
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

21 December 2021

P&S Processing-in-Memory
How to Enable the Adoption of

Processing-in-Memory?

Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

2

All can be solved with change of mindset

We Need to Revisit the Entire Stack

3

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step

PIM Review and Open Problems

4

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

5

PIM Review and Open Problems (II)

6

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (III)

7

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Real PIM Hardware Systems
and Prototypes

UPMEM Processing-in-DRAM Engine (2019)

9

n Processing in DRAM Engine
n Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM PIM Architecture: Meetings 2 & 3

https://youtu.be/fyesAbGz2F8
https://youtu.be/-NPqoCpv7KM

https://youtu.be/fyesAbGz2F8
https://youtu.be/-NPqoCpv7KM

Samsung Function-in-Memory DRAM (2021)

11

Samsung Function-in-Memory DRAM (2021)

12

FIMDRAM: System Organization (III)
n PIM units respond to standard DRAM column commands

(RD or WR)
q Compliant with unmodified JEDEC controllers

n They execute one wide-SIMD operation commanded by a
PIM instruction with deterministic latency in a lock-step
manner

n A PIM unit can get 16 16-bit operands from IOSAs, a
register, and/or the result bus

13
Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021

Lecture on FIMDRAM

14
https://youtu.be/VLyYqI6Cjvc

https://youtu.be/VLyYqI6Cjvc

Samsung AxDIMM (2021)
n DIMM-based PIM

q DLRM recommendation system

15

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

DDR4 slave PHY receives DRAM commands and NMP instructions
(via DQ pins) from the host side

16

AxDIMM Design: Execution Flow

17

Lecture on AxDIMM

18
https://youtu.be/2FMQg786GKs

https://youtu.be/2FMQg786GKs

Processing-using-Memory in Real DRAM Chips

19https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC:
A Flexible and Practical
Open-Source Infrastructure
for Enabling Experimental
DRAM Studies,” HPCA 2017

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

20

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

RowClone & Bitwise Ops in Real DRAM Chips

21https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

PiDRAM
Goal: Develop a flexible platform to explore
end-to-end implementations of PuM techniques
•Enable rapid integration via key components

22

Hardware Software

Easy-to-extend
Memory Controller

ISA-transparent
PuM Controller

1

2

1

2

Extensible
Software Library

Custom
Supervisor Software

PiDRAM Workflow

1- User application interfaces with the OS via system calls
2- OS uses PuM Operations Library (pumolib) to convey
operation related information to the hardware using

3- STORE instructions that target the memory
mapped registers of the PuM Operations Controller (POC)

4- POC oversees the execution of a PuM operation (e.g.,
RowClone, bulk bitwise operations)
5- Scheduler arbitrates between regular (load, store) and PuM
operations and issues DRAM commands with custom timings

23

PiDRAM FPGA Prototype

24

Single core RISC-V CPU @ 50MHz
in-order, single-issue
16KB 4-way L1 D$
4KB I$

Lecture on PiDRAM

25https://youtu.be/s_z_S6FYpC8

https://youtu.be/s_z_S6FYpC8

PiDRAM Paper and Repo

26

https://arxiv.org/pdf/2111.00082.pdf

https://github.com/CMU-SAFARI/PiDRAM

https://arxiv.org/pdf/2111.00082.pdf
https://github.com/CMU-SAFARI/PiDRAM

Programming Models and
Code Generation for PIM

28

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

PIM Chip

x8

Control/Status Interface DDR4 Interface

UPMEM System Organization
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per

rank

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-KB
WRAM

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e
64-MB
DRAM
Bank

(MRAM)

64 bits

29

Accelerator Model (I)
• UPMEM DIMMs coexist with conventional DIMMs

• Integration of UPMEM DIMMs in a system follows an
accelerator model

• UPMEM DIMMs can be seen as a loosely coupled
accelerator
- Explicit data movement between the main processor (host

CPU) and the accelerator (UPMEM)
- Explicit kernel launch onto the UPMEM processors

• This resembles GPU computing

30

Accelerator Model (II)
• FIG. 6 is a flow diagram representing operations in a method of delegating a

processing task to a DRAM processor according to an example embodiment

Fabrice Devaux, Jean-François Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.

31

Inter-DPU Communication
• There is no direct communication channel between DPUs

• Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

• Example communication patterns:
- Merging of partial results to obtain the final result

• Only DPU-CPU transfers
- Redistribution of intermediate results for further computation

