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The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical
knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the
methodology of project work.

Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck.
From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy
consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in
consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of
modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the
data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-
time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively
low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly
exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate
this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the
compute units, to a more data centric design where processing elements are placed closer to or inside where the data resides. This paradigm of
computing is known as Processing-in Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer
Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important
workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the
software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real world PIM hardware or
explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021W&ansicht=KATALOGDATEN&lerneinheitld=154586&lang=en
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Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck.
From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy
consumption. For example, data movement between the main memory and the processing cores accounts for 2% of the total system energy in
consumer applications. As a result, the data movement bottieneck is a huge burden that greatly limits the energy efficiency and performance of
modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the
data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-
time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively
low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly
exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate
this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the
compute units, to a more data centric design where processing elements are placed closer to or inside where the data resides. This paradigm of
computing is known as Processing-in Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer
Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important
workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the
software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real world PIM hardware or
explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021W&ansicht=KATALOGDATEN&lerneinheitld=154586&lang=en



Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM




Goals of this P&S Course




P&S Processing-in-Memory: Contents

We will introduce the data movement bottleneck, which is a

major threat to high performance and energy efficiency of
current computing systems

You will learn what are key workload characteristics that
make them more prone to the data movement bottleneck

You will review traditional approaches to alleviating data
movement and will get familiar with new research
proposals: processing-in-memory solutions

You will work hands-on: analyzing workloads, programming
PIM architectures, simulating new PIM proposals, etc.



A +50-Year-Old Paradigm

= Kautz, “Cellular Logic-in-Memory Arrays”, IEEE TC 1969

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969

Cellular Logic-in-Memory Arrays

WILLIAM H. KAUTZ, MEMBER, IEEE

Abstract—As a direct consequence of large-scale integration,
many advantages in the design, fabrication, testing, and use of digital
circuitry can be achieved if the circuits can be arranged in a two-di-
mensional iterative, or cellular, array of identical elementary net- 1N .-
works, or cells. When a small amount of storage is included in each ARRAY: [ [ [ X
cell, the same array may be regarded either as a logically enhanced — T
memory array, or as a logic array whose elementary gates and con- o
nections can be “programmed” to realize a desired logical behavior. BEE

In this paper the specific engineering features of such cellular '
logic-in-memory (CLIM) arrays are discussed, and one such special- wl- m/
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purpose array, a cellular sorting array, is described in detail to illus- 1 '
trate how these features may be achieved in a particular design. It is | |
shown how the cellular sorting array can be employed as a single- I_—_: -
address, multiword memory that keeps in order all words stored U g
within it. It can also be used as a content-addressed memory, a (% leads return to X-register)
pushdown memory, a buffer memory, and (with a lower logical R
efficiency) a programmable array for the realization of arbitrary CELL EQUATIONS: X = Wx + wy
switching functions. A second version of a sorting array, operating Z\'; ;c(’;' _r"z') V__chxy . 2(x+9)
on a different sorting principle, is also described. v

=
Fe—— e —————

Fig. 1. Cellular sorting array I.
Index Terms—Cellular logic, large-scale integration, logic arrays

logic in memory, push-down memory, sorting, switching functions.

https://doi.org/10.1109/T-C.1969.222754
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Processing in/near Memory: An Old Idea

= Stone, “A Logic-in-Memory Computer,” IEEE TC 1970

A Logic-in-Memory Computer
HAROLD S. STONE

Abstract—If, as presently projected, the cost of microelectronic
arrays in the future will tend to reflect the number of pins on the
array rather than the number of gates, the logic-in-memory array is
an extremely attractive computer component. Such an array is es-
sentially a microelectronic memory with some combinational logic
associated with each storage element.

https://doi.org/10.1109/1TC.1970.5008902 g
https://people.inf.ethz.ch/omutlu/pub/onur-MiM-Talk-IntelligentArchitecturesForIntelligentMachines-May-3-2021.pptx



https://doi.org/10.1109/TC.1970.5008902
https://people.inf.ethz.ch/omutlu/pub/onur-MiM-Talk-IntelligentArchitecturesForIntelligentMachines-May-3-2021.pptx

