
Hasan Hassan

Prof. Onur Mutlu

ETH Zürich

Fall 2021

14 October 2021

P&S Ramulator
Designing and Evaluating Memory Systems and

Modern Software Workloads with Ramulator

P&S Ramulator: Content

◼ You will learn in detail how modern memory systems operate

◼ You will design new DRAM and memory controller mechanisms for
improving overall system performance, energy consumption, and reliability

◼ You will simulate and understand the memory system behavior of modern
workloads such as machine learning, graph analytics, genome analysis

2

P&S Ramulator: Key Takeaways

◼ This P&S is aimed at improving your

❑ Knowledge in Computer Architecture and Memory Systems

❑ Technical skills in simulating memory systems

❑ Critical thinking and analysis

❑ Interaction with a nice group of researchers

❑ Familiarity with key research directions

❑ Technical presentation of your project

3

P&S Ramulator: Key Goal

Learn how state-of-the-art memory

controllers operate, design new

DRAM and memory controller

mechanisms, and evaluate your

mechanisms using simulation

4

Prerequisites of the Course

◼ Digital Design and Computer Architecture (or equivalent course)

◼ A good knowledge in C/C++ programming language

◼ Interest in making things efficient and solving problems

◼ Interest in understanding software development and hardware design,
and their interaction

5

Course Info: Who Are We? (I)

◼ Onur Mutlu

❑ Full Professor @ ETH Zurich ITET (INFK), since September 2015

❑ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ https://people.inf.ethz.ch/omutlu/projects.htm

◼ Research and Teaching in:

❑ Computer architecture, computer systems, hardware security, bioinformatics

❑ Memory and storage systems

❑ Hardware security, safety, predictability

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Architectures for bioinformatics, health, medicine

❑ …

6

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm

Course Info: Who Are We? (II)

◼ Lead Supervisor:

❑ Hasan Hassan

◼ Supervisors:

❑ Geraldo de Oliveira

❑ Lois Orosa

❑ Giray Yaglikci

❑ Haocong Luo

◼ Get to know us and our research

❑ https://safari.ethz.ch/safari-group/

7

https://safari.ethz.ch/safari-group/

38+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/

Research Focus: Computer architecture, HW/SW, bioinformatics

• Memory and storage (DRAM, flash, emerging), interconnects

• Heterogeneous & parallel systems, GPUs, systems for data analytics

• System/architecture interaction, new execution models, new interfaces

• Energy efficiency, fault tolerance, hardware security, performance

• Genome sequence analysis & assembly algorithms and architectures

• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous

Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research

spanning apps, systems, logic

with architecture at the center

Current Research Focus Areas

9

Course Info: How About You?

◼ Let us know your background, interests

◼ Why did you join this P&S?

◼ Please submit HW0

10

Course Requirements and Expectations

◼ Attendance required for all meetings

◼ Study the learning materials

◼ Each student will carry out a hands-on project
❑ Build, implement, code, and design with close engagement from the supervisors

◼ Participation
❑ Ask questions, contribute thoughts/ideas

❑ Read relevant papers

We will help in all projects!

If your work is really good, you may get it published!

11

Course Website

◼ https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=ramulator

◼ Useful information about the course

◼ Check your email frequently for announcements

12

https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=ramulator

Meeting 1

Learning materials:

◼ An old version of Ramulator: https://github.com/CMU-SAFARI/ramulator

◼ Original Ramulator paper: https://people.inf.ethz.ch/omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf

◼ An example study of modern workloads and DRAM architectures using
Ramulator: https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-
Analysis_sigmetrics19_pomacs19.pdf

◼ An example recent study of a new DRAM architecture using
Ramulator: https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-
DRAM_isca20.pdf

◼ An example recent study of a new virtual memory system architecture using
Ramulator: https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf

◼ Three examples of new ideas enabled by Ramulator based evaluation:

❑ https://people.inf.ethz.ch/omutlu/pub/rowclone_micro13.pdf

❑ https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

❑ https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

13

https://github.com/CMU-SAFARI/ramulator
https://people.inf.ethz.ch/omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19_pomacs19.pdf
https://people.inf.ethz.ch/omutlu/pub/CLR-DRAM_capacity-latency-reconfigurable-DRAM_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/rowclone_micro13.pdf
https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-refresh_isca12.pdf

Meeting 2 (TBD)

◼ We will announce the projects and will give you some description about them

◼ We will give you a chance to select a project

◼ Then, we will have 1-1 meetings to match your interests, skills, and background
with a suitable project

◼ It is important that you study the learning materials before our next meeting!

14

Next Meetings

◼ Individual meetings with your mentor/s

◼ Tutorials and short talks

❑ Simulating memory systems with Ramulator

❑ Recent research works

◼ Presentation of your work

15

An Introduction to

Simulating Memory Systems with Ramulator

16

Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed

17

Ramulator: A Fast and Extensible DRAM Simulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, HMC, and academic proposals
(SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

❑ Models timing of non-volatile memories (PCM, STT-MRAM)

◼ Supports multiple scheduling and row buffer management policies

◼ Modular and extensible to different standards

◼ Can be paired with other simulators, e.g., gem5 and DRAMPower

◼ Written in C++11

◼ ~2.5X faster than fastest open-source simulator

18

Case Study: Comparison of DRAM Standards

19

Across 22
workloads,
simple CPU
model

Another Example Study with Ramulator

◼ Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur
Mutlu,
"Demystifying Workload–DRAM Interactions: An Experimental Study"
Proceedings of the ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), Phoenix, AZ, USA, June 2019.
[Preliminary arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]

20

http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf

Simulator Architecture

Design Objective: Extensibility

◼ Treats extensibility as a first-class citizen

◼ Observation: DRAM can be abstracted as a hierarchy of state machines

◼ Provides a standard-agnostic state machine

❑ Paired with any standard at compile time

22

High-Level Design: Hierarchy of State Machines

◼ The ‘DRAM’ class: a template for building a hierarchy of
state machines (i.e., nodes)

23

DRAM Node States

◼ status: may change when the node
receives one of the DDR3 commands

◼ next: a lookup table specifying the
earliest time the node can receive
each command (for honoring DDR3
timing parameters).

Currently named ‘next’

24

DRAM Functions

The memory controller relies on three recursive

functions to serve a memory request:

◼ decode(): returns the prerequisite command

(e.g., ACT for a closed bank)

◼ check(): returns whether or not the DRAM is

ready to accept a given command (i.e., timing

violation check)

◼ update(): updates the node state based on the

issued command

Currently named ‘next’

25

decode(): Determining the Prerequisite

26

check(): Satisfying the DRAM Timing

◼ Verifies whether
next[cmd] <= now for

every node affected by
cmd

27

update(): Transitioning

28

Defined in DDR3.cpp

Defined in DDR3.cpp

Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator

❑ https://github.com/CMU-SAFARI/ramulator-pim

◼ ZSim+Ramulator: a framework for design space exploration of general-purpose Processing-in-
Memory (PIM) architectures

29

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim

Conclusion

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, HMC, and academic proposals
(SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

❑ Models timing of non-volatile memories (PCM, STT-MRAM)

◼ Supports multiple scheduling and row buffer management policies

◼ Modular and extensible to different standards

◼ Can be paired with other simulators, e.g., gem5 and DRAMPower

◼ Written in C++11

◼ ~2.5X faster than fastest open-source simulator

30

Hasan Hassan

Prof. Onur Mutlu

ETH Zürich

Fall 2021

14 October 2021

P&S Ramulator
Designing and Evaluating Memory Systems and

Modern Software Workloads with Ramulator

