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Executive Summary
Motivation: Recent works propose in-DRAM computation primitives 
with great potential to improve performance and 
energy consumption of computing systems

Problem: These works are developed in limited environments (e.g., 
simulators, characterization platforms) where many parts 
of the system are ignored
• The challenges in integrating these primitives into a system 

cannot be fully explored in these environments

Goal: Develop a flexible platform to explore 
end-to-end implementations of current and future 
processing-in-memory (PuM) techniques

Key idea: To build an FPGA-based infrastructure that supports 
in-DRAM operations and has system support
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DRAM Organization

………
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Accessing a DRAM Cell
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DRAM Operation
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Processing Using Memory (PuM)
•Take advantage of operational principles of memory to 
perform bulk data movement and computation in 
memory
• Can exploit internal connectivity to move data
• Can exploit analog computation capability

•Examples: RowClone, In-DRAM AND/OR, D-RaNGe, …
• RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
• "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology” (Seshadri et al., MICRO 2017)
• “D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers 

with Low Latency and High Throughput” (Kim et al., HPCA 2019)
• …
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RowClone
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RowClone-FPM: Mechanism
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RowClone-FPM: Bitline Operation (I)
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RowClone-FPM: Bitline Operation (II)
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In-DRAM Bitwise AND/OR
•We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
• At low cost
• Using inherent analog computation capability of DRAM
• Idea: activating multiple rows performs computation

• 30-60X performance and energy improvement
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Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. 
Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


In-DRAM AND/OR: Triple Row Activation
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Processing-using-Memory in Real DRAM Chips

ComputeDRAM
Demonstrates RowClone and AND/OR in real chips
•Violate DRAM timing parameters: tRAS, tRP
• Induce undefined behavior

18https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf


RowClone & Bitwise Ops in Real DRAM Chips

https://parallel.princeton.edu/papers/micro19-gao.pdf 19
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Row Copy in ComputeDRAM
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Bitwise AND in ComputeDRAM
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Lecture on PuM

22https://youtu.be/HNd4skQrt6I



SIMDRAM Live Seminar

23https://youtu.be/XIfPHtvA9rw
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Rocket Chip
Open-source SoC design generator

Composed of many SoC component generators
• Generator: Chisel/Scala code that builds hardware

Outputs synthesizable Verilog RTL

Core Parameters

• Enable VM
• Use ISA Extensions
• Generate muldiv
• Generate FPU

25
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PiDRAM
Goal: Develop a flexible platform to explore 
end-to-end implementations of PuM techniques
•Enable rapid integration via key components
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PiDRAM: Memory Controller (I)

Current real PuM techniques require issuing 
DRAM command sequences with violated timings

•Extensible memory controller facilitates
implementation of such DRAM command sequences
through modular design

•New command sequences require only 
designing new state machines

29



PiDRAM: Memory Controller (II)
Memory controller employs three submodules
to further ease developer effort

30

Periodic Operations Module (PerOps Module):
DRAM periodic refresh and bus maintenance operations

1

Scheduler: DRAM RD/WR operations, open-bank policy2

Configuration Register File (CRF): 
Store timing information, accessed using LD/ST 
instructions from the CPU

3



PiDRAM: PuM Controller (I)
PuM Operations Controller (POC)

Provide ISA-transparent control for PuM operations
•Connected as a memory-mapped module
• Hieararchically, resides within the memory controller

•Simple Interface: Offload 128-bit instructions

31



PiDRAM: PuM Controller (II)
Currently implements five instructions

Reserved bits for other commands
• Instruction size is configurable

32

RowClone

Activation Failure

Read Random Number (RN)

Read RN Buffer Size

Write to configuration regs.