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

E 8GB/128xDPU PIM R-DIMM Module

CPU UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEM UPMEM UBMEM
PIM PNt PIM P PN PN PN pIN
(x86, ARM, RV...) chip chip chip chip chip ehig chip thip

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 9
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN G OMEZ-LUN A, ETH Ziirich, Switzerland

IZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Zirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.org/pdf/2105.03814.pdf !V



https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern PIM Architecture

ETH:urich

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAF

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0 > SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED Q
18.7K subscribers S

<>

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL502s0XY2Zi tOTAYm--dYByNPL7JhwR9 11
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Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEWS | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 12
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Samsung Function-in-Memory DRAM (2021)

H FIMDRAM based on HBM2

Chip Specification

SID1 128DQ / 8CH / 16 banks / BL4

Core-die -

32 PCU blocks (1 FIM block/2 banks)
(HBM2)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —

[3D Chip Structure of HBM with FIMDRAM]

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo®, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea
2Samsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea

13



Samsung Function-in-Memory DRAM (2021)

hip Implementation

B Mixed design e e |
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f
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|
1SSCC 2021 / SESSION 25 / DRAM / 25.4 i Cellarray | - Cell array Cellarray | Cell array
for bank8 for bank12 for bank8 for bank12
25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 - i T S - e

with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho?, Jin Guk Kim', Jongyoon Choi',
Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo*, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea

“Samsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea



Samsung AXDIMM (2021)

= DIMM-based PIM o Baseline System
o DLRM recommendation system

CHo! CH1! CH3! CH2!
1 1 1

OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHOo! CH2!
1 1

OS/FC/Others ' SLS Offload : OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 15



Key Takeaways

This P&S is aimed at improving your

o Knowledge in Computer Architecture and Processing-in-

Memory

o Technical skills in programming parallel (PIM) architectures

and CompArch simulation
a Critical thinking and analysis
o Interaction with a nice group of researchers
o Familiarity with key research directions

o Technical presentation of your project

16



Key Goal

(Learn how to) overcome
the data movement bottleneck
by programming, benchmarking,
exploring different designs of

the PIM computing paradigm

17



Prerequisites of the Course

Digital Design and Computer Architecture (or equivalent
course)

o https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=

schedule

Familiarity with C/C++ programming
o FPGA implementation or GPU programming (desirable)

Interest in
o future computer architectures and computing paradigms

o discovering why things do or do not work and solving
problems

o making systems efficient and usable

18
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Course Info: Who Are We? (I)

Onur Mutlu ‘ Q,))
Full Professor @ ETH Zurich ITET (INFK), since September 2015 |
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...

PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)
https://people.inf.ethz.ch/omutlu/projects.htm

o 0o 0o 0 o 0O

Research and Teaching in:

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation

Architectures for bioinformatics, health, medicine

o 0o 0o 0 o O

19
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Course Info: Who Are We? (1)

Lead Supervisor:
o Dr. Juan Gomez Luna

Supervisors: m

o Dr. Haiyu Mao 7 Q
o Geraldo F. Oliveira

o Konstantinos Kanellopoulos

a Nika Mansouri Ghiasi a
Get to know us and our research

a https://safari.ethz.ch/safari-group/

20
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Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory
https://safari.ethz.ch/safari-newsletter-april-2020/

38+ Researchers

o

https://safari.ethz.ch
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SAFARI Newsletter January 2021 Edition

= https://safari.ethz.ch/safari-newsletter-january-2021/
SAFARI

.
in @ Y f SR Research Grous

Think Big, Aim High, and
Have a Wonderful 2021!

v ;| |’1-~u

p ! '9“ ,h ‘r"

Dear SAFARI friends,

Happy New Year! We are excited to share our group highlights with you in this second edition 22
of the SAFARI newsletter (You can find the first edition from April 2020 here). 2020 has
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SAFARI Live