• DPU-CPU transfers and CPU-DPU transfers

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

CP
U-D

PU

DPU-CPU

Lecture on Programming UPMEM PIM

32
https://youtu.be/6E3pI8A1gTc

https://youtu.be/6E3pI8A1gTc

33

SIMDRAM	Output

Instruction	result	
in	memory

Step	3:	Execution	according	to	µProgram

Memory	Controller

User	Input

SIMDRAM-enabled	application

SIMDRAM	Framework	

ACT/PRE

ACT/PRE

ACT/PRE

ACT/ACT/PRE

done

SIMDRAM	OutputUser	Input

AND/OR/NOT	logic

Desired	operation

Main	memory

ISA
bbop_new

New	SIMDRAM	
instruction

Step	2:	Generate	
sequence	of	

DRAM	commands

foo () {

bbop_new

}
Control	Unit AC

T/
PR
E

ACT/PRE

ACT/PRE

ACT/PRE

ACT/PRE/PRE

done

MAJ

MAJ/NOT	logic

Step	1:	Generate	
MAJ	logic

𝜇Program

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

𝜇𝑃𝑟𝑜𝑔𝑟𝑎𝑚

New	SIMDRAM	𝜇Program

𝜇Program

34

Programming	Interface
• Four	new	SIMDRAM	ISA	extensions	
Type ISA	Format
Initialization bbop_trsp_init address, size, n

1-Input	Operation bbop_op dst, src, size, n

2-Input	Operation bbop_op dst, src_1, src_2, size, n

Predication bbop_if_else dst, src_1, src_2, select,
size, n

35

Code	Using	SIMDRAM	Instructions
1 int size = 65536;
2 int elm_size = sizeof (uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
5 …
6 for (int i = 0; i < size ; ++ i){
7 bool cond = A[i] > pred[i];
8 if (cond)
9 C [i] = A[i] + B[i];
10 else
11 C [i] = A[i] - B [i];
12 }

1 int size = 65536;
2 int elm_size = sizeof(uint8_t);
3 uint8_t *A , *B , *C = (uint8_t *) malloc(size * elm_size);
4
5 bbop_trsp_init(A , size , elm_size);
6 bbop_trsp_init(B , size , elm_size);
7 bbop_trsp_init(C , size , elm_size);
8 uint8_t *pred = (uint8_t *) malloc(size * elm_size);
9 // D, E, F store intermediate data
10 uint8_t *D , *E = (uint8_t *) malloc (size * elm_size);
11 bool *F = (bool *) malloc (size * sizeof(bool));
12 …
13 bbop_add(D , A , B , size , elm_size);
14 bbop_sub(E , A , B , size , elm_size);
15 bbop_greater(F , A , pred , size , elm_size);
16 bbop_if_else(C , D , E , F , size , elm_size);

←	C	code	for	vector	add/sub	
with	predicated	execution

Equivalent	code	using	
SIMDRAM	operations	→

Lecture on SIMDRAM

36
https://youtu.be/7UgTJjH-7Gg

https://youtu.be/7UgTJjH-7Gg

PIM Runtime:
Scheduling and Data Mapping

Simple PIM Operations as ISA Extensions (I)

38

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture

PageRank algorithm (Page et al. 1999)

Simple PIM Operations as ISA Extensions (II)

39

Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)

PageRank algorithm (Page et al. 1999)

Example PEI Microarchitecture

40

Out-Of-Order
Core

L1
 C

ac
he

L2
 C

ac
he

La
st

-L
ev

el

Ca
ch

e

HM
C

Co
nt

ro
lle

r

N
et

w
or

k

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor 3D-stacked Memory
…

PCU (PEI
Computation Unit)

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

PEI Performance Delta: Large Data Sets

41

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: CPU-Only)

GeoMean

Pe
rc

en
ta

ge
 o

f P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

w
rt

Ba
se

lin
e

(C
PU

-o
nl

y)

Locality-Aware = PIM or CPU
depending on data location

PEI Energy Consumption

42

0

0.5

1

1.5

Small Medium Large

Cache HMC Link DRAM
Host-side PCU Memory-side PCU PMU

Host-Only (CPU)
PIM-Only
Locality-Aware

To
ta

l E
ne

rg
y

Co
ns

um
pt

io
n

Breakdown of Energy
Consumption on Different
System Components

More on PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Key Challenge 1: Code Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)

Key Challenge 2: Data Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

46

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code? (I)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

47

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

How to Schedule Code? (II)
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

48

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

How to Schedule Code? (III)
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

49

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Research Questions
What are simple mechanisms to enable and disable PIM execution?
How can PIM execution be throttled for highest performance gains?
How should data locations and access patterns affect
where/whether PIM execution should occur?

Which parts of a given application’s code should be executed on
PIM? What are simple mechanisms to identify when those parts of
the application code can benefit from PIM?

What are scheduling mechanisms to share PIM engines between
multiple requesting cores to maximize benefits obtained from PIM?

What are simple mechanisms to manage access to a memory that
serves both CPU requests and PIM requests?

50

Memory Coherence

Challenge: Coherence for Hybrid CPU-PIM Apps

52

Traditional
coherence

No coherence
overhead

How to Maintain Coherence? (I)

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

53

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherence? (II)
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

54

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

CoNDA:
Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand
Saugata Ghose, Minesh Patel, Hasan Hassan,

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

ASIC

Specialized Accelerators

56

FPGAGPU

NDAASIC

ASIC

Specialized accelerators are now everywhere!