PiDRAM: Software Library
Pumolib: Expose PuM operations to the user while
abstracting the hardware implementation details

33

Prepare PuM instruction

Offload the instruction 
and block until ACK’d



PiDRAM: Custom Supervisor SW

Simple, easy-to-hack OS to integrate
PuM techniques end-to-end:
•Virtual memory management
•Memory allocation

OS based on RISC-V proxy kernel

Future work: Integrate pumolib into Linux

34



PiDRAM Workflow

1- User application interfaces with the OS via system calls
2- OS uses PuM Operations Library (pumolib) to convey 
operation related information to the hardware using

3- STORE instructions that target the memory 
mapped registers of the PuM Operations Controller (POC)

4- POC oversees the execution of a PuM operation (e.g., 
RowClone, bulk bitwise operations)
5- Scheduler arbitrates between regular (load, store) and PuM 
operations and issues DRAM commands with custom timings
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PiDRAM FPGA Prototype

36

Single core RISC-V CPU @ 50MHz
in-order, single-issue
16KB 4-way L1 D$
4KB I$
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RowClone-FPM Challenges (I)
RowClone-FPM has 

memory mapping requirements

38
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RowClone-FPM Challenges (II)
RowClone-FPM has 

memory mapping requirements
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3 3-) Mapping: Operands must be placed 
within the same subarray



RowClone-FPM Challenges (III)

40

(4) Satisfies all three requirements
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New memory allocation mechanism to satisfy these
three requirements: alloc_align()

void* array = alloc_align(int size);
Optimize physical address allocation to array for 
size byte large copy operations so that RowClone can 
be used most effectively

Example (Row = 8 KiB)
char *A =

alloc_align(A, 4096*3);

Data Mapping (I)

42
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A

Bank 1

A

0000000 0000000
We can at least 

copy 8 KiB 
using RowClone8 KiB 4 KiB



Data Mapping (II)

OS has full control over VA à PA translation
No control over PA à DRAM address mapping
Idea: If we can control VA à PA and we know the PA 
à DRAM mappings, we can implement alloc_align

43
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Alloc_align (I)

void* array = alloc_align(int size);
How to lay out an array onto DRAM?
I. Distribute the array over multiple banks

while occupying rows as fully as possible
II. Fallback to malloc(); for remaining data

Assumptions:
(i) We know the DDRX address mapping in our system
• Reverse-engineer: (i) Check for RowClone, (ii) do Rowhammer

(ii) We know which DRAM rows are in the same subarray
• Characterize pairs of rows for RowClone success rate

44



Alloc_align (II)
Other versions of alloc_align can be 
implemented to align multiple arrays in DRAM 
(for RowClone-Copy)

alloc_align(int size, int id);

id = operand RowClone identifier

Operands with the same id are placed into the 
same subarray

45



PiDRAM Address Mapping
Our Configuration:
SODIMM: MT8JTF12864HZ-1G6G1
# of Rows = 16K 
# of Banks = 8 
# of Columns = 1K
Row Size = 8 KB
Total Size = 1 GB

46

ColumnsRows Banks
312131529 16

000

0

Physical to DRAM address mapping (configurable)



Alloc_align Example
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4 KB

Array A
16 KBs

0x0000 0x1000 0x2000 0x7000Virtual Addresses:

A = alloc_align(16*1024, 0);      B = alloc_align(16*1024, 0);

Array B
16 KBs

Bank 0 Bank 1 Bank 2

…

Row 0

Row 1



Alloc_align – Structures (I)
SubArray Mapping Table (SAMT)
A table that collects DRAM rows that map to the 
same subarray under common entries as physical 
page address pairs

48

SAMT
# Free 
Rows

Bank 0 - SA 0
Bank 0 - SA 1

…

Bank 7 - SA N

SAMT Entry

Pair 0 Pair 1 Pair M…

We assume that 
DRAM row à DRAM subarray 

mapping is arbitrary

Row 0

Row 15

Row 37

Row 13 

Row 22

Row 156

SA 0 SA 1



Alloc_align – Structures (II)

