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Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEWS | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 2
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Background: High Bandwidth Memory (HBM)

HBM stacks DRAM layers and a buffer layer
o The buffer layer contains I/O circuitry, self-test, test/debug

DRAM layers and buffer layer communicate using Through Silicon
Vias (TSVs)

System in Package (SiP)

___________________________________________

The buffer layer is

connected to a host r';;t-;g, L st asez |
processor via a silicon |
interposer

1 HBM2 die comprises 4

pseudo channels (pCHs) ]

each with 4 bank groups e

o An access transfers a 256- LR S—
bit data block over 4 64-bit [ 4| —
bursts over one pCH Pseudo Ghanrel

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021



FIMDRAM: System Organization (II)

= Design goals:

o 1. Support DRAM and PIM-DRAM mode for versatility
o 2. Minimize the engineering cost of redesigning DRAM banks

and sub-arrays

= Thus, PIM unit at I/O boundary of bank

a 1 PIM unit for each 2 banks
a 16 16-bit SIMD floating-point units (FPUs) per PIM unit
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Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021



Samsung AXDIMM (2021)

m DDRS-PIM o Baseline System
o DLRM recommendation system

CHo! CH1! CH3! CH2!
1 1 1

OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CH2!
1

OS/FC/Others ' SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 5
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PnM with AxDIMM (IEEE Micro 2021)

Near-Memory Processing in Action: Accelerating
Personalized Recommendation with AxDIMM

Liu Ke*", Xuan ZhangT, Jinin So*, Jong-Geon Lee*, Shin-Haeng Kangi, Sukhan Lee?, Songyi Han*, YeonGon Cho*,
JIN Hyun Kim*, Yongsuk Kwon*, KyungSoo Kim?*, Jin Jung*, Ilkwon Yun*, Sung Joo Park*, Hyunsun Park*,
Joonho Song?, Jeonghyeon Cho*, Kyomin Sohn*, Nam Sung Kim*, Hsien-Hsin S. Lee*

*Facebook, "Washington University in St. Louis, *Samsung

https://doi.org/10.1109/MM.2021.3097700 6



Overview of Recommendation Models

Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Deep Learning-Based Personalized
Recommendation Model

Click Through Rate(s)
[\

\ _______________ Computation
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/ Top-FC
I

Feature Interaction

| __Communication
Dominated

Lookup

Embedding Table |_

Number of
Emb. Tables

Embedding Table [ _Memory Capacity
Lookup and Bandwidth

i i Dominated
i i Emb. Indices
i @@ i Sparse Feature Sparse Feature
i_ _________ Itl ::.---------.E N1 Requests Query N ~~ Batch size
Dense features: continuous inputs in vectors and matrices
are processed by typical DNN layers (e.g., fully connected layers)




Overview of Recommendation Models

Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Deep Learning-Based Personalized Click Tlf\llrough Rate(s)

Recommendation Model |
/ \ _______________ Computation
Top-FC Dominated
I

. ___Communication
Feature Interaction B i
______ ) [ ————————————— R Dominated
Embedding Table | Number of _| Embedding Table _:r__Mem°rY Capacity
Bottom-FC Lookup Emb. Tables Lookup ;  and Bandwidth
I Dominated
| |
! Emb. Indices :
| e e e e e e e e e e e e e e e e e - |
NT= N1 Requests Query N+~ Batch size
Sparse features: for categorical inputs;
processed by indexing large embedding tables




Overview of Recommendation Models

Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Deep Learning-Based Personalized Click Tlf\llrough Rate(s)

Recommendation Model |
/ \ _______________ Computation
Top-FC Dominated
|

) Communication
Feature Interaction - i
I I Dominated
Embedding Table |_ Number of _| Embedding Table | _Memory Capacity
Bottom-FC Lookup Emb. Tables Lookup and Ba.ndW|dth
Dominated

Emb. Indices

@nse— I:_e@ Sparse Feature Sparse Feature
(

Embedding tables are organized as a set of potentially millions of vectors:
lookup and pooling operations represent sparse features learned during training
and generally exhibit Gather-Reduce pattern,
via Caffe2’s SparseLengths (SLS) operators

& _/
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DILRM Pertormance Characterization

