
PiDRAM
A Framework for End-to-end

Integration of Processing-using-memory

Ataberk Olgun, Juan Gómez Luna,
Konstantinos Kanellopoulos, Behzad Salami,

Hasan Hassan, Oğuz Ergin, Onur Mutlu

P&S Processing-in-Memory Tutorial
09.11.21

Executive Summary
Motivation: Recent works propose in-DRAM computation primitives
with great potential to improve performance and
energy consumption of computing systems

Problem: These works are developed in limited environments (e.g.,
simulators, characterization platforms) where many parts
of the system are ignored
• The challenges in integrating these primitives into a system

cannot be fully explored in these environments

Goal: Develop a flexible platform to explore
end-to-end implementations of current and future
processing-in-memory (PuM) techniques

Key idea: To build an FPGA-based infrastructure that supports
in-DRAM operations and has system support

2

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

3

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

4

DRAM Organization

………

[Olgun+	ISCA’21] 5

Accessing a DRAM Cell

Sense	
Ampenable

bitline

wordline

capacitor

access	
transistor

bitline
[Seshadri+	MICRO’17] 6

Accessing a DRAM Cell

½	VDD	+	δ

enable

bitline

wordline

capacitor

access	
transistor

½	VDDVDD

enable	
wordline

enable	
sense	amp

connects	cell	
to	bitline

cell	loses	charge	
to	bitline

cell	charge	
restored

Sense	
Amp

deviation	in	
bitline voltage

½	VDD0
bitline

[Seshadri+	MICRO’17]

1

2

3

4

5

6

7

DRAM Operation

…

…

…… …
Sense	AmplifiersSense	Amplifiers

Cache line

READ

…

READ READ

W
or
dl
in
e

D
ri
ve
rs

Sense	AmplifiersREAD READ READ

ACT	R0 RD PRE	R0RD RD ACT	R1 RD RD RD

time

DRAM	Command	Sequence

tRAS
(Activation	Latency)

tRP
(Precharge Latency)

[Kim+	HPCA’19] 8

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

9

Processing Using Memory (PuM)
•Take advantage of operational principles of memory to
perform bulk data movement and computation in
memory
• Can exploit internal connectivity to move data
• Can exploit analog computation capability

•Examples: RowClone, In-DRAM AND/OR, D-RaNGe, …
• RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
• "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)
• “D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers

with Low Latency and High Throughput” (Kim et al., HPCA 2019)
• …

10

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf

Processing Using Memory (PuM)
•Take advantage of operational principles of memory to
perform bulk data movement and computation in
memory
• Can exploit internal connectivity to move data
• Can exploit analog computation capability

•Examples: RowClone, In-DRAM AND/OR, D-RaNGe, …
• RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk

Data (Seshadri et al., MICRO 2013)
• "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)
• “D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers

with Low Latency and High Throughput” (Kim et al., HPCA 2019)
• …

11

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf

RowClone

12

Core

Core

Ca
ch

e

MC Channel src

dst

High latency
(1046ns to copy 4KB)

High Energy
(3600nJ to copy 4KB)

RowClone: Can we do it in DRAM?

RowClone-FPM: Mechanism

13

r c r o ws

s t o wd r

1. Source row to row buffer

2. Row buffer to destination row

Row Buffer

r c r o ws

s r c r o w

?

P

RowClone-FPM: Bitline Operation (I)

14

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD
VDDVDD/2 + δ

Sense Amplifier
(Row Buffer)

0

Data
gets

copied

src

dst

RowClone-FPM: Bitline Operation (II)

15

0

0

VDD
VDD

Sense Amplifier
(Row Buffer)

0

Data
gets

copied

src

dst

Enable fast bulk-data copy with small overhead

In-DRAM Bitwise AND/OR
•We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
• At low cost
• Using inherent analog computation capability of DRAM
• Idea: activating multiple rows performs computation

• 30-60X performance and energy improvement

16

Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A.
Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM AND/OR: Triple Row Activation