Seminars (I)

SAFARI Live Seminars in Computer Architecture

SAFARI Research Group
Dr. Juan Gémez Luna, ETH Zurich
Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental

Characterization

SAFARI Live Seminars in Computer Architecture

ARI

Gennady Pekhimenko, University of Toronto SATAR ERses CHlcetD

Efficient DNN Training at Scale: from Algorithms to Hardware

DNN Training vs. Inference

Step 1 - Forward Pass (makes a prediction) ——
+—— Step 2- Backward Pass (calculates error gradients)

Intermediate layer outputs

Generated in the forward pass  Used in the backward pass

DNN training feature maps for pass.
(not required in Inference)
SAFARI Live Seminars in Computer Architecture SAFARI
SAFARI Research Group
Minesh Patel, ETH Zurich
Tues

Enabling Effective Error Mitigation in Memory Chips That Use On-Die ECCs 2 1 s

@ Position Paper (Ongoing) @ REAPER (ISCA'17)

® BEER (MICRO'20, best paper)

i

SIGED | Data

1 ECC Logic 1 Store
|

@ HARP (MICRO'21) @ EIN (DSN'19, best paper)

To processor

SAFARI Live Seminars in Computer Architecture SA FAR’

SAFARI Research Group
Dr. Andrew Walker, Schiltron Corporation & Nexgen Power Systems
An Addiction to Low Cost Per Memory Bit — How to Recognize it and What to Do About it

Mo
Jul
2021

g d
i

WA s

P {

Watch on @8V

a

S

FARI

SAFARI Research Group

g

SAFARI Live Seminars in Computer Architecture

Jawad Haj-Yahya, Huawei Research Center Zurich
Power Management Mechanisms in Modern Microprocessors and Their Security Implications

’\ 1 6 Mo Overview of a Modern SoC Architecture
N Aug .
\a i 2021 * 3 domains in modern

thermally-constrained mobile

SoC: Compute, Memory, 10 ([(ioperpnens | WSISAD (NN (Vo0

X ; 10 Engines/

+ Several voltage sources exist, Contrllers

and some of them are shared
between domains

[e80 O1¥aa
Sojeuy OI¥AA
v

10 Interconnect /Al |
Controller

Memory Domainf

10 Domain

System On Chip.

{ « 10 controllers and engines,
‘k 10 interconnect, memory

Compute Domain

O]

controller, and DDRIO
typically each has an
independent clock

ARI

SAFARI Research Group
27
Sep
2021

[

SAFARI Live Seminars in Computer Architecture

Christina Giannoula, National Technical University of Athens
Efficient Synchronization Support for Near-Data-Processing Architectures

NDP Synchronization Solution Space

—

(" shared Memory | (" Message-passing |

e I~

Hardware | Remote | | Specialized Software- | | specialized
Cache Atomics || Hardware based Hardware
Coherence Support Sch

Support _

NDP Systems:

SynCron
[HPCA'21]

SAFARI Live Seminars in Computer Architecture
SAFARI Research Group

Geraldo F. Oliveira, ETH Zurich
DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

Near-Data Processing (2/2)
Samsung FIMDRAM (2021)

UPMEM (2019)

=T

= Near-DRAM-banks processing Near-DRAM-banks processing
for general-purpose computing for neural networks
0.9 TOPS compute throughput! 1.2 TFLOPS compute throughput?

