P&S Processing-in-Memory
Real-World

Processing-in-Memory Architectures

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2021
12 October 2021




PIM Becomes Real

= UPMEM, founded in January 2015, toNews
announces the first real-world PIM

architecture in 2016

= UPMEM’s PIM-enabled DIMMs start
getting commercialized in 2019

Startup plans to embed processors
in DRAM

October 13, 2016 // By Peter Clarke

= Inearly 2021, Samsung announces CIE0 o~ G O -
FIMDRAM at ISSCC conference

= Samsung’s LP-DDR5 and DDR5
announced a few months later

Fabless chip company Upmem SAS (Grenoble,
France), founded in January 2015, is developing a
microprocessor for use in data-intensive applications
in the datacenter that will sit embedded in DRAM to be
close to the data.

Placing hundreds or thousands of processing elements

https://www.eenewsautomotive.com/news/startup-plans-embed-processors-dram-0# 2



Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEWS | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 3
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

H 8GB/128xDPU PIM R-DIMM Module

C P U LIPMEM UPMEM LIPRE M UPMEM UPMEM LIPRAEM UPMEM UPMEM

I PN I Pt P PIM PIN
(x86, ARM, RV...) chip dhip chig chip chip i i

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 4
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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Samsung Function-in-Memory DRAM (2021)

H FIMDRAM based on HBM2

Chip Specification

SID1 128DQ / 8CH / 16 banks / BL4

Core-die -

32 PCU blocks (1 FIM block/2 banks)
(HBM2)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —

[3D Chip Structure of HBM with FIMDRAM]
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Samsung Function-in-Memory DRAM (2021)
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Samsung AXDIMM (2021)

m DDRS-PIM o Baseline System
o DLRM recommendation system

CHo! CH1! CH3! CH2!
1 1 1

OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CH2!
1

OS/FC/Others ' SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 7



UPMEM PIM
Microarchitecture and ISA




UPMEM DIMMs

* E19: 8 chips/DIMM (1 rank). DPUs @ 267 MHz
* P21: 16 chips/DIMM (2 ranks). DPUs (@ 350 MHz

SAFAR’ www.upmem.com
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PIM’s Promises

UPMEM PIM massive benefits

. Energy efficiency when Server + Server +
* Massive SpQEd'U P computing on or off PIM normal
* Massive additional compute & eneiias DRAM | _DRAM
b a ndWIdth DRAM to processor pJ ~150 ~3000*
. . 64-bit operand
* Massive energy gains ey ol ~20 ~10*
* Most data movement on chip
Server consumption w  ~700W ~300W
° LOW cost speed-up ~x20 x1
» Affordable programming TCO gain ~x10 x1
H H *Exascale Computing Trends: Adjusting to the “New Normal” for Computer
¢ MaSSIVe ROI /TCO galns Architecture,'_lcf)hn SSalf, Computjing ing5cience&engineering, 2013 g

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions apply.

SA FAR' F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680 10



Technology Challenges

The Hurdles on the road to the Graal

* DRAM process highly constrained

_ o Take away
* 3x slower transistors than same node digital
Process DRAM vs. ASIC
* Logic 10 times less dense vs. ASIC process * Far less performing

* Routing density dramatically lower * Wafers 2x cheaper vs. ASIC

* 3 metals only for routing (vs. 10+), pitch x4 larger Leapfrogging Moore’s law

* Strong design choices mandatory * Total Energy efficiency x10
* Massive, scalable parallelism

* Very low cost

But the PIM Graal is worth it !
up
oo

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 04,2020 at 13:55:41 UTC from IEEE Xplore. Restrictions ap ply.

