P&S SoftMC

Understanding and Improving Modern DRAM Performance, Reliability, and Security with Hands-On Experiments

Hasan Hassan
Prof. Onur Mutlu
ETH Zürich
Fall 2021
13 October 2021

TRRespass

RowHammer in 2020

Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, USA, May 2020.

[Slides (pptx) (pdf)]

[Talk Video (17 minutes)]

Source Code

[Web Article]

Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶ Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi*

*Vrije Universiteit Amsterdam

§ETH Zürich

¶Oualcomm Technologies Inc.

TRRespass

- First work to show that TRR-protected DRAM chips are vulnerable to RowHammer in the field
 - Mitigations advertised as secure are not secure
- Introduces the Many-sided RowHammer attack
 - Idea: Hammer many rows to bypass TRR mitigations (e.g., by overflowing proprietary TRR tables that detect aggressor rows)
- (Partially) reverse-engineers the TRR and pTRR mitigation mechanisms implemented in DRAM chips and memory controllers
- Provides an automatic tool that can effectively create manysided RowHammer attacks in DDR4 and LPDDR4(X) chips

4

Target Row Refresh (TRR)

- How does it work?
 - 1. Track activation count of each DRAM row
 - 2. Refresh neighbor rows if row activation count exceeds a threshold
 - Many possible implementations in practice
 - Security through obscurity

- In-DRAM TRR
 - Embedded in the DRAM circuitry, i.e., not exposed to the memory controller

Timeline of TRR Implementations

Our Goals

Reverse engineer in-DRAM TRR to demystify how it works

- Bypass TRR protection
 - A Novel hammering pattern: The Many-sided RowHammer
 - Hammering up to 20 aggressor rows allows bypassing TRR

- Automatically test memory devices: TRRespass
 - Automate hammering pattern generation

Infrastructures to Understand Such Issues

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

SoftMC: Open Source DRAM Infrastructure

Hasan Hassan et al., "SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies," HPCA 2017.

- Flexible
- Easy to Use (C++ API)
- Open-source github.com/CMU-SAFARI/SoftMC

SoftMC

https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

```
 Hasan Hassan Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Donghyuk Lee^{6,3} Oguz Ergin Onur Mutlu Onur Mutlu
```

```
<sup>1</sup>ETH Zürich <sup>2</sup>TOBB University of Economics & Technology <sup>3</sup>Carnegie Mellon University <sup>4</sup>University of Virginia <sup>5</sup>Microsoft Research <sup>6</sup>NVIDIA Research
```

Components of In-DRAM TRR

Sampler

- Tracks aggressor rows activations
- Design options:
 - Frequency based (record every Nth row activation)
 - Time based (record first N row activations)
 - Random seed (record based on a coin flip)
- Regardless, the sampler has a limited size

Inhibitor

- Prevents bit flips by refreshing victim rows
 - The latency of performing victim row refreshes is squeezed into slack time available in tRFC (i.e., the latency of regular Refresh command)

How big is the sampler?

- Pick N aggressor rows
- Perform a series of hammers (i.e., activations of aggressors)
 - 8K activations
- After each series of hammers, issue R refreshes
- 10 Rounds

1. The TRR mitigation acts on a refresh command

- 2. The mitigation can sample more than one aggressor per refresh interval
- 3. The mitigation can refresh only a single victim within a refresh operation

4. Sweeping the number of refresh operations and aggressor rows while hammering reveals the sampler size

Many-Sided Hammering

Fig. 9: Refreshes vs. Bit Flips. Module C_{12} : Number of bit flips detected when sending r refresh commands to the module. We report this for different number of aggressor rows (n). For example, when hammering 5 rows, followed by sending 2 refreshes, we find 1,710 bit flips. This figure shows that the number of bit flips stabilizes for $r \geq 4$, implying that the size of the sampler may be 4.

Some Observations

Observation 1: The TRR mitigation acts (i.e., carries out a targeted refresh) on **every** refresh command.

Observation 2: The mitigation can sample more than one aggressor per refresh interval.

Observation 3: The mitigation can refresh only a **single** victim within a refresh operation (i.e., time tRFC).

Observation 4: Sweeping the number of refresh operations and aggressor rows while hammering reveals the sampler size.

Fig. 12: Hammering patterns discovered by *TRRespass*. Aggressor rows are in red () and victim rows are in blue ().

Hammering using the default refresh rate

BitFlips vs. Number of Aggressor Rows

Fig. 10: Bit flips vs. number of aggressor rows. Module \mathcal{C}_{12} : Number of bit flips in bank 0 as we vary the number of aggressor rows. Using SoftMC, we refresh DRAM with standard tREFI and run the tests until each aggressor rows is hammered 500K times.

Fig. 11: Bit flips vs. number of aggressor rows. Module \mathcal{A}_{15} : Number of bit flips in bank 0 as we vary the number of aggressor rows. Using SoftMC, we refresh DRAM with standard tREFI and run the tests until each aggressor rows is hammered 500K times.

Fig. 13: Bit flips vs. number of aggressor rows. Module A_{10} : Number of bit flips triggered with *N-sided* RowHammer for varying number of *N* on Intel Core i7-7700K. Each aggressor row is one row away from the closest aggressor row (i.e., VAVAVA... configuration) and aggressor rows are hammered in a round-robin fashion.

TRRespass Key Results

- 13 out of 42 tested DDR4 DRAM modules are vulnerable
 - From all 3 major manufacturers
 - 3-, 9-, 10-, 14-, 19-sided attacks needed
- 5 out of 13 mobile phones tested vulnerable
 - From 4 major manufacturers
 - With LPDDR4(X) DRAM chips
- These results are scratching the surface
 - TRRespass tool is not exhaustive
 - There is a lot of room for uncovering more vulnerable chips and phones

RowHammer is still an open problem

Security by obscurity is likely not a good solution

More on TRRespass

Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and Privacy</u> (S&P), San Francisco, CA, USA, May 2020.

[Slides (pptx) (pdf)]

[Talk Video (17 minutes)]

Source Code

[Web Article]

Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶ Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi*

*Vrije Universiteit Amsterdam

§ETH Zürich

¶Oualcomm Technologies Inc.

P&S SoftMC

Understanding and Improving Modern DRAM Performance, Reliability, and Security with Hands-On Experiments

Hasan Hassan
Prof. Onur Mutlu
ETH Zürich
Fall 2021
13 October 2021