SAFARI 7

ARI

SAFARI Research Group

SAFARI Live Seminars in Computer Architecture

Ataberk Olgun, TOBB & ETH Zurich
QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in

Commodity DRAM Chips
Mi
1 5 ?ﬁ';ﬂ Using QUAC to Generate Random Values

Use QUAC to activate DRAM rows that are initialized with conflicting
data (eg, two ‘1's and two 0's) to generate random values

Gapacitor

v
Random Values

Sense Amplifiers

ACT 424> PRE > ACT

SAFARI (>kasirga

SAFARI Live Seminars in Computer Architecture A R ’

Jawad Haj-Yahya, Huawei Research Center Zurich SAFARI Research Group
Security Implications of Power Management Mechanisms In Modern Processors, Current

Studies and Future Trends

Mo Experimental Methodology
Okt
2021 + We experimentally study three modern Intel processors
 Haswel, Coffee Lake, and Cannon La
+ We measure voltage and current using a Data Acquisition card (NI-DAQ)

Configure/
Log data

LR
Host Computer Processor
[ Py 1 .
CPU Cores
Cores VR Sonee |

Resistor

https://safari.ethz.ch/safari-seminar-series/
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SAFARI Live Seminars (II)

SIMDRAM Framework: Overview

User Input Step 1: Generate Step 2: Generate SIMDRAM Output
MA] logic
Desired operation | i e equenceof DRAN New SIMDRAM yProgram
4 Y H H commands == |
ACT/PRE n uProgram
>y i[> | acr/eRE { pProgram | [T 1}
ACT/PRE Main memory

s —— R ACT/ACT/PRE |+
AND/OR/NOT logic MAJ/NOT logic done
New SIMDRAM
puProgram ;
instruction
User Input Step 3: Execution according to pProgram SIMDRAM Output

Instruction result

SIMDRAM-enabled application

ACT/PRE
{ foo () {

Q‘\ ACT/PRE

i _, | AcT/PRE

O ACT/PRE/PRE

done

bbop new

!

Program

{ ACT/PRE
i

ller

Q) Live in 23 days
October 27, 7:00 PM

Q Set reminder

SAFARI Live Seminar - Data-Centric & Data-Aware Frameworks for Fundamentally
Efficient Data Handling

2 waiting  Scheduled for Oct 27, 2021 54 CPo > SHARE =+ SAVE ...
@ Onur Muﬂu Lectures SUBSCRIBED Q
19K subscribers M

«T >

Title: Data-Centric and Data-Aware Frameworks for Fundamentally Efficient Data Handling in
Modern Computing Systems
Speaker: Nastaran Hajinazar, SAFARI Research Group, https://www.linkedin.com/in/nastaran-...

https://youtu.be/XIfPHtvA9rw



https://youtu.be/XIfPHtvA9rw

Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics
* Memory and storage (DRAM, flash, emerging), interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

« Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems & system design for bio/medicine

AT

Heterogeneous Persistent Memory/Storage

Processors and
Accelerators

eeeeeeeeeeeeee

Broad research
spanning apps, systems, logic
with architecture at the center

Ve T R Zb
Graphics and Vision Processing



Course Info: How About You?

Let us know your background, interests

Why did you join this P&S?
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Course Requirements and Expectations

= Attendance required for all meetings
= Study the learning materials

= Each student will carry out a hands-on project

o Build, implement, code, and design with close engagement from
the supervisors

= Participation
o Ask questions, contribute thoughts/ideas
o Read relevant papers

We will help in all projects!
If your work is really good, you may get it published!
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Course Website

https://safari.ethz.ch/projects _and_seminars/doku.php?id=

processing_in_memory

Useful information about the course
Check your email frequently for announcements

We will also have Moodle for Q&A
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https://safari.ethz.ch/projects_and_seminars/doku.php?id=processing_in_memory

Meeting 1

=  Required materials:

1. Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerging Computing: From Devices to Systems - Looking Beyond Moore and Von Neumann, Springer, to be published in
2021.

