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P&S Ramulator: Content

◼ You will learn in detail how modern memory systems operate

◼ You will design new DRAM and memory controller mechanisms for 
improving overall system performance, energy consumption, and reliability

◼ You will simulate and understand the memory system behavior of modern 
workloads such as machine learning, graph analytics, genome analysis
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P&S Ramulator: Key Takeaways

◼ This P&S is aimed at improving your

❑ Knowledge in Computer Architecture and Memory Systems

❑ Technical skills in simulating memory systems

❑ Critical thinking and analysis

❑ Interaction with a nice group of researchers

❑ Familiarity with key research directions

❑ Technical presentation of your project
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P&S Ramulator: Key Goal

Learn how state-of-the-art memory 

controllers operate, design new 

DRAM and memory controller 

mechanisms, and evaluate your 

mechanisms using simulation
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Prerequisites of the Course

◼ Digital Design and Computer Architecture (or equivalent course)

◼ A good knowledge in C/C++ programming language

◼ Interest in making things efficient and solving problems

◼ Interest in understanding software development and hardware design, 
and their interaction
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Course Info: Who Are We? (I)

◼ Onur Mutlu

❑ Full Professor @ ETH Zurich ITET (INFK), since September 2015

❑ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ https://people.inf.ethz.ch/omutlu/projects.htm

◼ Research and Teaching in:

❑ Computer architecture, computer systems, hardware security, bioinformatics

❑ Memory and storage systems

❑ Hardware security, safety, predictability

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Architectures for bioinformatics, health, medicine

❑ … 
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Course Info: Who Are We? (II)

◼ Lead Supervisor:

❑ Hasan Hassan

◼ Supervisors:

❑ Geraldo de Oliveira

❑ Lois Orosa

❑ Giray Yaglikci

❑ Haocong Luo

◼ Get to know us and our research

❑ https://safari.ethz.ch/safari-group/
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38+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/


Research Focus: Computer architecture, HW/SW, bioinformatics

• Memory and storage (DRAM, flash, emerging), interconnects

• Heterogeneous & parallel systems, GPUs, systems for data analytics

• System/architecture interaction, new execution models, new interfaces

• Energy efficiency, fault tolerance, hardware security, performance 

• Genome sequence analysis & assembly algorithms and architectures

• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous

Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 

spanning apps, systems, logic

with architecture at the center

Current Research Focus Areas
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Course Info: How About You?

◼ Let us know your background, interests

◼ Why did you join this P&S?

◼ Please submit HW0
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Course Requirements and Expectations

◼ Attendance required for all meetings

◼ Study the learning materials

◼ Each student will carry out a hands-on project
❑ Build, implement, code, and design with close engagement from the supervisors

◼ Participation 
❑ Ask questions, contribute thoughts/ideas

❑ Read relevant papers

We will help in all projects! 

If your work is really good, you may get it published!
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Course Website

◼ https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=ramulator

◼ Useful information about the course

◼ Check your email frequently for announcements
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Meeting 1

Learning materials:

◼ An old version of Ramulator: https://github.com/CMU-SAFARI/ramulator

◼ Original Ramulator paper: https://people.inf.ethz.ch/omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf

◼ An example study of modern workloads and DRAM architectures using 
Ramulator: https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-
Analysis_sigmetrics19_pomacs19.pdf

◼ An example recent study of a new DRAM architecture using 
Ramulator: https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-
DRAM_isca20.pdf

◼ An example recent study of a new virtual memory system architecture using 
Ramulator: https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf

◼ Three examples of new ideas enabled by Ramulator based evaluation:

❑ https://people.inf.ethz.ch/omutlu/pub/rowclone_micro13.pdf

❑ https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

❑ https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf
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Meeting 2 (TBD)

◼ We will announce the projects and will give you some description about them

◼ We will give you a chance to select a project

◼ Then, we will have 1-1 meetings to match your interests, skills, and background 
with a suitable project

◼ It is important that you study the learning materials before our next meeting!
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Next Meetings

◼ Individual meetings with your mentor/s

◼ Tutorials and short talks

❑ Simulating memory systems with Ramulator

❑ Recent research works

◼ Presentation of your work
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An Introduction to 

Simulating Memory Systems with Ramulator
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Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator: A Fast and Extensible DRAM Simulator 

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, HMC, and academic proposals 
(SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

❑ Models timing of non-volatile memories (PCM, STT-MRAM)

◼ Supports multiple scheduling and row buffer management policies

◼ Modular and extensible to different standards

◼ Can be paired with other simulators, e.g., gem5 and DRAMPower

◼ Written in C++11

◼ ~2.5X faster than fastest open-source simulator
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Case Study: Comparison of DRAM Standards
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Across 22 
workloads, 
simple CPU 
model



Another Example Study with Ramulator

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur 
Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling 
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
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Simulator Architecture



Design Objective: Extensibility

◼ Treats extensibility as a first-class citizen

◼ Observation: DRAM can be abstracted as a hierarchy of state machines

◼ Provides a standard-agnostic state machine

❑ Paired with any standard at compile time
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High-Level Design: Hierarchy of State Machines

◼ The ‘DRAM’ class: a template for building a hierarchy of 
state machines (i.e., nodes)
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DRAM Node States

◼ status: may change when the node 
receives one of the DDR3 commands

◼ next: a lookup table specifying the 
earliest time the node can receive 
each command (for honoring DDR3 
timing parameters).

Currently named ‘next’
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DRAM Functions

The memory controller relies on three recursive 

functions to serve a memory request:

◼ decode(): returns the prerequisite command 

(e.g., ACT for a closed bank)

◼ check(): returns whether or not the DRAM is 

ready to accept a given command (i.e., timing 

violation check)

◼ update(): updates the node state based on the 

issued command

Currently named ‘next’
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decode( ): Determining the Prerequisite
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check( ): Satisfying the DRAM Timing

◼ Verifies whether 
next[cmd] <= now for 

every node affected by 
cmd
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update( ): Transitioning
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Defined in DDR3.cpp
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Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

❑ https://github.com/CMU-SAFARI/ramulator-pim

◼ ZSim+Ramulator: a framework for design space exploration of general-purpose  Processing-in-
Memory (PIM) architectures
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Conclusion

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, HMC, and academic proposals 
(SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

❑ Models timing of non-volatile memories (PCM, STT-MRAM)

◼ Supports multiple scheduling and row buffer management policies

◼ Modular and extensible to different standards

◼ Can be paired with other simulators, e.g., gem5 and DRAMPower

◼ Written in C++11

◼ ~2.5X faster than fastest open-source simulator
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