SA FA RI F. Devaux, "The true Processing In Memory accelerator," HotChips 2019. doi: 10.1109/HOTCHIPS.2019.8875680



UPMEM Patent

-
a2 United States Patent (10) Patent No.:  US 10,324,870 B2
Devaux et al. 45) Date of Patent: Jun. 18, 2019
(54) MEMORY CIRCUIT WITH INTEGRATED (56) References Cited
PROCESSOR B B
U.S. PATENT DOCUMENTS
2 nprte DM | . . (I
(71) Applicant: UPMEM, Grenoble (FR) 5666485 A * 9/1997 Suresh ............ GOGF 13/1605
. . . " 7 3
(72) Inventors: l«ahric‘c Devaux, La (‘nnvcrsmn.(( H): 6.463.001 Bl 10/2002 Williams 10711
Jean-Frangois Roy, Grenoble (FR) 7,349,277 B2*  3/2008 Kinsley ......ooovon GI11C 11/406
365/193
(73) Assignee: UPMEM, Grenoble (FR) 8,438,358 Bl1* 52013 Kraipak ..o GL1IC 7/04
T11/167
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 15/551,418 EP 0780768 Al 6/1997
JP HO3109661 A 5/1991
(22) PCT Filed: Feb. 12. 2016 WO 20107141221 Al 12/2010
: .12,
(57) ABSTRACT

A memory circuit having: a memory array including one or
more memory banks; a first processor; and a processor
control interface for receiving data processing commands
directed to the first processor from a central processor, the
processor control interface being adapted to indicate to the
central processor when the first processor has finished
accessing one or more of the memory banks of the memory
array, these memory banks becoming accessible to the
central processor.

SAFARI

Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.
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Accelerator Model (1)
* UPMEM DIMMs coexist with conventional DIMMs

* Integration of UPMEM DIMMs in a system follows an
accelerator model

* UPMEM DIMMs can be seen as a loosely coupled
accelerator

- Explicit data movement between the main processor (host
CPU) and the accelerator (UPMEM)

- Explicit kernel launch onto the UPMEM processors

* This resembles GPU computing

SAFARI 13



GPU Computing

Computation is offloaded to the GPU

Three steps

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)

CPU
cores

CPU GPU
memory memory
1
L+ A
Matrix Matrix
‘\ L~
3

https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

GPU
cores

https://www.youtube.com/watch?v=y40-tYS5WJ8A

14


https://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf

Lecture on GPU Programming

Indexing and Memory Access: 1D Grid

One GPU thread per pixel
Grid of Blocks of Threads

4 gridDim.x, blockDim.x
J blockIdx.x, threadIdx.x

Block 0

-

Thread 2
Thread 3

Block 0

[

P »l o 3536/1:2517

Design of Digital Circuits - Lecture 22: GPU Programming (ETH Ziirich, Spring 2018)

2,072 views * May 24, 2018 24 1 SHARE SAVE
€J Onur Mutlu Lectures
N 16.3K subscribers SUBSCRIBED

<« >

15
https://www.youtube.com/watch?v=y40-tYSWJ8A



P&S: Heterogeneous Systems

227-0085-51L Projects & Seminars: Hands-on Acceleration on Heterogeneous
Computing Systems

Semester Autumn Semester 2021

Lecturers 0. Mutlu, J. Gémez Luna

Periodicity every semester recurring course

Language of instruction English

Comment Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Courses Catalogue data = Performance assessment = Learning materials = Groups = Restrictions = Offeredin = P> Overview

Abstract The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical
knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the
methodology of project work.

Objective The increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into
heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them.
More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make
their outstanding processing capabilities available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Atrtificial Intelligence, which took
unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example computing device that can
deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators
(e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside
memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine
learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.

- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory
scheduling, etc.