[Tutorial Video on "Memory-Centric Computing Systems" (1 hour 51 minutes)]

2. Onur Mutly,

"Processing Data Where It Makes Sense in Modern Computing Systems: Enabling In-Memory Computation”
Keynote talk at 37th IEEE International Conference on Computer Design (ICCD), Abu Dhabi, UAE, 19 November 2019.
[Slides (pptx) (pdf)]

[Related Overview Paper I]

[Related Overview Paper II]

[Talk Video (1 hour 18 minutes)]

= Recommended materials:
3. Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,

"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, November/December 2019.
[Preliminary arXiv version]

4. Computation in Memory (Professor Onur Mutlu, lecture, Fall 2020).
(PDF) (PPT)Video

5. Near-data Processing (Professor Onur Mutlu, lecture, Fall 2020).

(PDF) (PPT)Video

6. Real Processing-in-DRAM with UPMEM (Dr. Juan Gomez Luna, lecture, Fall 2020).
(PDF) (PPT)Video
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https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/onur-ICCD-Keynote-EnablingInMemoryComputation-November-19-2019-unrolled.pptx
https://www.iccd-conf.com/Home.html
https://people.inf.ethz.ch/omutlu/pub/onur-ICCD-Keynote-EnablingInMemoryComputation-November-19-2019-unrolled.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-ICCD-Keynote-EnablingInMemoryComputation-November-19-2019-unrolled.pdf
https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://arxiv.org/pdf/1907.12947.pdf
https://www.youtube.com/watch?v=njX_14584Jw
https://people.inf.ethz.ch/omutlu/pub/processing-in-memory_workload-driven-perspective_IBMjrd19.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture6-computation-in-memory-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture6-computation-in-memory-afterlecture.pptx
http://www.youtube.com/watch?v=oGcZAGwfEUE
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture7-near-data-processing-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture7-near-data-processing-afterlecture.pptx
http://www.youtube.com/watch?v=j2GIigqn1Qw
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=upmem-2020-10-30.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=upmem-2020-10-30.pptx
http://www.youtube.com/watch?v=Sscy1Wrr22A

Meeting 2 (October 12%)

We will announce the projects and will give you some
description about them

We will give you a chance to select a project

Then, we will have 1-1 meetings to match your interests,
skills, and background with a suitable project

It is important that you study the learning materials before
our next meeting!
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Next Meetings

Individual meetings with your mentor/s

Tutorials and short talks
o PIM programming
o Recent research works

Presentation of your work
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An Introduction to
Processing-in-Memory
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The Main Memory System

Processors
and caches

\_

Main Memory

J

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,

efficiency, cost, and management algorithms) to maintain

performance growth and technology scaling benefits
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The Main Memory System

FPGAS

\_

Main Memory

J

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,

efficiency, cost, and management algorithms) to maintain

performance growth and technology scaling benefits
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The Main Memory System

Storage (SSD/HDD)

Main Memory

N\ /

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resource View

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\

AIOWRJA paaeys

Storage

/@Weqs /

Shared Shared
. | Memory Memory
Control Control

Shared Memory

Most of the system is dedicated to storing and moving data
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Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement
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Example: Capacity, Bandwidth & Latency

#4Capacity  #Bandwidth  @-Latency 128x
¥
= 100
5
0 20x
)
>
O
a |0
£
>
é 1.3X
a ‘_‘?.___Q——Q—Q—O—O—C
] o

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant




The Need tor More Memory Performance

=

—

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

. N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]




DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]




The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
B c:-chip link




Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM
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The Pertformance Perspective (1996-2005)

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45 -
40 A
35 -
30
25 -
20 -
15
10

5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
2 Back-end bound

ads i “

bigtable — ____H§ g

disk = = 2

flight-search —— ] —]
gmail = :

gmail-fe — .‘

indexingl

indexing2 H __F H
U C—— 2
search2

carch I ———— e |
video —

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.
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The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)
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The Problem

Processing of data
IS performed
far away from the data




A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit

-
-
==
-
-
a=""
-
-
>
-

-y
-
-
-
-
an
-
"’-
-
-
-
-
-
-
-
2"

Memory System Storage System
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Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Yet ...

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
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5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
50



Data Movement in Computing Systems

= Data movement dominates performance and is a major
system energy bottleneck

o Comprises 41% of mobile system energy during web browsing*

Compute systems should be more data-centric

Processing-In-Memory proposes computing where it

makes sense (where data resides)

*Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
**Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric
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Why In-Memory Computation Today?