= Identifying key performance bottlenecks for the DLRM system

Analytical Memory Byte

@ —~ |
}gﬁ?\l. ® 2 |Comp.Per (0.98 TFlopsis) 80 { __________ 76.8 GB/s [100%)
@ o E ’ v 62.1 GB/s (79.6%)
02 L _ & 60 51.8 GBIs {67.4%)
107 sl 2. .. =
— O 107 5 @) B 40 ---
o) FC o © @ - . i Peak DDR BW
o 0000® Q ] 35% = Roofline Bound 2 ——MLC Random BW
= @ @ @ SLS Ops € 20 - = Batoh=256
—eo— Batch=
£ 101 @ FCOps o Batch=16
L ¥ RMC1 0 Batch=8
10 61_) A RMC2 0 10 20 30
i AE—_— Num of parallel SLS threads
10° 10! 107
~ . Operational Intensity (Flops/Byte)
10 10
Analytical Flops (log)
N ( N

SparseLengths (SLS) operators:
* Low FP intensity
« Larger batch size:
« Higher memory footprint
« Higher memory intensity

The memory bandwidth can easily be
saturated by embedding operations
especially as both the batch size and the
number of threads increase
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RecNMP Architecture

DIMM-based NMP architecture for recommendation systems
o Multiply the bandwidth by exploiting rank-level parallelism

llllllllllllllllllllllllhllllllllllllllllllll
,,/ NMP-Inst{ | Result

Host ¢ NMP Processing Unit

MC Rbnk-0.3/A Rahk-0.0D
| 7 (=
onv | IE) E] Bl E
\\ = > > >

DIMM | =

N Rank-0

Embedding entries are fetched from the concurrently activated ranks

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020
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RecNMP Architecture

DIMM-based NMP architecture for recommendation systems

o Multiply the bandwidth by exploiting rank-level parallelism

NMP-Inst} | Result
Host ¢ NMP Processing Unit
MC I Rbnk-0.8/A Rahk-000 [Rhnk-1.d/A Rk-1.0
I 7 \ 4 \ 4
DIMM J
I s U g
DIMM | =
Rank-0 Rank-1

The NMP PU performs the local embedding lookup and pooling functions
at memory-side, producing the general Gather-Reduce execution pattern

Ke et al. “RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020
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RecNMP Architecture

DIMM-based NMP architecture for recommendation systems

o Multiply the bandwidth by exploiting rank-level parallelism

,,/ NMP-Inst{ |} Result
Host ¢ NMP Processing Unit
MC I Rbnk-0.8/A Rahk-000 [Rhnk-1.d/A Rk-1.0
I 7 \ 4 \ 4
DIMM J
I s U g
DIMM | =
Rank-0 Rank-1

Element-wise summation of the embedding entries is performed inside the
NMP PU, and the final pooling result is transferred back to host

Ke et al. “RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020
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AxDIMM Design: Overview

Accelerator DIMM (AxDIMM)

o DDR4-compatible FPGA-based platform with standard memory
interfaces

AxDIMM can potentially

o support both in-order general-purpose processor and
specialized accelerator modules

o be an ideal prototyping platform for near-memory processing
RecNMP case study, including:

o hardware implementation
o software-stack support

14



AxDIMM System

Baseline System

RDIMM

CHo; CH3! CH2!
] 1 1

OS/FC/Others OS/FC/Others

SLS Offload

AxDIMM System

_AxDIMM

CHo! CH1'! "CH3! CH2!
1 1 1 1

SLS Offload
FPGA: Xilinx XCZU19EG FPGA

OS/FC/Others OS/FC/Others

System was slowed down (1/3 of normal DDR4 memory channel speedup; CPU went from 3.2 GHz to 1.2 GHz) to keep up with the FPGA IO speed

15



AxDIMM Design: Hardware Architecture

Standard DIMM Interface

FPGA board with standard DIMM interface:
It serves as a real-system
near-memory processing implementation

16



AxDIMM Design: Hardware Architecture

Standard DIMM Interface

Rank-level parallelism:
Two DRAM ranks are activated in parallel
to load embedding entries from memory

Element-wise summation
is performed inside the FPGA module

17



AxXDIMM Design: Hardware Architecture

———————————— -
T k!