- Workload characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture projects for heterogeneous systems, this is
your P&S. You will have the opportunity to program

heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose algorithmic changes to important applications to
better leverage the compute power of heterogeneous systems, understand different workloads and identify the most suitable device for their
execution, design optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance reported for a given
important application.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021W&ansicht=KATALOGDATEN&lerneinheitld=154599&lang=en 1 6



Accelerator Model (II)

* FIG. 6 is a flow diagram representing operations in a method of delegating a
processing task to a DRAM processor according to an example embodiment

SOC LOADS DATA TO BE PROCESSED

TO DRAM MEMORY BANK

SOC TRANSMITS DATA PROCESSING

A~ 602
COMMAND TO DRAM PROCESSOR(S)

l

DATA PROCESSING BY DRAM PROCESSOR(S)

A

- 603

Lt

604

DATA PROCESSIN
COMPLETE 2

5)5
S

MEMORY BANK ACCESSIBLE BY SOC

Fig 6

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



System Organization (1)

* FIC. 1 schematically illustrates a computing system comprising DRAM circuits
having integrated processors according to an example embodiment

100

3 o~

S0C 103 102

I
DDR MASTER INTERFACE

AN
‘l r 140
L
-

DRA}:&O@ DRA\BT/H <7 DRA&:@ V DRAQ/B N

DDR S.L DDR S.IL DDR S.1. DDR S.L
=108 118 =128 138
103 103 i P i P
107 106 17116 927 1926 137 136
MA MA MA MA
; ) ) ;-
e [ { {
104 114 124 134
Fig 1

SA FA R’ Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2. 18



System Organization (II)

* Ina UPMEM-based PIM system UPMEM DIMMs coexist
with regular DDR4 DIMMs

Main Memory

-
y
i
y-
DRAM|\DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM|[DRAM
( ) == | | Cip )| Chip )| Chip || chip |\ chip )| chip )| chip || chip
DRAM|[DRAM|[DRAM||DRAM|[DRAM||DRAM||DRAM||DRAM
chip || chip || chip )| chip )| chip )\ chip )| chip )| chip
xM

Host

CPU o
[PIM][PIM][PIM][PIM][PIM][PIM][PIM][PIM]
ﬁ Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
J
[PIMJ[PIMJ[PIMJ[PIMJ[PIMJ[PIMJ[PIM][PIMJ
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip /
xN

PIM-enabled Memory

SAFARI 19



System Organization (llI)

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Ch ip
= ye ~\
/ Control/Status Interface <—>[ DDR4 Interface ]
DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM /
( \—p ’ A A
/
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip \
/
/:M / ( — (#\\\
Host / DISPATCH
CcPU / FETCHI 24-KB
y= / FETCH2 )@ —
f T FETCH3 IRAM ()]
i READOP1 £ 64-MB
PIM PIM PIM PIM PIM PIM PIM PIM o READOP2 [=)) 64 bit =
< Chip || chip || chip || chip || chip || chip || chip || chip ) % - (CREADOP3 P IE Its DRAM
- o) <+>
chip || chip || chip || chip )| chip || chip || chip || chip
‘/4xN g AW 64-KB = (D)
~ = ALU3 <P WRAM <€+ QO
PIM-enabled Memory S [7] ALU4 —;/
S 2 MERGEL _537
CI:. MERGE2 ) L8
- J

SAFARI
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2,560-DPU System (1)

* UPMEM-based PIM

Main Memory

system with 20 .U PMEM 1,
DIMMs of 16 chips each
Host
(40 ranks) cPU 0 P 2560 DPUs*
P21 DIMMs PN 67 BN BN B o BB G
Dual x86 socket VA0

° UP M E M DIMMS PIM-enabled Memory
coexist with regular Main Memory
DDR4 DIMMs =

e > memory 4—»[
controllers/socket (3 2
channels each) crU 1 ,,

« 2 conventional DDR4 4. [ﬂﬂﬂﬂﬂﬂﬂﬂ
DIMMSs on one  BEEEEEEE
channel of one ..gwg,ze.../m
controller

160 GB
SA FA R’ * There are 4 faulty DPUs in the system that we use in our experiments. Thus, the maximum number of DPUs we can use is 2,556. 2 1



2,560-DPU System (lI)