= Pull from systems/applications for data-centric execution
= It can be practical today

o 3D-stacked memories combine logic and memory functionality
(relatively) tightly + industry open to new architectures
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Challenge and Opportunity for Future

High Performance
and
Energy Efficiency




Goal: Processing Inside Memory

Processor 1 Database

Graphs

| Media

D )
Interconnect
Results

Problem

= Many questions... How do we design the:

o compute-capable memory & controllers? Program/Language
o processor chip? System Software

o software and hardware interfaces? SW/HW Interface
o system software and languages?

o algorithms?




Processing In-Memory (PIM)

= Near-Data Processing or Processing In-Memory (PIM)
o Move computation closer to where the data resides

Logic layer Memory controller Memory module
3D stacked DRAM (DIMM)
CPU CPU

Through-Silicon Via
1 (TSV)
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

E 8GB/128xDPU PIM R-DIMM Module

CPU UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEM UPMEM UBMEM
PIM PNt PIM P PN PN PN pIN
(x86, ARM, RV...) chip chip chip chip chip ehig chip thip

https:/fwww.anandtech.com/show/14750/hot-chips-3 T-analysis-inmemory-processing-by-upmem 57
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Samsung AXDIMM (2021)

= DIMM-based PIM o Baseline System
o DLRM recommendation system

CHo! CH1! CH3! CH2!
1 1 1

OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHOo! CH2!
1 1

OS/FC/Others ' SLS Offload : OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 58



Possible Designs

Fixed-function units
Reconfigurable architectures

o FPGAs, CGRA

General-purpose programmable cores
o E.g., ARM Cortex R-8, ARM Cortex A-35 (+SIMD units)

o Possibility of running any workload

Processing-using-memory:
o Ambit: In-DRAM bulk bitwise operations (Seshadri+, MICRO'17)
o SIMDRAM: End-to-end framework for SIMD in DRAM (Hajinazar+, ASPLOS"21)

Fixed-Function

Accelerators

@ )
[ pmesceor 1

PIM-Accelerator N

{

)

Reconfigurable
Logic

( )

Reconfigurable
Accelerator

Low Power
Core

( )
[ PIM Core }

> D,

(e

Ambit/
SIMDRAM

-

\_

Analog
Operations
in DRAM

~

J
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Agenda
Major Trends Affecting Memory

Processing in Memory: Two Directions
o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

60



Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal bandwidth to move data
o Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

a
o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

o "'SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM”
(Hajinazar et al., ASPLOS 2021)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf

RowClone:
In-Memory Copy and Initialization

SAFARI ETH:zurich



Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Zero initialization l l

Forking (e.q., security)  Checkpointing

d L

VM Cloning Page Migration
Deduplication

Many more
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Today’s Systems: Bulk Data Copy

CPU

1_

L2 -

L3

MC

1) High latency
3) Cache pollution \\ \ Memory

(

2) High bandwidth utilization
4) Unwanted data movement

1046ns, 3.6uJ

>_

(for 4KB page copy via DMA)
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Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency
Memory

CPU —L1—L2—L3—MC< \:) :

2) Low bandwidth utilization /?
4) No unwanted data movement

1046ns, 3.6ud 2> 90ns, 0.04uJ




RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Latency and Energy Savings

1.2 M Baseline
™ Inter-Bank

M Intra-Subarray
M [nter-Subarray

=
l

o
(0e]
l

Normalized Savings
o o
™ o))

.
N
l

Latency

A

74X

Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and

Initialization of Bulk Data,” MICRO 2013.
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More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

RowClone Demonstration in Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

https://parallel.princeton.edu/papers/micro19-gao.pdf 69



https://parallel.princeton.edu/papers/micro19-gao.pdf

Ambit:
In-Memory Bulk Bitwise Operations

SAFARI ETH-zurich



In-Memory Bulk Bitwise Operations

= We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
= At low cost

= Using analog computation capability of DRAM
o Idea: activating multiple rows performs computation

= 30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.
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In-DRAM AND/OR: Triple Row Activation