Standard DIMM Interface
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DDR4 slave PHY receives DRAM commands and NMP instructions
(via DQ pins) from the host side




AxXDIMM Design: Hardware Architecture

T k!

Standard DIMM Interface

e Rank-0.NMP
= . e e et >
ZIe] Pl o Non-Acceleration Mode w —
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The memory interface generator (MIG) supports the internal rank accesses
between Rank-NMP and the DRAM device

19



AxXDIMM Design: Hardware Architecture

Standard DIMM Interface

e Rank-0.NMP
o . € - ——mmm—mmmmmmmmmmmmmmmmeme s -»|
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Sl || = =
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c & |- Rank-1.NMP Sl S
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Two execution modes:
(1) non-acceleration mode
(2) acceleration mode (blocking)




AxXDIMM Design: Hardware Architecture

Standard DIMM Interface

e Rank-0.NMP
= €= >
DG = " Non-Acceleration Mode L -
e = =
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eS| st 2 S |
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AxXDIMM Design: Hardware Architecture

Standard DIMM Interface

1. [ 1= Rank-0.NMP
__________________________ ->
256-KB NMP instruction buffer ~ |on-Acceleration Mode & f | |~
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AxXDIMM Design: Hardware Architecture

Standard DIMM Interface

256-KB partial sum buffer:

It stores intermediate values for embedding pooling operations -
T =
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(64 b|tS) 2 bit 1 bit 12 bit 1 bit 17 bit 17 bit 2 bit 2 bit 10 bit




AxXDIMM Design: Hardware Architecture

Standard DIMM Interface

Instruction decoder loads and decodes
NMP instructions from the instruction buffer do e |||~
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AxXDIMM Design: Hardware Architecture

Command generator issues

£ P read commands to DRAM ranks and Psum buffer
- E Tl N (64 bytes from each in 1 cycle)
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(64 b|tS) 2 bit 1 bit 12 bit 1 bit 17 bit 17 bit 2 bit 2 bit 10 bit




AxXDIMM Design: Hardware Architecture

16 FP32 adders perform
e Rank vector element-wise summation
*5—8 > [ " "Non-Accel of the loaded embedding entry
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AxDIMM Design: Address Map

= Memory map of AxXDIMM

Reserved
PSUM BUF DDR RD

CONF REG DDR WR
DDR WR

INST BUF DDR WR

27



AxDIMM Design: Execution Flow

Emb Table Rank-0.NMP R
Data _ i
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AxDIMM Design: Execution Flow
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AxDIMM Design: Execution Flow
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AxDIMM Design: Execution Flow
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PnM with AxDIMM (IEEE Micro 2021)

Near-Memory Processing in Action: Accelerating
Personalized Recommendation with AxDIMM

Liu Ke*", Xuan ZhangT, Jinin So*, Jong-Geon Lee*, Shin-Haeng Kangi, Sukhan Lee?, Songyi Han*, YeonGon Cho*,
JIN Hyun Kim*, Yongsuk Kwon*, KyungSoo Kim?*, Jin Jung*, Ilkwon Yun*, Sung Joo Park*, Hyunsun Park*,
Joonho Song?, Jeonghyeon Cho*, Kyomin Sohn*, Nam Sung Kim*, Hsien-Hsin S. Lee*

*Facebook, "Washington University in St. Louis, *Samsung

https://doi.org/10.1109/MM.2021.3097700 32



More Real-World PIM to Come

BLOCKS
|_—I & FILES.

HOME BLOCK FILE OBJECT DISK TAPE FLASH NVME SC

NeuroBladers build a processing-in-
memory analytics chip and server

By Chris Mellor - October 6, 2021

0000

them in an analytics accelerating server appliance box, and taken in $83 million in B-
round funding.