Main Memory
)
——— N ——\

Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
oA A e o e o o o)
\cmp chip || chip || chip || chip || chip || chip cmpj AZ

Host
CPUO

A A
y y

PIM-enabled Memory

Main Memory
)
(T —— =)

- Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
T o e e e e o e o)
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N

y
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CPU 1

PIM-enabled Memory
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640-DPU System

* UPMEM-based PIM
system with 10 UPMEM
DIMMs of 8 chips each

(1 o ran kS) Main Memory
- E19 DIMMs £
- x86 socket f—ﬁ{“)(l)ﬁﬂ()(lﬂ()
* 2 memo ry contro l I ers Chip)(chip; \cnip)(cmp)(éiﬁ,;; \Chi;ﬂﬁ&?ﬂ@;%ﬂ
(3 channels each) aoor P
* 2 conventional DDR4 o
DIMMs on one ~—<->&f:;::}Ez::}{:z::}{:::}{:z:)(::
Cha n nel Of On e Chip || Chip || Chip || Chip || Chip || Chip
controller PIM-enable

SAFARI 23



DPU Sharing? Security Implications?

* DPUs cannot be shared across multiple CPU processes

- There are so many DPUs in the system that there is no need
for sharing

* According to UPMEM, this assumption makes things
simpler
- No need for OS
- Simplified security implications: No side channels

SAFARI



Vector Addition (VA)

* Our first programming example

* We partition the input arrays across:
- DPUs
- Tasklets, i.e., software threads running on a DPU

SAFARI

25



CPU-DPU/DPU-CPU Data Transfers

* CPU-DPU and DPU-CPU transfers
- Between host CPU’s main memory and DPUs’ MRAM banks

Main Memory

P

y =
.=
.=

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip )| Chip |\ Chip J{ Chip )| chip |\ chip )| chip

,OQ‘ -— DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\)/ —— chip || cnip || chip || cnip || chip || chip || chip || chip
%l xM
Host I
P =

b
= pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| ( Chip || Chip || Chip )\ chip )| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip )| chip || chip || chip /

xN
PIM-enabled Memory

e Serial CPU-DPU/DPU-CPU transfers:
- Asingle DPU (i.e., 1t MRAM bank)

* Parallel CPU-DPU/DPU-CPU transfers:
- Multiple DPUs (i.e., many MRAM banks)

* Broadcast CPU-DPU transfers:
- Multiple DPUs with a single buffer

SAFARI
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Inter-DPU Communication

* There is no direct communication channel between DPUs

Main Memory

P
y =
y =

y =

DRAM||DRAM||DRAM||DRAM||DRAM||DRAM||DRAM|[DRAM
\)‘ == | | 1P J\ Chip )| Chip |\ Chip J{ Chip )| chip |\ chip )| chip

,OQ - = DRAI‘ﬂ[DRAI‘ﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ[DRAﬂ
Q\>/ fpm— Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip
S/ M
Host I
P _

~ I -
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
@e=p-| ( Chip || Chip || Chip )\ chip )| chip |\ chip || chip || chip
J
pim || pim || PIM || PIM || PIM || PIM || PIM || PIM
chip || chip || chip || chip || chip )| chip || chip || chip

PIM-enabled Memory

* Inter-DPU communication takes places via the host CPU using CPU-DPU
and DPU-CPU transfers

* Example communication patterns:

- Merging of partial results to obtain the final result
* Only DPU-CPU transfers

- Redistribution of intermediate results for further computation
* DPU-CPU transfers and CPU-DPU transfers

SAFARI 27
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DRAM Processing Unit (1)

* FIGC. 4 schematically illustrates part of the computing system of FIG. 1in more
detail according to an example embodiment

SOC 143 | 102 . .
lb__ﬁA;T - zﬂﬁ 412 DRAM 0
DR MASTER INTERFACE - - 3 410 \
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- 40 6\ [
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o4 T4 4 134 . - CONTROL| 420 2
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\ A M
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\ 426 =
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SA FAR' Fabrice Devaux, Jean-Frangois Roy. “Memory circuit with integrated processor.” US 10,324,870 B2.