A l P %Vppt6

I . Final State
B v AB + BC + AC

C¢‘| “>e

| %,

dis

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.
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In-DRAM Bulk Bitwise AND/OR Operation

oo A W NN =

BULKAND A, B> C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

. RowClone Result into C
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

d-wordline

dual-contact

cell (DCC)

n-wordline

sense
amplifier

e o o o o

bitline

enable

bitline

Figure 5: A dual-contact

cell connected
ends of a sense

to both
amplifier

|dea:
Feed the
negated value
In the sense amplifier
into a special row

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017
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In-DRAM NOT Operation

Vbbb

VoD VDD
Initial State After Charge Sharing Activated d-wordline Activated n-wordline

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017
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Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 HMC 2.0 Ambit Il Ambit-3D
@ 0T S S
@p)] 1024 O
8-‘ 512 I PR R I I
O iq) 256 —_ eiiiieieeneees] R T e
:/ 8 128 el 1 BB ... eieieieee.] BBl B
a N 64 —_eieneeeeeeel | ... | BH...............] | BB...............] | BN..-...........
20 324 | PR ] R | R
-2° 4] | R R | R R
= S | B B | Rl |
o N HE e BN e BN W N
= NN BR BN BN BHE BN BN BE o
| | | | |
not and/or nand/nor XOI/XNor mean

Figure 9: Throughput of bitwise operations on various systems.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy =~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (l) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (J) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017
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Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60




Performance: Bitmap Index on Ambit

~ 110 _ T e T,
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Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017
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More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® Amirali Boroumand”®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India ?NVIDIA Research Z3Intel *ETH Ziirich °Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

SIMDRAM Framework

= Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri
Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,
"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"
Proceedings of the 26th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Virtual, March-April 2021.
[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for
Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar!-? *Geraldo F. Oliveira' Sven Gregorio® Jodo Dinis Ferreira’
Nika Mansouri Ghiasi' Minesh Patel! Mohammed Alser! Saugata Ghose?
Juan Gémez-Luna' Onur Mutlu!

'ETH Ziirich 2Simon Fraser University 3University of Illinois at Urbana—Champaign
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https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-extended-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-short-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21-talk.pdf
https://www.youtube.com/watch?v=g0fE1c7w0xk&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=115
https://www.youtube.com/watch?v=bas9U7djW_8&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=116

Agenda
Major Trends Affecting Memory

Processing in Memory: Two Directions
o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory
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Approach 2: 3D-Stacked Logic+Memory

vbrid Memory Cube

O N S O R T I
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Graph Processing

= Large graphs are everywhere (circa 2015)

oo R J

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128 Cores _+420/0 —

0 1 2 3 4
Speedup

Only +42% for 4x more cores!!!
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Key Bottlenecks in Graph Processing

PageRank algorithm (Page et al. 1999)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
} 1. Frequent random memory accesses
/\
«— — = T ———— _
, ~
Vv , ‘l = &w
w.ran — —_
) %
w.next_rank | e ————— -
w.edges w b——t+——=7 “weight * v.rank »
~ N o o e mm == -
_\L7
‘- ~ . .
2. Little amount of computation
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Two Key Questions 1n 3D-Stacked PIM

How can we accelerate important applications if we use
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly

o while achieving significant benefits
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Tesseract: An In-Memory
Accelerator tor Graph Processing

SAFARI ETH-zurich



Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface
(Noncacheable, Physically Addressed

@ In-Order Core =
l | | [ A
,I " O
; 2 S } S 1 1Y LP PF Buffer gr
/ Crossbar Network o
: i ¥ LI §
O— l | | o | . IR
¥ Message Queue NI

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract System for Graph Processing

= Evaluation on
o DDR3 DRAM, computation on Out-of-Order (Oo0O) core

a Hybrid Memory Cube (HMC) DRAM, computation on Out-of-
Order (O00) core

o HMC DRAM, computation on the Memory Controller (MC)

o lesseract

= With or without List Prefetching (LP)