Reserve one address pair in every SAMT entry for initialization

SIM, Subarray Id Map
Mapping from page numbers to subarray indices

49

Physical Page Number Subarray ID (SAMT idx)

PPN 0 0

PPN 1 0

… …

PPN 256 1

# Free 
Rows Pair 0 Pair 1 Pair M

0000…



Alloc_align – Structures (III)
How to use SMT
alloc_align(int size):
1. Find out how many banks to utilize
• Spread allocation across many banks

2. Split array into 4 KB blocks
• 4 KB == 1 page
• NB = # of 4 KB blocks in A

3. For all blocks A[i] where i < NB/2:
1. Pick a bank. 
2. Select a SAMT entry (SAMTE) with 

>= 1 free address pairs
3. Select one pair from SAMTE
4. Assign physical pages in the pair to 

virtual pages A[i] and A[i+NB/2]

50

8 KB Row

A[0] A[NB/2]

Array A



Alloc_align – Structures (IV)
RowClone-Initialize (RCI)
rci(char* A, int N) à Initialize A with N 0s.
1. Split A into 4KB blocks
2. For all blocks A[i] where i < NB/2:

1. Translate from A[i] to PA1 à use as destination address
2. Access SIM with PA1 to obtain its subarray id
3. Access SAMT to get the address 

of the all-zero row, PAzero

4. Perform RowClone from PAzero to PA1
• This will automatically copy zeros to A[i+NB/2] too

51
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Memory Coherence (I)

RowClone, AMBIT operates on data in DRAM
Up-to-date data may be in caches à coherency

Implement CLFLUSH in RISC-V rocket

Pros:
• Realistic, supported in contemporary architectures
• Reads and writes can hit in the cache. 

Flush cache lines prior to in-DRAM operations

Cons:
• Instruction overhead: One instruction per cache block

53



Memory Coherence (II)
Other mechanisms that can alleviate the overheads

54

Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons, 
Michael A. Kozuch, and Todd C. Mowry,
"The Dirty-Block Index"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Source Code]

http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_talk_isca14.pptx
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_talk_isca14.pdf
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pptx
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/memsim


Memory Coherence (III)
Other mechanisms that can alleviate the overheads

55

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, 
Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

http://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal
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Evaluation: Methodology

Test two configurations:
1. Bare-Metal: No address translation
2. No Flush: OS support, we assume data is 
always up-to-date in DRAM

Workloads:
Microbenchmarks: CPU-Copy, RowClone-Copy
SPEC2006: libquantum
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Copy Throughput Improvement (I)

58

RowClone-Copy provides over 365x performance 
improvement over rocket CPU-Copy.

Bare-Metal



Copy Throughput Improvement (II)
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RCC and RCI (with system support) improve 
copy throughput by 119x and 89x, respectively

No-Flush



CLFLUSH Overhead

60

CLFLUSH dramatically reduces 
the potential improvement

PiDRAM enables the study of 
better coherence mechanisms (e.g., DBI) 



Evaluation - Summary

•PiDRAM can run real workloads end-to-end:
•Replace libquantum calloc() with alloc_align() and 
rci(): 1.3% performance improvement

•RowClone-Copy can greatly improve bulk data 
copy performance with (119x) and without 
(365x) system support
•RowClone requires efficient coherency 
management mechanisms to achieve its 
potential copy throughput improvement

61



Potential Case Studies (I)
PiDRAM implements RowClone and D-RaNGe

AMBIT, SIMDRAM
•Memory allocation and alignment
•Memory coherence
•Transposition (SIMDRAM places data vertically)

DLPUF, QUAC-TRNG
•Memory scheduling policies 
•Efficient post-processing integration
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Potential Case Studies (II)
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PiDRAM vs Other Platforms

64

PiDRAM enables end-to-end integration of PuM techniques via
(1) Interface with real DRAM
(2) Providing a flexible memory controller design
(3) Open source design
(4) Support for system software 
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BACKUP SLIDES
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Alloc_align and RCC
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