DRAM Processing Unit (1)
PIM Chip

-

\_

SAFARI



DPU Pipeline

* In-order pipeline

- Up to 350 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI
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Fine-Grained Multithreading




Fine-Grained Multithreading

= Idea: Hardware has multiple thread contexts (PC+registers).
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no

instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread

-- Single thread performance suffers

-- Extra logic for keeping thread contexts

-- Does not overlap latency if not enough
threads to cover the whole pipeline

Instruction Operands

Stream 3 Instruction
Instruction Fetch

Stream 2 Instruction
Operand Fetch

Stream 1 Instruction
Executicn Phase

tream B Instruction
Execution Phase

Stream 4 Instruction

Resuit Store

32



Fine-Grained Multithreading (II)

Idea: Switch to another thread every cycle such that no two
instructions from a thread are in the pipeline concurrently

Tolerates the control and data dependence latencies by
overlapping the latency with useful work from other threads

Improves pipeline utilization by taking advantage of multiple
threads

Thornton, “Parallel Operation in the Control Data 6600,” AFIPS
1964.

Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.

33



Lecture on Fine-Grained Multithreading

Fine-Grained Multithreading

Idea: Hardware has multiple thread contexts (PC+register
Each cycle, fetch engine fetches from a different thread.

o By the time the fetched branch/instruction resolves, no
instruction is fetched from the same thread

o Branch/instruction resolution latency overlapped with execution
of other threads’ instructions

Instruction Operands

Stream 3 Instruction

+ No logic needed for handling control and Instruction Fetch

Stream 2 Instruction

data dependences within a thread Operand Fatoh

tream ! Instruction
Execution Phase

-- Single thread performance suffers tream BTnstroction

-- Extra logic for keeping thread contexts fpesten Shast

-- Does not overlap latency if not enough
threads to cover the whole pipeline

Resuit Store

[St.ream 4 Instruction

Onur Mutlu - Digital Design & Comp Arch - Lecture 14: Pipelined Processor Design (Spring 2021)

1,193 views * Streamed live on Apr 22, 2021 |b 42 0 SHARE SAVE

@ Onur Mutlu »Lectures ANALYTICS EDIT VIDEO
&> 16.2K subscribers

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2s0XY2Zi_uej3aY39YB5pfW4SJ7LIN&index=16 34



Lectures on Fine-Grained Multithreading

= Digital Design & Computer Architecture, Spring 2021, Lecture 14

o Pipelined Processor Design (ETH, Spring 2021)

o https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL50Q2s0XY2Zi uej3aY39Y
B5pfW4SJ7LIN&index=16

= Digital Design & Computer Architecture, Spring 2020, Lecture 18c

o Fine-Grained Multithreading (ETH, Spring 2020)

o https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL502s0XY2Zi FRrloMa2fU
YWPGiZUBQo2&index=26

https://www.youtube.com/onurmutlulectures 35



https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures

DPU Pipeline

* In-order pipeline

- Up to 350 MHz
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

SAFARI
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DPU Instruction Set Architecture

* Specific 32-bit ISA
- Aiming at scalar, in-
order, and

multithreaded
implementation

- Allowing compilation
of 64-bit C code

- LLVM/Clang compiler

U Instruction Set Architecture — UPMEM DPU SDK 2021.2.0 Documentation

UPMEM development tools documentation

@A » Instruction Set Architecture View page source

Instruction Set Architecture

This section covers the architecture concepts required to understand and use UPMEM DPU
processor as a software developer. It is also providing an exhaustive list of the available processor
instructions.

Software developers should use this section as a reference manual to develop or debug assembly
code.