The idea is to taki a GPU approach to big data-style analytics and Al softwarelby
employing a massively parallel core design, but take it further by layering the cores
on DRAM with a wide I/0 bus architecture design linking the cores and memory to
speed processing even more. This design vastly reduces data movement between
storage and memory and also accelerates data transfer between memory and

processing cores.

https://blocksandfiles.com/2021/10/06/neurobladers-build-a-processing-in-memory-analytics-chip-and-server/
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NeuroBlade Patent (I)

a2 United States Patent

Sity et al.

a0y Patent No.:  US 10,762,034 B2
@5) Date of Patent: Sep. 1, 2020

(54)

(1)
(72)

(73)

*)

(2]

(22)

MEMORY-BASED DISTRIBUTED
PROCESSOR ARCHITECTURE

Applicant: NeuroBlade, Ltd., Hod-Hashron (IL)

Inventors: Elad Sity, Kfar Saba (IL); Eliad Hillel,
Kfar Saba (IL)

Assignee: NeuroBlade, Ltd., Hod-Hashron (IL)

Notice:  Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/512,590

Filed: Jul. 16, 2019

(56) References Cited
U.S. PATENT DOCUMENTS
4,837,747 A *  6/1989 Dosaka ..........cco.ce... GlI1C 8/12

365/189.05
5,155,729 A 10/1992 Rysko et al.

(Continued)

FOREIGN PATENT DOCUMENTS

CA 2149479 C 5/2001

OTHER PUBLICATIONS

Ahn et al, “A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing,” ISCA 15 (Jun. 13-17, 2015), pp.

105-117.

(57) ABSTRACT

Distributed processors and methods for compiling code for
execution by distributed processors are disclosed. In one
implementation, a distributed processor may include a sub-
strate; a. memory array disposed on the substrate; and a
processing array disposed on the substrate. The memory
array may include a plurality of discrete memory banks, and
the processing array may include a plurality of processor
subunits, each one of the processor subunits being associ-
ated with a corresponding, dedicated one of the plurality of
discrete memory banks. The distributed processor may fur-
ther include a first plurality of buses, each connecting one of
the plurality of processor subunits to its corresponding,
dedicated memory bank, and a second plurality of buses,
each connecting one of the plurality of processor subunits to
another of the plurality of processor subunits.

Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2
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NeuroBlade Patent (II)

| 1

\ 310a 310c

1i| Memory || Memory % /§30b Memory || Memory \' 330f
330a :/ Instance || Instance 330e’\/ Instance || Instance :

I

I I

: : 600

| 360a \

| B : aw
350a \!{| Pprocessor Subunit Processor Subunit \féSOb 8

____________________ .

- !

: 1
|

e o’ | [ \eaeon !

|

! |

|

|

|

|

310d Memory Instance
/\l’\/
Memory || Memory Memory || Memory \ﬁ30h
330c \!i, Instance || Instance Instance || Instance

630

“304 3309~

A

Element [~

!
]
i
I
]
I
|
I
350C’\|_/ Processor Subunit 360f Processor Subunit | ﬁ50d
1
|
1

|

|

1

1

1

|

1

1

1

i

|

|

|

|

|

l

|

|

l

I |

| i
i N A !
[ 660 !
. \360b ! !
B et — 1

T

|

|

|

I

|

|

i

|

|

Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2

e % de
Processor Accelerators f



Similarities and Ditferences among Current PIM Systems

Similarities
o Current real-world processing-in-memory architectures follow a
processing-near-memory approach

Differences

o Near-bank (UPMEM, FIMDRAM) vs. near-chip (AXDIMM)

o General-purpose (UPMEM) vs. special-function (FIMDRAM)
o FGMT (UPMEM) vs. SIMD (FIMDRAM, AxDIMM)
d

Natively integer (UPMEM) vs. floating point (FIMDRAM)
FP16 (FIMDRAM) vs. FP32 (AXDIMM)

5 DDR4 (UPMEM) vs. HBM2 (FIMDRAM) vs. DDR5 (AxDIMM)

36



Processing-using-Memory in Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

https://parallel.princeton.edu/papers/micro19-gao.pdf 37
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SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: -
A Flexible and Practical Heat/ 0

Open-Source Infrastructure Chamber

|

for Enabling Experimental
DRAM Studies,” HPCA 2017

Machme
= Flexible Ao
= Easy to Use (C++ API) {' ﬂ
| . s |
= Open-source ' ) Controller

Heater a5

github.com/CMU-SAFARI/SoftMC ™
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

RowClone & Bitwise Ops 1n Real DRAM Chips

MICRO-52, October 12-16, 2019, Columbus, OH, USA
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Figure 4: Timeline for a single bit of a column in a row copy
operation. The data in R; is loaded to the bit-line, and over-
writes Rj.