Recent advancement in 3D-stacked technology
enabled Near-Data Accelerators (NDA)

CPU
DRAM

NDA

ASIC

Coherence For NDAs

57

Challenge: Coherence between NDAs and CPUs

DRAM
L2L1

CPU
CPUCPUCPU

NDA

Compute
Unit

(1) Large cost of
off-chip communication

It is impractical to use traditional coherence protocols

(2) NDA applications generate
a large amount of off-chip data movement

ASIC

Existing Coherence Mechanisms

58

We extensively study existing NDA coherence
mechanisms and make three key observations:

These mechanisms eliminate
a significant portion of NDA’s benefits1

The majority of off-chip coherence traffic
generated by these mechanisms is unnecessary2

Much of the off-chip traffic can be eliminated
if the coherence mechanism has insight

into the memory accesses
3

ASIC

An Optimistic Approach

59

1 Gain insights before any coherence checks happens

We find that an optimistic approach to coherence can
address the challenges related to NDA coherence

2 Perform only the necessary coherence requests

CoNDA

60

Time

Optimistic
execution

CPU NDA

Concurrent
CPU + NDA
Execution

Offload NDA kernel

SignatureSignature
Send signatures

Coherence Resolution

Commit or Re-execute

CPU Thread
Execution

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

No
Coherence Request

CoNDA

61

Time

Optimistic
execution

CPU NDA

Concurrent
CPU + NDA
Execution

Offload NDA kernel

SignatureSignature
Send signatures

Coherence Resolution

Commit or Re-execute

CPU Thread
Execution

We propose CoNDA, a mechanism that uses optimistic
NDA execution to avoid unnecessary coherence traffic

No
Coherence Request

CoNDA comes within 10.4% and 4.4% of performance
and energy of an ideal NDA coherence mechanism

CoNDA:
Efficient Cache Coherence Support

for Near-Data Accelerators

Amirali Boroumand
Saugata Ghose, Minesh Patel, Hasan Hassan,

Brandon Lucia, Rachata Ausavarungnirun, Kevin Hsieh,
Nastaran Hajinazar, Krishna Malladi, Hongzhong Zheng,

Onur Mutlu

How to Maintain Coherence? (II)
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

63

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Synchronization Support

How to Support Synchronization?
n Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan

Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures"
Proceedings of the 27th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

65

https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

SynCron
Efficient	Synchronization	Support

for	Near-Data-Processing	Architectures

Christina	Giannoula
Nandita	Vijaykumar,	Nikela Papadopoulou,	Vasileios	Karakostas

Ivan	Fernandez,	Juan	Gómez	Luna,	Lois	Orosa
Nectarios Koziris,	Georgios	Goumas,	Onur Mutlu

67

Problem:
• Synchronization	support	is	challenging	for	NDP	systems
• Prior schemes	are	not	suitable	or	efficient for	NDP	systems

Contribution:
• SynCron:	the	first	end-to-end	synchronization	solution	for	
NDP architectures

Key	Results:

• SynCron	comes	within	9.5% and	6.2% of	performance	and	
energy	of	an	Ideal zero-overhead	synchronization	scheme

Executive	Summary

68

Single	Source	Shortest	Path	(SSSP)

for v	in Graph:
for u	in neighbors[v]:
if distance[v]	+	edge_weight[v,	u]	<	distance[u]

if distance[v]	+	edge_weight[v,	u]	<	distance[u]
distance[u]	=	distance[v]	+	edge_weight[v,	u]

Locks Barriers

Graph	Analytics

Bioinformatics

Concurrent	
Data	Structures

Databases

Image	Processing

Synchronization	is	Necessary

lock_acquire(u)

lock_release(u)

69

Synchronization challenges	in	NDP	systems:	
(1)	Lack	of	hardware	cache	coherence	support

(2)	Expensive communication	across	NDP	units

(3)	Lack	of	a	shared	level	of	cache	memory

Main	
Memory

NDP	Core

NDP	Core

NDP	Core

NDP	Unit
Programmable	

Core	/	
Accelerator

Private	
Cache

NDP	System

Baseline	NDP	Architecture

70

NDP	Synchronization	Solution	Space

(1)	Shared	Memory

Hardware	
Cache
Coherence

Remote	
Atomics

Specialized	
Hardware	
Support

Software-
based	
Schemes

Specialized	
Hardware	
Support

NDPs:

SynCron	
[HPCA’21]

SynCron’s	Key	Techniques:

1.		Hardware	support	for	synchronization	acceleration

2.		Direct	buffering	of	synchronization	variables

3.		Hierarchicalmessage-passing	communication

4.		Integrated hardware-only overflowmanagement

(2)	Message-passing

71

NDP	Unit	0

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	0

NDP	Unit	1

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	1

`
`
`
`
`

ISA

ü No	Complex	Cache	Coherence	Protocols
ü No	Expensive	Atomic	Operations
ü Low	Hardware	Cost