Resources overview

Thread registers

The system is composed of 24 hardware threads. Each of them owns a set of private resources:

e 24 general purpose 32-bits registers named re through r23

e A 16-bits wide program counter, named PC. Notice that the PC value does not address an
instruction in memory, but the index of such an instruction directly. For example, a PC
equal to 1 represents the second instruction in the DPU’s program memory.

e Two persistent flags, keeping information about the previous result of an arithmetic or
logical instruction:
o ZF: last result is equal to zero

Nienlav a manii —— . _

https://sdk.upmem.com/2021.2.0/201_IS.html#

SAFARI
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Microbenchmark for INT32 ADD Throughput

1 #define SIZE 256
v 2 1int* bufferA = mem alloc(SIZE * sizeof(int));
S 3 for(int i = 0; i < SIZE; i++){
5 4 int temp = bufferA[i];
.§ 5 temp += scalar;
V) 6 bufferA[i] = temp;
7}
1 move r2, O
o5 2 .LBBO 1:
lg > 3 1lsl add r3, r0, r2, 2
5 5 4 1w r4, r3, 0
5= 5 add r4, r4, rl
L
g = 6 sw r3, 0, rd
05 7 add r2, r2, 1
~— 8 jneq r2, 256, .LBBO 1

SAFARI 38



Arithmetic Throughput: #Instructions

* Compiler explorer: https://dpu.dev

1 #define BLOCK_SIZE 1024 TS A~ 01010 O.jaocut B.LIX0: Blitext B/ O\
2
. e 1 Benchmark 32bits:
3 typedef int T; 5 — 5 0
4 void Benchmark 32bits(T *cache_ A, T scalar) { 3 01 miove x<,
5 for (int i = 0; i < BLOCK_SIZE / sizeof(T); i++){ . -LBB 7(.1 — - — \
6 ////// WRAM READ ////// . 15 —: ’; 'or v Ee
7 T temp = cache A[i]; . aZdrr:l rr:l .
8 ’ ’
9 temp += scalar; // ADD ; der3; 0,2r41
add r2, r2,
10
11 ////1] WRAM WRITE ////// 1(9) \zed r; 256, LERO_ 1
: jump r
12 cache A[i] = temp;
13 } — - 11 Benchmark _64bits:
14 } 12 move rl, 0
15 13 .LBB1l_1:
16 typedef long T_ long; 1‘; (izla:dd 24,0r0, 2o = \
17  void Benchmark 64bits(T_long *cache A, T long scalar) ({ » ad ; : _" s
18 for (int i = 0; i < BLOCK_SIZE / sizeof(T long); i++){ . add - é - é - -
19 /111 WRAM READ ////// 1; s
20 T long temp = cache A[i]; Lo der ; '1 .
a rl, rl,
21
22 temp += scalar; // ADD 2(1) \;'meq r;; 128, 'LBBl—l_)
23 jump r
24 )
L] L) L] L] L]
s 6 instructions in the 32-bit ADD/SUB microbenchmark
7 ' ' in the 64-bi S icrobenchmark
7 Instructions in the 64-bit ADD/SUB microbenchmar
J
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DPU: WRAM Bandwidth

PIM Chip

-

f DISPATCH )|
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FETCH3
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c__:;ister File
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ipeline(Re

P

ALU3 4>

64-KB
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{

g
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DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
S (I\E;RII:I)
64-KB =
wraM €% °
./
\_

SAFARI
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DPU: Arithmetic Throughput vs. Operational Intensity
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(6 . ~
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Upcoming Lectures

Microbenchmarking of the UPMEM DPU
o Compute throughput
o MRAM and WRAM bandwidth

o Arithmetic intensity versus compute throughput
Programming an UPMEM-based PIM system

Introduction to Samsung’s PIM devices

43



Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN G OMEZ-LUN A, ETH Ziirich, Switzerland

IZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Zirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.org/pdf/2105.03814.pdf +*
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Understanding a Modern PIM Architecture

ETH:urich

Understanding a Modern
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gomez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

SAF

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0 > SHARE =+ SAVE
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