
o[22 [
] | ,|) ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

72

Google TPU Generation 11 (2017)

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

73

Google TPU Generation 111 (2019)

Core Core Core
scalar/ vector scalar/ vector scalar/
units units vector units
oooooooo oooooooo m SEEEEEEN | EEEEEEEE
HEM DOooooooo 0ooo0oooo HBM HBM g SEEEEEEE | IEEEEEEE HBM
8GR oooooooo OoDDDooo| = scs 16GB - SEEEEEEE | IEEEEEEN 16GB
Ooooooooo o o o g SIEEEEEE (EEEEEEEE
o o o o o oooooooo i SIEEEEEE | EEEEEEEE
0OOooooooo [[o o [[[] SEEEEEEE | IEEEEEEN
oooooooo oooooooo 2] SEEEEEEE | IEEEEEEN
oooooooo 00oooooo] SEEEEEEE | IEEEEEEN
MXU MXU MXU MXU
128x128 128x128 128x128 128x128

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

32GB HBM per chip
vs 16GB HBM in TPU2

4 Matrix Units per chip
vs 2 Matrix Units in TPU2

90 TFLOPS per chip
vs 45 TFLOPS in TPU2

74

https://cloud.google.com/tpu/docs/system-architecture

Google TPU Generation IV (2019)

-V
o' BN 5.8
.
‘i
L

g I*. £
=
-
U
=

S

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @

« Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests 75

An Example Modern Systolic Array: TPU (11

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

N

I
Y
: L j Pairtial Sums
ey

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
76

Example 2D Systolic Array Computation

= Multiply two 3x3 matrices (inputs)

o Keep the final result in PE accumulators

Coo Co1 Co2 apo aopl
Clo C11 Ci2 | = | Q10 4aA11
Cop C21 C22 azp G21

N

l

M—> R —> P

l

Q

Figure 1: A systolic array processing element

P=M
Q=N
R = R + M*N

ap2
a2
a2

N

4 0 0 b2,
3 0 b2 b1,
boo bo1 bo2
I I [TIME 2 I'-720 bll b02
)10 011 012
bao b21 bao
1 b10 b01 0
0 | bgo 0 0
TIME
—l
4 3 2 1 0 l l l
0 0 o2 E 1 I — > >
0 an an ai 0 —_ Ly | SN
a a ax 0 0 —_— SN | SN

77

An F anmple Modern Systolic Array: TPU (I11)
@ | DDR3 DRAM Chips | |

) 30 GiB/s
14 GiB/s DDR3 30 GiB/s M \yeight FIFO
Interfaces |::> (Weight Fetcher)
o o
e N BEEE
- SEEH
badl _ Unified - Matrix Multiply
g £ . @ 10 GiB/s Buffer Systolic Tnit
14 GiB/s | © % 14 GiB/s “E (Loca| Data 1 '(64!'(; er uyuw’
(] % % |
<:::> o- <::> 8 Activation Setup j I
o £ Storage) J
§ |
= - \ j & Accumulators
1 Activation
T 167 GiB/s
—__J = Normalize / Pool
|:| Off-Chip /0 l |
I:I Data Buffer
— [= e
. Control

Not to Scale

Figure 1. TPU Block Diagram. The main computation part 1s the

yellow Matrix Multiply unit in the upper right hand corner. Its inputs

are the blue Weight FIFO and the blue Unified Buffer (UB) and its

output 1s the blue Accumulators (Acc). The yellow Activation Unit 73
performs the nonlinear functions on the Acc, which go to the UB.

Lecture on Systolic Arrays

| DDR3 DRAM Chips
{) 30 ciers

14GiBls 30 GiB/s : & \
> (e] >L%
°—d||='>[;uu G —
Y b I

Unified |167 Matrix Multiply
nit

s Buffer Systolic |GIB/s|] Y
2| (Local Data v | (64K por cycle)
Activation Setup
Storage)

PCle Gen3 x16
Interface

Figure 1. TPU Block Diagram. The main computation part is the

HeveteltrredbatnpdemminntdrenpperreiicmeeemrrHennnns
- ;) i

Digital Design & Computer Arch. - Lecture 19: VLIW, Systolic Arrays, DAE (ETH Ziirich,
Spring 2021)

2,724 views - Streamed live on May 7, 2021 75 63 CJ DISLIKE A} SHARE =+ SAVE

@ Onur Mutlu.Lectures SUBSCRIBED Q
&> 20.1K subscribers =

https://youtu.be/Utl y4Yagdys?t=2948

79

https://youtu.be/UtLy4Yagdys?t=2948

Recommended Readings

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
o Chapter 7 - Parallel patterns —
convolution: An introduction to
stencil computation
o Chapter 16 - Application case study —
machine learning

AN
K g 42 \ &
B v Natpsr il i
SreiNat e
Milvres K
. s !
SN Lo
N
— £
Wil o
1™ o 1
i \
I -
| S ¢
3 ~43

Parallel Processors -
2

A Hands-on A;Sprié'h\ 3 ‘/
~ 4 //‘

N A
M< | @ | AN
mitasa | NVIDIA TN N/
N

S W
L R i

80

P&S Heterogeneous Systems

Parallel Patterns: Convolution

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021

25 November 2021