1.	Hardware	Synchronization	Support

Local
lock	acquire

72

NDP	Unit	0

Main	
Memory

NDP	Core	0

Synchronization
Engine	0

NDP	Core	1

NDP	Unit	1

Main	
Memory

NDP	Core	0

Synchronization
Engine	1

NDP	Core	1

Indexing	
Counters

Synchronization
Processing	Unit

Address …

-- …

-- …

-- …

-- …

Synchronization
Table

2.	Direct	Buffering	of	Variables

Local
lock	acquire

73

NDP	Unit	0

Main	
Memory

NDP	Core	0

Synchronization
Engine	0

NDP	Core	1

NDP	Unit	1

Main	
Memory

NDP	Core	0

Synchronization
Engine	1

NDP	Core	1

Indexing	
Counters

Synchronization
Processing	Unit

Synchronization
Table

2.	Direct	Buffering	of	Variables

Local
lock	acquire

Address …

0x33A9 …

-- …

-- …

-- …

ü No	Costly	Memory	Accesses
ü Low	Latency

74

NDP	Unit	0

Main	
Memory

NDP	Core	0

Synchronization
Engine	0

NDP	Core	1

NDP	Unit	2

Main	
Memory

NDP	Core	0

Synchronization
Engine	2

NDP	Core	1

NDP	Unit	1

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	1

syncronVar

NDP	Unit	3

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	3

3.	Hierarchical	Communication

75

NDP	Unit	1

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	1

NDP	Unit	0

Main	
Memory

NDP	Core	0

Synchronization
Engine	0

NDP	Core	1

NDP	Unit	2

Main	
Memory

NDP	Core	0

Synchronization
Engine	2

NDP	Core	1

syncronVar

MasterNDP	Unit	3

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	3

3.	Hierarchical	Communication
Local

lock	acquire

76

NDP	Unit	0

Main	
Memory

NDP	Core	0

Synchronization
Engine	0

NDP	Core	1

NDP	Unit	2

Main	
Memory

NDP	Core	0

Synchronization
Engine	2

NDP	Core	1

NDP	Unit	1

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	1

syncronVar

MasterNDP	Unit	3

Main	
Memory

NDP	Core	0

NDP	Core	1

Synchronization
Engine	3

3.	Hierarchical	Communication
Global

lock	acquire

ü Minimize	Expensive	Traffic

77

SynCron’s	Benefits:
1. High	System	Performance

2. Low	Hardware	Cost

3. Programming	Ease

4. General	Synchronization	Support

The	first	end-to-end	synchronization	solution	for	
NDP architectures

SynCron

SynCron comes	within	9.5%	and	6.2%	of	performance	
and	energy	of	Ideal zero-overhead	synchronization

SynCron
Efficient	Synchronization	Support

for	Near-Data-Processing	Architectures

Christina	Giannoula
Nandita	Vijaykumar,	Nikela Papadopoulou,	Vasileios	Karakostas

Ivan	Fernandez,	Juan	Gómez	Luna,	Lois	Orosa
Nectarios Koziris,	Georgios	Goumas,	Onur Mutlu

How to Support Synchronization?
n Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan

Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu,
"SynCron: Efficient Synchronization Support for Near-Data-Processing
Architectures"
Proceedings of the 27th International Symposium on High-Performance Computer
Architecture (HPCA), Virtual, February-March 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

79

https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21.pdf
https://www.hpca-conf.org/2021/
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/SynCron-synchronization-for-near-data-processing-systems_hpca21-short-talk.pdf
https://www.youtube.com/watch?v=2DNDjQjNDTw
https://www.youtube.com/watch?v=kGiN-YjeUUA

Lecture on Synchronization Support for PIM

80
https://youtu.be/GHZkRHp_AG0

https://youtu.be/GHZkRHp_AG0

How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

81

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Virtual Memory Support

Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

83

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Executive Summary
n Our Goal: Accelerating pointer chasing inside

main memory
n Challenges: Parallelism challenge and Address

translation challenge

n Our Solution: In-Memory PoInter Chasing Accelerator
(IMPICA)
q Address-access decoupling: enabling parallelism in the

accelerator with low cost
q IMPICA page table: low cost page table in logic layer

n Key Results:
q 1.2X – 1.9X speedup for pointer chasing operations, +16%

database throughput
q 6% - 41% reduction in energy consumption

84

Linked Data Structures
n Linked data structures are widely

used in many important applications

85

Database

B-Tree Hash Table

Key-value stores
Linked data structures are

connected by pointers

The Problem: Pointer Chasing
n Traversing linked data structures

requires chasing pointers

86

MEM

H

E

A F

Q

M

Find(A)

Addr
(H)

Data
(H)

Addr
(E)

Data
(E)

Addr
(A)

Data
(A)

Serialized and irregular access pattern
6X cycles per instruction in real workloads

DRAM layers

Our Goal

87

Accelerating pointer chasing
inside main memory

H

E

A F

Q

M

Find(A)