=  With or without Message Triggered Prefetching (MTP), specified
by the programmer
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
1 11.6x
o 10 9.0x
>
2 8
Qv
Q
26
4
2 +56%  +25%
, == [N
DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing System Energy

B Memory Layers [ Logic Layers [ Cores
1.2

0.8
0.6
0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University YOracle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Two Key Questions 1n 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits
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PIM-Enabled Instructions for
Graph Processing

SAFARI ETHzurich



Simple PIM Operations as ISA Extensions (I)

for (v: graph.vertices) { PageRank algorithm (Page et al. 1999)
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Host Processor Main Memory

w.next_rank w.next_rank

e 64 bytesin  [FEEEEE——————
HEE 64 bytesout |

Conventional Architecture
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Simple PIM Operations as ISA Extensions (II)

for (V: graph.vertices) { PageRank algorithm (Page et al. 1999)

—_ H * .
value = weight * v.rank; oim.add rl, (r2)

for (w: v.successors) {
__pim_add(&w.next_rank, value);

Main Memory

w.next_rank

8 bytes in e
0 bytes out

In-Memory Addition
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PEI: Benchmarks

Graph processing

o Average Teenage Follower (AT)
Breadth-First Search (BFS)

PageRank (PR)

Single-Source Shortest Path (SP)
Weakly Connected Components (WCC)

O 0 O O

Other benchmarks that can benefit from PEI

o Data analytics
Hash Join (HJ)
Histogram (HG)
Radix Partitioning (RP)
o Machine learning and data mining
Streamcluster (SC)

Support Vector Machine (SVM)
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PEIL: PIM-Enabled Instructions: Examples

Table 1: Summary of Supported PIM Operations

Operation R W Input Output Applications
8-byte integer increment O O Obytes Obytes AT

8-byte integer min O O 8bytes Obytes BFS, SP, WCC
Floating-point add O O 8bytes Obytes PR

Hash table probing O X 8bytes O9bytes HJ

Histogram bin index O X Ibyte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC

Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)
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Example PEI Microarchitecture

Host Processor

3D-stacked Memory

PCU

PCU

PCU

DRAM
Controller

DRAM
Controller

DRAM
Controller

|

|

|

|

|

Out-Of-Order 3 3 @ !

Core 2 2 D !

(4] (q0] - O
A1 :
— ~ b

PCU (PEl = = bty = ;
Computation Unit) 8 ] ¥
4+ | (@)
o ! =
) i o+
PMU (PEI O | &
Mgmt Unit)| _ P™ s | °

gm Directory I :

|

Locality ;

Monitor !

|

1

Example PEI uArchitecture
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PEI Performance Delta: Large Data Sets

Percentage of Performance Improvement

wrt Baseline (CPU-only)

70%

60%

50%

40%

30%

20%

10%

0%

ATF

(Large Inputs, Baseline: CPU-Only)

BFS

PR

SP WCC
B PIM-Only

HJ HG RP

[ Locality-Aware

Locality-Aware = PIM or
CPU depending on data

SC

sym GeoMean

location

101



PEI Energy Consumption

15 Host-Only (CPU)
PIM-Only
S Locality-Aware
E 1
5
©)
S
2
TN
5 0.5
S
0
Small Medium Large
M Cache W HMC Link [ DRAM | Breakdown of Energy
. . Consumption on Different
[0 Host-side PCU [0 Memory-side PCU O PMU | system Components
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More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University



http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Agenda
Major Trends Affecting Memory

Processing in Memory: Two Directions
o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory
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Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory




Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
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We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step
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PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlu®®, Saugata Ghose®™°, Juan Gémez-Luna?, Rachata Ausavarungnirun®

SAFARI Research Group

ETH Ziirich
bCarnegie Mellon University
¢University of Illinois at Urbana-Champaign
4King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,

"A Modern Primer on Processing in Memory"

Invited Book Chapter in Emerqging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf 108



https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

P&S Processing-in-Memory

Exploring the Processing-in-Memory Paradigm
for Future Computing Systems

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021
5 October 2021