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) +
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 17

Processing-using-Memory in Real DRAM Chips

ComputeDRAM
Demonstrates RowClone and AND/OR in real chips
•Violate DRAM timing parameters: tRAS, tRP
• Induce undefined behavior

18https://parallel.princeton.edu/papers/micro19-gao.pdf

https://parallel.princeton.edu/papers/micro19-gao.pdf

RowClone & Bitwise Ops in Real DRAM Chips

https://parallel.princeton.edu/papers/micro19-gao.pdf 19

https://parallel.princeton.edu/papers/micro19-gao.pdf

Row Copy in ComputeDRAM

Bitline is	above	
VDD/2	when	R2	is	

activated.

20

Bitwise AND in ComputeDRAM

T1	very	short
Sense	amps	are	not	

activated

T2	very	short
PRE	cannot	close	R1

R3	will	appear	on	the	address	bus
ACT(R2)	will	activate	R3	and	R2

21

Lecture on PuM

22https://youtu.be/HNd4skQrt6I

SIMDRAM Live Seminar

23https://youtu.be/XIfPHtvA9rw

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

24

Rocket Chip
Open-source SoC design generator

Composed of many SoC component generators
• Generator: Chisel/Scala code that builds hardware

Outputs synthesizable Verilog RTL

Core Parameters

• Enable VM
• Use ISA Extensions
• Generate muldiv
• Generate FPU

25

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

26

PiDRAM
Goal: Develop a flexible platform to explore
end-to-end implementations of PuM techniques
•Enable rapid integration via key components

27

PiDRAM
Goal: Develop a flexible platform to explore
end-to-end implementations of PuM techniques
•Enable rapid integration via key components

28

Hardware Software

Easy-to-extend
Memory Controller

ISA-transparent
PuM Controller

1

2

1

2

Extensible
Software Library

Custom
Supervisor Software

PiDRAM: Memory Controller (I)

Current real PuM techniques require issuing
DRAM command sequences with violated timings

•Extensible memory controller facilitates
implementation of such DRAM command sequences
through modular design

•New command sequences require only
designing new state machines

29

PiDRAM: Memory Controller (II)
Memory controller employs three submodules
to further ease developer effort

30

Periodic Operations Module (PerOps Module):
DRAM periodic refresh and bus maintenance operations

1

Scheduler: DRAM RD/WR operations, open-bank policy2

Configuration Register File (CRF):
Store timing information, accessed using LD/ST
instructions from the CPU

3

PiDRAM: PuM Controller (I)
PuM Operations Controller (POC)

Provide ISA-transparent control for PuM operations
•Connected as a memory-mapped module
• Hieararchically, resides within the memory controller

•Simple Interface: Offload 128-bit instructions

31

PiDRAM: PuM Controller (II)
Currently implements five instructions

Reserved bits for other commands
• Instruction size is configurable

32

RowClone

Activation Failure

Read Random Number (RN)

Read RN Buffer Size

Write to configuration regs.

PiDRAM: Software Library
Pumolib: Expose PuM operations to the user while
abstracting the hardware implementation details

33

Prepare PuM instruction

Offload the instruction
and block until ACK’d

PiDRAM: Custom Supervisor SW

Simple, easy-to-hack OS to integrate
PuM techniques end-to-end:
•Virtual memory management
•Memory allocation

OS based on RISC-V proxy kernel

Future work: Integrate pumolib into Linux

34

PiDRAM Workflow

1- User application interfaces with the OS via system calls
2- OS uses PuM Operations Library (pumolib) to convey
operation related information to the hardware using

3- STORE instructions that target the memory
mapped registers of the PuM Operations Controller (POC)

4- POC oversees the execution of a PuM operation (e.g.,
RowClone, bulk bitwise operations)
5- Scheduler arbitrates between regular (load, store) and PuM
operations and issues DRAM commands with custom timings