MEM

Data
(A)

Logic layer

Find
(A)

Parallelism Challenge

88

Time
Memory
accessCPU core

In-Memory
Accelerator

Comp Memory
access

CPU core

Comp

Comp Comp

Memory
accessComp Comp

Comp Memory
access Comp

Faster for one operationSlower for two operations

Parallelism Challenge and Opportunity
n A simple in-memory accelerator can still be

slower than multiple CPU cores

n Opportunity: a pointer-chasing accelerator
spends a long time waiting for memory

89

CPU core

Accelerator

CPU core CPU core

Comp Memory access (10-15X of Comp) Comp

Our Solution: Address-Access Decoupling

90

Time

Comp

Memory
access

Comp Comp
Address
Engine

Access
Engine

Comp

Memory
access

Memory
accessCPU core

CPU core

Comp Comp

Memory
accessComp Comp

Address-access decoupling enables

parallelism in both engines with low cost

DRAM Dies

IMPICA Core Architecture

91

Address
Engine

Access
Engine

Memory
Controller

DRAM

Logic Layer

DRAM Layers

Request Queue

To/From CPU

Access Queue

Response Queue

IMPICA
Cache

Traversal
1

Traversal
2

Address Translation Challenge

92

TLB/MMU

Pointer (VA)

Pointer (PA)

Page table walk

PTW

PTW

PTW
PTW

PTW
No TLB/MMU on the memory side

Duplicating it is costly and creates

compatibility issue

The page table walk requires

multiple memory accesses

Our Solution: IMPICA Page Table
n Completely decouple the page table of

IMPICA from the page table of the CPUs

93

IMPICA
Region

Physical Address Space

Virtual Page

Physical Page

Physical Page

Virtual Page

CPU Page Table

Virtual Address Space

IMPICA Page Table

Map linked data structure into IMPICA regions

IMPICA page table is a partial-to-any mapping

IMPICA Page Table: Mechanism

Bit [47:41] Bit [40:21] Bit [20:12] Bit [11:0]

Region Table

Flat Page Table
(2MB)

Small Page Table
(4KB)

+

+

Virtual Address

+

Physical Address

Tiny region table is almost

always in the cache

Flat page table

saves one memory access

94

Evaluation Methodology
n Simulator: gem5
n System Configuration

q CPU
n 4 OoO cores, 2GHz
n Cache: 32KB L1, 1MB L2

q IMPICA
n 1 core, 500MHz, 32KB Cache

q Memory Bandwidth
n 12.8 GB/s for CPU, 51.2 GB/s for IMPICA

n Our simulator code is open source
q https://github.com/CMU-SAFARI/IMPICA

95

https://github.com/CMU-SAFARI/IMPICA

Result – Microbenchmark Performance

96

0.0

0.5

1.0

1.5

2.0

Linked List Hash Table B-Tree

Sp
ee
du
p

Baseline + extra 128KB L2 IMPICA

1.9X

1.3X 1.2X

Result – Database Performance

97

0.90
1.00
1.10
1.20

Baseline + extra
128KB L2

Baseline + extra
1MB L2

IMPICA

Da
ta

ba
se

Th

ro
ug

hp
ut

+2%
+5%

+16%

0.80
0.85
0.90
0.95
1.00

Baseline + extra
128KB L2

Baseline + extra
1MB L2

IMPICA

Da
ta

ba
se

La

te
nc

y -4%

-13%

-0%

System Energy Consumption

98

0.0

0.5

1.0

Linked
List

Hash
Table

B-Tree DBx1000No
rm

al
ize

d
En

er
gy

 Baseline + extra 128KB L2 IMPICA

-41%
-24%

-6%
-10%

Area and Power Overhead

n Power overhead: average power
increases by 5.6%

99

CPU (Cortex-A57) 5.85 mm2 per core
L2 Cache 5 mm2 per MB
Memory Controller 10 mm2

IMPICA (+32KB
cache)

0.45 mm2

How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

100

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Rethinking Virtual Memory
n Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata

Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,
"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory
Framework"
Proceedings of the 47th International Symposium on Computer Architecture (ISCA), Virtual, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]
[Lecture Video (43 minutes)]

101

https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20-ARM-Research-Summit-poster.pdf
https://www.youtube.com/watch?v=7c6LgVrCwPo
https://youtu.be/04l-Zlaue0k
https://www.youtube.com/watch?v=PPR7YrBi7IQ

VBI:	Overview

102

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .Processes

VBIConventional Virtual Memory

VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer
in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

Lecture on Virtual Block Interface

103https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

https://www.youtube.com/watch?v=2RhGMpY18zw&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq&index=22

Security Considerations

105

Ro
w

 D
ec

od
er

DRAM	Latency	PUF	Key	Idea
• A	cell’s	latency	failure	probability	is	inherently	related	to	
random	process	variation from	manufacturing
• We	can	provide	repeatable	and	unique	device	
signatures using	latency	error	patterns
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