Gao et al.
/2730 s W ) O S Y I —
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= Lo L1 changing = — [ |
o row \
Operand:1 T T e I ; !
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Figure 5: Logical AND in ComputeDRAM. R; is loaded with
constant zero, and R; and R3 store operands (0 and 1). The
result (0 = 1 A 0) is finally set in all three rows.
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Row Copy in ComputeDRAM

A Ay & Ay Ay & i s ahove
‘. ed.




Bitwise AND in ComputeDRAM

Vdd soefaaannnainsdesos]eecscnncncndencnosanncscnncscncssodescnncsenens sesefucsosssnsscdheschoscecssnse o

2
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) 01 R, —
R,=01, 1 \
Constant:0
o

| 00 R, —
R.-10 l \T
T2 very short
10 R, |
AY

PRE cannot close R1

R3 will appear on the address bus - :
ACT(R2) will activate R3 and R2 j

T1 very short _______::::;@_--——@ P
Sense amps are not - @ >
aCtivated ACT|(R1) P'RlE AC1;(R2) t|me
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Experimental Methodology (I)

Host SoftMC software | PCle| FPGA | SoftMC:hardware
PC
. I DDR3 PHY l
ComputeDRAM Library DRAM I :
Application (a) Peltier plate heater IJ
1 |

= O

1. +DRANFa

Figure 9: (a) Schematic diagram of our testing framework. (b)
Picture of our testbed. (c) Thermal picture when the DRAM
is heated to 80 °C.



Experimental Methodology (1)

Table 1: Evaluated DRAM modules

Group ID:

Vendor_Size Freq(MHz) Part Num #Modules
SKhynix_2G_1333 HMT325S6BFR8C-H9 6
SKhynix_4 Shviav RVARE 2
SKhynix_4 2
SKhynix_4 4
skhynix 4 32 DDR3 Modules 2
Samsung_4 : 2
sumsuns | ~256 DRAM Chips |
Micron_2G 2
Micron_2G 2
Elpida_2G 2
Nanya 4G_1333 NT4GC64B8HGONS-CG 2
TimeTec 4G 1333 78 AP10NUS2R2-4G 2
Corsair 4G 1333 CMSA8GX3M2A1333C9 2
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Proot of Concept (I)

How they test these memory modules:
o Vary 7,and 7, observe what happens.

I 1 1 I I I
I 1 1 I I I
1 I 1 1 I 1 1
) R "

SoftMC Experiment
Select a random subarray
Fill subarray with random data
Issue ACT-PRE-ACTs with given 7, & 7,
Read out subarray

Find out how many columns in a row support either operation
o Row-wise success ratio
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Proot of Concept (1I)

T2 T2 T2 T2 T2 T2
0123456789 0123456789 0123456789 0123456789 0123456789 0123456789
O_llllllllll ) I NN TN N N (N S _—— § I N N N N S S _—— llllllll‘ll | I N TN N SN S S —— — | I T T N S —
1 - 1// p.
2 VA g% /]
3 A VA XA 7
T1 4 - e XA 7
5 1 VA XA A
6 VA A/
7 1 A/ /
8 N //' A
9 | | (A
Micron_2G_1066 Micron_2G_1333 Elpida_2G_1333 Nanya_4G_1333 Corsair_4G_1333 TimeTec_4G_1333
&) ,// = /]
. A /
T1 4 - /A / /
5 4 /] [/
6 A i 2]
7 1 /] (/ A A
8 - / // VA
9 (A 7 A A
SKhynix_2G_1333 SKhynix_4G_1333C SKhynix_4G_1066 SKhynix_4G_1600 Samsung_4G_1333 Samsung_4G_1600
SKhynix_4G_1333B
N L — i i L7777 7777 77 7 R 7 T 7 7 7
AND/OR on AND/OR on Open R3, Nothing Row copy on Row copy on Row copy on
all cols (0,100%) cols but no ops changed (0,80%) cols [80%,100%) cols all cols

Each grid represents the success ratio of operations for a

specific DDR3 module.
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Upcoming Lectures

End-to-end PuM system integration
Workload characterization for PIM suitability

Programming an UPMEM-based PIM system
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