35

PiDRAM FPGA Prototype

36

Single core RISC-V CPU @ 50MHz
in-order, single-issue
16KB 4-way L1 D$
4KB I$

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

37

RowClone-FPM Challenges (I)
RowClone-FPM has

memory mapping requirements

38

1-) Alignment: Operands must be placed
at the same offset to their respective
DRAM rowsTarget 1

Source 1

DRAM ROW

BANK X

SA W

1

Target 2

Source 2

BANK Y

2
SA W 2-) Granularity: Operands must occupy

whole DRAM rows

RowClone-FPM Challenges (II)
RowClone-FPM has

memory mapping requirements

39

Target 1

Source 1

BANK X

SA W

Target 2

Source 2

BANK Y

SA W

Source 3

Target 3

3 3-) Mapping: Operands must be placed
within the same subarray

RowClone-FPM Challenges (III)

40

(4) Satisfies all three requirements

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

41

New memory allocation mechanism to satisfy these
three requirements: alloc_align()

void* array = alloc_align(int size);
Optimize physical address allocation to array for
size byte large copy operations so that RowClone can
be used most effectively

Example (Row = 8 KiB)
char *A =

alloc_align(A, 4096*3);

Data Mapping (I)

42

Bank 0

A

Bank 1

A

0000000 0000000
We can at least

copy 8 KiB
using RowClone8 KiB 4 KiB

Data Mapping (II)

OS has full control over VA à PA translation
No control over PA à DRAM address mapping
Idea: If we can control VA à PA and we know the PA
à DRAM mappings, we can implement alloc_align

43

Bank 0 Bank 1

Virtual Address
Space

Physical Address
Space

DRAM Address
Space

Alloc_align (I)

void* array = alloc_align(int size);
How to lay out an array onto DRAM?
I. Distribute the array over multiple banks

while occupying rows as fully as possible
II. Fallback to malloc(); for remaining data

Assumptions:
(i) We know the DDRX address mapping in our system
• Reverse-engineer: (i) Check for RowClone, (ii) do Rowhammer

(ii) We know which DRAM rows are in the same subarray
• Characterize pairs of rows for RowClone success rate

44

Alloc_align (II)
Other versions of alloc_align can be
implemented to align multiple arrays in DRAM
(for RowClone-Copy)

alloc_align(int size, int id);

id = operand RowClone identifier

Operands with the same id are placed into the
same subarray

45

PiDRAM Address Mapping
Our Configuration:
SODIMM: MT8JTF12864HZ-1G6G1
of Rows = 16K
of Banks = 8
of Columns = 1K
Row Size = 8 KB
Total Size = 1 GB

46

ColumnsRows Banks
312131529 16

000

0

Physical to DRAM address mapping (configurable)

Alloc_align Example

47

4 KB

Array A
16 KBs

0x0000 0x1000 0x2000 0x7000Virtual Addresses:

A = alloc_align(16*1024, 0); B = alloc_align(16*1024, 0);

Array B
16 KBs

Bank 0 Bank 1 Bank 2

…

Row 0

Row 1

Alloc_align – Structures (I)
SubArray Mapping Table (SAMT)
A table that collects DRAM rows that map to the
same subarray under common entries as physical
page address pairs

48

SAMT
Free
Rows

Bank 0 - SA 0
Bank 0 - SA 1

…

Bank 7 - SA N

SAMT Entry

Pair 0 Pair 1 Pair M…

We assume that
DRAM row à DRAM subarray

mapping is arbitrary

Row 0

Row 15

Row 37

Row 13

Row 22

Row 156

SA 0 SA 1

Alloc_align – Structures (II)

Reserve one address pair in every SAMT entry for initialization

SIM, Subarray Id Map
Mapping from page numbers to subarray indices

49

Physical Page Number Subarray ID (SAMT idx)

PPN 0 0

PPN 1 0

… …

PPN 256 1

Free
Rows Pair 0 Pair 1 Pair M

0000…

Alloc_align – Structures (III)
How to use SMT
alloc_align(int size):
1. Find out how many banks to utilize
• Spread allocation across many banks