DRAM Latency Physical Unclonable Functions
n Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM
Devices"
Proceedings of the 24th International Symposium on High-Performance Computer
Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Full Talk Lecture Video (28 minutes)]

106

https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch?v=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf
https://www.youtube.com/watch?v=7gqnrTZpjxE

107

Ro
w

 D
ec

od
er

D-RaNGe Key	Idea
• A	cell’s	latency	failure	probability	is	inherently	related	to	
random	process	variation from	manufacturing
• We	can	extract	random	values by	observing	DRAM	
cells’	latency	failure	probabilities
High	%	chance	to	fail	
with	reduced	tRCD

Low	%	chance	to	fail	
with	reduced	tRCD

SASASASASASASA

DRAM Latency True Random Number Generator

108

n Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu,
"D-RaNGe: Using Commodity DRAM Devices to Generate True Random
Numbers with Low Latency and High Throughput"
Proceedings of the 25th International Symposium on High-Performance Computer
Architecture (HPCA), Washington, DC, USA, February 2019.
[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]
Top Picks Honorable Mention by IEEE Micro.

https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19-talk.pdf
https://www.youtube.com/watch?v=g_GtYdzIPK4&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=19
https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16

109

Quadruple	Activation	(QUAC)
New Observation

Carefully-engineered	DRAM	commands	
can	activate	four	rows	in	real	DRAM	chips

Activate	four	rows	with	two	ACT	commands

ACT PRE ACT<3ns <3ns
35ns 14ns

Violated

Default

110

Generating	Random	Values	via	QUAC

Vdd

-Vdd

Vo
lt
ag
e	
D
iff
er
en
ce

Time

Ready	to	Sense	
Voltage	Level

VTH

-VTH
0

Sense	
Amplifier

VDD/2

VDD/2

Enable

Logic-1

R0

R1

R2

R3

111

Generating	Random	Values	via	QUAC

Vdd

-Vdd

VDD/2

VDD/2

Enable ACT
R0

PRE ACT	
R3

+	𝜺

Vo
lt
ag
e	
D
iff
er
en
ce

VTH

-VTH
0

Time

R0

R1

R2

R3

Sense	
Amplifier

112

Generating	Random	Values	via	QUAC

Vdd

-Vdd

Vo
lt
ag
e	
D
iff
er
en
ce

Time

VTH

-VTH
0

VDD/2

VDD/2

Enable ACT
R0

PRE ACT	
R3

+	𝜺

Enable	Sense	
Amplifiers

Sense	
Amplifier

R0

R1

R2

R3 Random	perturbation

113

QUAC-TRNG
Key	Idea: Leverage	random	values	on	sense	amplifiers	
generated	by	QUAC operations	as	source	of	entropy

R0
R1
R2
R3

DRAM	
Segment

Step	1
Initialize

Step	2
QUAC

Sense	
Amplifiers

Random	
Values

Logic-1

Logic-0

114

QUAC-TRNG
Key	Idea: Leverage	random	values	on	sense	amplifiers	
generated	by	QUAC operations	as	source	of	entropy

Step	1
Initialize

Step	2
QUAC

Sense	
Amplifiers

Step	3
Read

SHA-256
Memory	Controller

256-bit	Shannon	Entropy	Blocks

Step	4
Post-process

256-bit	TRN

115

QUAC-TRNG
Key	Idea: Leverage	random	values	on	sense	amplifiers	
generated	by	QUAC operations	as	source	of	entropy

Step	1
Initialize

Step	2
QUAC

Sense	
Amplifiers

Step	3
Read

SHA-256
Memory	Controller

Step	4
Post-process

256-bit	TRN

Generates	a	256-bit random	number
for	every	256-bit	Shannon	Entropy	block

In-DRAM True Random Number Generation

116

n Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa
Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,
"QUAC-TRNG: High-Throughput True Random Number Generation Using
Quadruple Row Activation in Commodity DRAM Chips"
Proceedings of the 48th International Symposium on Computer Architecture (ISCA),
Virtual, June 2021.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21.pdf
http://iscaconf.org/isca2021/
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/QUAC-TRNG-DRAM_isca21-short-talk.pdf
https://www.youtube.com/watch?v=QtBrq0WVOmQ&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=132
https://www.youtube.com/watch?v=snvF3g3GfkI&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=6

Benchmarks and
Simulation Infrastructures

118

PrIM Benchmarks: Application Domains
Domain Benchmark Short name

Dense linear algebra
Vector Addition VA

Matrix-Vector Multiply GEMV

Sparse linear algebra Sparse Matrix-Vector Multiply SpMV

Databases
Select SEL

Unique UNI

Data analytics
Binary Search BS

Time Series Analysis TS

Graph processing Breadth-First Search BFS

Neural networks Multilayer Perceptron MLP

Bioinformatics Needleman-Wunsch NW

Image processing
Image histogram (short) HST-S

Image histogram (large) HST-L

Parallel primitives

Reduction RED

Prefix sum (scan-scan-add) SCAN-SSA

Prefix sum (reduce-scan-scan) SCAN-RSS

Matrix transposition TRNS

119

PrIM Benchmarks are Open Source
• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

https://github.com/CMU-SAFARI/prim-benchmarks

Lecture on PrIM Benchmarks

120
https://youtu.be/-L1FzpBzxp4

https://youtu.be/-L1FzpBzxp4

DAMOV Analysis Methodology & Workloads

https://arxiv.org/pdf/2105.03725.pdf

https://arxiv.org/pdf/2105.03725.pdf

DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

16

More on DAMOV
n Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita

Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, and Onur Mutlu,
"DAMOV: A New Methodology and Benchmark Suite for Evaluating
Data Movement Bottlenecks"
Preprint in arXiv, 8 May 2021.
[arXiv preprint]
[DAMOV Suite and Simulator Source Code]
[SAFARI Live Seminar Video (2 hrs 40 mins)]
[Short Talk Video (21 minutes)]

123

http://people.inf.ethz.ch/omutlu/pub/DAMOV-Bottleneck-Analysis-and-DataMovement-Benchmarks_arxiv21.pdf
https://arxiv.org/abs/2105.03725
https://arxiv.org/pdf/2105.03725.pdf
https://github.com/CMU-SAFARI/DAMOV
https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=156
https://www.youtube.com/watch?v=HkMYuYMuZOg&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=161

Lecture on DAMOV

124
https://youtu.be/-dCGm0qqpHg

https://youtu.be/-dCGm0qqpHg

Simulation Infrastructures for PIM
n Ramulator extended for PIM

q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator-pim
q https://github.com/CMU-SAFARI/ramulator
q [Source Code for Ramulator-PIM]

125

https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

Simulation Infrastructures for PIM (in SSDs)
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,

Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]

126

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F. Oliveira,
Stefano Corda, Sander Stuijk, Onur Mutlu, Henk Corporaal

56th Design Automation Conference (DAC), Las Vegas
4th-June-2019

Funded by the Horizon 2020 Framework
Programme of the European Union
MSCA-ITN-EID

Executive Summary

• Motivation: A promising paradigm to alleviate data movement bottleneck is near-
memory computing (NMC), which consists of placing compute units close to the
memory subsystem
• Problem: Simulation times are extremely slow, imposing long run-time especially

in the early-stage design space exploration
• Goal: A quick high-level performance and energy estimation framework for NMC

architectures
• Our contribution: NAPEL

• Fast and accurate performance and energy prediction for previously-unseen applications using
ensemble learning

• Use intelligent statistical techniques and micro-architecture-independent application features to
minimize experimental runs

• Evaluation
• NAPEL is, on average, 220x faster than state-of-the-art NMC simulator
• Error rates (average) of 8.5% and 11.5% for performance and energy estimation

128

We open source Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

NMC Simulators

• Simulation for:
• Design space exploration (DSE)
• Workload suitability analysis

• NMC Simulators:
• Sinuca, 2015
• HMC-SIM, 2016
• CasHMC, 2016
• Smart Memory Cube (SMC), 2016
• CLAPPS, 2017
• Gem5+HMC, 2017
• Ramulator-PIM1, 2019

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

129

NMC Simulators

• Simulation for:
• Design space exploration (DSE)
• Workload suitability analysis

• NMC Simulators:
• Sinuca, 2015
• HMC-SIM, 2016
• CasHMC, 2016
• Smart Memory Cube (SMC), 2016
• CLAPPS, 2017
• Gem5+HMC, 2017
• Ramulator-PIM1, 2019

Simulation of real workloads can be 10000x slower
than native-execution!!!

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

130

NMC Simulators

• Simulation for:
• Design space exploration (DSE)
• Workload suitability analysis

• NMC Simulators:
• Sinuca, 2015
• HMC-SIM, 2016
• CasHMC, 2016
• Smart Memory Cube (SMC), 2016
• CLAPPS, 2017
• Gem5+HMC, 2017
• Ramulator-PIM1, 2019

Idea: Leverage ML with statistical techniques for
quick NMC performance/energy prediction

1Ramulator-PIM: https://github.com/CMU-SAFARI/ramulator-pim/

131

NAPEL:

NAPEL Model
Training

132

Phase 1: LLVM Analyzer

133

Phase 2: Microarchitecture Simulation

Central composite design of experiments technique to minimize the number of
experiments while data collection

134

Phase 3: Ensemble ML Training

Application Features

Instruction Mix

ILP

Reuse distance

Memory traffic

Register traffic

Memory footprint

Architecture
Features

Core type

#PEs

Core frequency

Cache line size

DRAM layers

Cache access
fraction

DRAM access
fraction

135

NAPEL Framework

136

NAPEL Prediction

137

Experimental Setup

• Host System
• IBM POWER9
• Power: AMESTER

• NMC Subsystem
• Ramulator-PIM1

• Workloads
• PolyBench and Rodinia
• Heterogeneous workloads such as image processing, machine learning, graph

processing etc.
• Accuracy in terms of mean relative error (MRE)