2. Split array into 4 KB blocks
• 4 KB == 1 page
• NB = # of 4 KB blocks in A

3. For all blocks A[i] where i < NB/2:
1. Pick a bank.
2. Select a SAMT entry (SAMTE) with

>= 1 free address pairs
3. Select one pair from SAMTE
4. Assign physical pages in the pair to

virtual pages A[i] and A[i+NB/2]

50

8 KB Row

A[0] A[NB/2]

Array A

Alloc_align – Structures (IV)
RowClone-Initialize (RCI)
rci(char* A, int N) à Initialize A with N 0s.
1. Split A into 4KB blocks
2. For all blocks A[i] where i < NB/2:

1. Translate from A[i] to PA1 à use as destination address
2. Access SIM with PA1 to obtain its subarray id
3. Access SAMT to get the address

of the all-zero row, PAzero

4. Perform RowClone from PAzero to PA1
• This will automatically copy zeros to A[i+NB/2] too

51

Subarray
ID Map

Subarray
Mapping

Table

(PA1)
Physical
Address

SA
ID

(PAZERO)
Source row

that contains all 0s

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

52

Memory Coherence (I)

RowClone, AMBIT operates on data in DRAM
Up-to-date data may be in caches à coherency

Implement CLFLUSH in RISC-V rocket

Pros:
• Realistic, supported in contemporary architectures
• Reads and writes can hit in the cache.

Flush cache lines prior to in-DRAM operations

Cons:
• Instruction overhead: One instruction per cache block

53

Memory Coherence (II)
Other mechanisms that can alleviate the overheads

54

Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"The Dirty-Block Index"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
[Source Code]

http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_talk_isca14.pptx
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_talk_isca14.pdf
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pptx
http://people.inf.ethz.ch/omutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/memsim

Memory Coherence (III)
Other mechanisms that can alleviate the overheads

55

Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia,
Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

http://people.inf.ethz.ch/omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

56

Evaluation: Methodology

Test two configurations:
1. Bare-Metal: No address translation
2. No Flush: OS support, we assume data is
always up-to-date in DRAM

Workloads:
Microbenchmarks: CPU-Copy, RowClone-Copy
SPEC2006: libquantum

57

Copy Throughput Improvement (I)

58

RowClone-Copy provides over 365x performance
improvement over rocket CPU-Copy.

Bare-Metal

Copy Throughput Improvement (II)

59

RCC and RCI (with system support) improve
copy throughput by 119x and 89x, respectively

No-Flush

CLFLUSH Overhead

60

CLFLUSH dramatically reduces
the potential improvement

PiDRAM enables the study of
better coherence mechanisms (e.g., DBI)

Evaluation - Summary

•PiDRAM can run real workloads end-to-end:
•Replace libquantum calloc() with alloc_align() and
rci(): 1.3% performance improvement

•RowClone-Copy can greatly improve bulk data
copy performance with (119x) and without
(365x) system support
•RowClone requires efficient coherency
management mechanisms to achieve its
potential copy throughput improvement

61

Potential Case Studies (I)
PiDRAM implements RowClone and D-RaNGe

AMBIT, SIMDRAM
•Memory allocation and alignment
•Memory coherence
•Transposition (SIMDRAM places data vertically)

DLPUF, QUAC-TRNG
•Memory scheduling policies
•Efficient post-processing integration

62

Potential Case Studies (II)

63

PiDRAM vs Other Platforms

64

PiDRAM enables end-to-end integration of PuM techniques via
(1) Interface with real DRAM
(2) Providing a flexible memory controller design
(3) Open source design
(4) Support for system software

Outline
•Background
• DRAM Organization
• Processing-using-Memory
• Rocket Chip SoC Generator

•Overview of PiDRAM
• Hardware & Software Components
• Prototype

•Case Study #1 – RowClone
• Challenges
• Allocation Mechanism
• Memory Coherence
• Evaluation

• Installing and Using PiDRAM

65

BACKUP SLIDES

66

Alloc_align and RCC

67