1https://github.com/CMU-SAFARI/ramulator-pim/

138

NAPEL Accuracy: Performance and
Energy Estimates

40
.4

16
.3

11
.6

0

50

100

atax bfs bp
ch

ol
ge

mv
ge

su
gra

m
kme lu mvt

syr
k

trm
m

gm
ean

M
ea

n
Re

la
tiv

e
Er

ro
r

(%
)

27
.2

14
.7

8.
5

0

50

100

atax bfs bp
ch

ol
ge

mv
ge

su
gra

m
kme lu mvt

syr
k

trm
m

gm
ean

M
ea

n
Re

la
tiv

e
Er

ro
r

(%
)

Decision tree ANN NAPEL
(a) Performance prediction

(b) Energy prediction

139

NAPEL Accuracy: Performance and
Energy Estimates

40
.4

16
.3

11
.6

0

50

100

atax bfs bp
ch

ol
ge

mv
ge

su
gra

m
kme lu mvt

syr
k

trm
m

gm
ean

M
ea

n
Re

la
tiv

e
Er

ro
r

(%
)

27
.2

14
.7

8.
5

0

50

100

atax bfs bp
ch

ol
ge

mv
ge

su
gra

m
kme lu mvt

syr
k

trm
m

gm
ean

M
ea

n
Re

la
tiv

e
Er

ro
r

(%
)

Decision tree ANN NAPEL
(a) Performance prediction

(b) Energy prediction

MRE of 8.5% and 11.6% for performance and energy

140

Speed of Evaluation

0

200

400

600

800

1000

1200

N
AP

EL
's

Pr
ed

ic
tio

n
Sp

ee
du

p
ov

er
 R

am
ul

at
or

DoE configurations

256 DoE
configurations for
12 evaluated
applications

2561

141

Speed of Evaluation

0

200

400

600

800

1000

1200

N
AP

EL
's

Pr
ed

ic
tio

n
Sp

ee
du

p
ov

er
 R

am
ul

at
or

DoE configurations

256 DoE
configurations for
12 evaluated
applications

2561

220x (up to 1039x) faster than NMC simulator

142

0
1
2
3
4
5
6

at
ax bf

s
bp

ch
ol

ge
m

v
ge

su
gr

am km
e lu

m
vt

sy
rk

tr
m

m

ED
P

Re
du

ct
io

n

Actual NAPEL

Use Case: NMC Suitability Analysis

• Assess the potential of
offloading a workload to NMC

• NAPEL provides accurate
prediction of NMC suitability

• MRE between 1.3% to 26.3%
(average 14.1%)

143

Performance & Energy Models for PIM
n Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F.

Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC), Las Vegas,
NV, USA, June 2019.
[Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code for Ramulator-PIM]

144

https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim

Applications that
Benefit from PIM

New Applications and Use Cases for PIM
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)

146

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Genome Read In-Memory (GRIM) Filter:
Fast Seed Location Filtering in DNA Read Mapping

using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

Executive Summary
n Genome Read Mapping is a very important problem and is the first

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

148

Accelerating Approximate String Matching
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

149

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Accelerating Climate Modeling
n Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan

Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

151

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

Accelerating Time Series Analysis
n Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan

Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,
"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"
Proceedings of the 38th IEEE International Conference on Computer
Design (ICCD), Virtual, October 2020.

152

https://people.inf.ethz.ch/omutlu/pub/NATSA_time-series-analysis-near-data_iccd20.pdf
http://www.iccd-conf.com/

Epilogue

PIM Review and Open Problems

154

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf

155

PIM Review and Open Problems (II)

156

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems (III)

157

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
158

Challenge and Opportunity for Future

Fundamentally
High-Performance

(Data-Centric)
Computing Architectures

159

Challenge and Opportunity for Future

Computing Architectures
with

Minimal Data Movement

160

A Tutorial on Memory-Centric Systems
n Onur Mutlu,

"Memory-Centric Computing Systems"
Invited Tutorial at 66th International Electron Devices
Meeting (IEDM), Virtual, 12 December 2020.
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

161https://www.youtube.com/onurmutlulectures

https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://ieee-iedm.org/program/tutorials/
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-IEDM-Tutorial-ExecutiveSummary-MemoryCentricComputingSystems-December-12-2020-FINAL.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/watch?v=1S9P5-i4EuI
https://ieee-iedm.org/wp-content/uploads/2020/11/Mutlu.pdf
https://people.inf.ethz.ch/omutlu/pub/intelligent-architectures-for-intelligent-machines_keynote-paper_VLSI20.pdf
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

162

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2021

21 December 2021

P&S Processing-in-Memory
How to Enable the Adoption of

Processing-in-Memory?

