The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel, Jeremie S. Kim, Onur Mutlu

Presented at ISCA, June 2017

SAFARI ETHzürich Carnegie Mellon

P&S SoftMC - 13 October 2021

Executive Summary

- Motivation: DRAM refresh energy/performance overhead is high
- Problem: DRAM retention failure profiling is hard
 - Complicated by cells changing retention times dynamically
 - Current profiling methods are unreliable or too slow

• Goals:

- 1. Thoroughly analyze tradeoffs in retention failure profiling
- 2. Develop a **fast** and **reliable** profiling mechanism

Key Contributions:

- **1. First** detailed characterization of 368 LPDDR4 DRAM chips
- 2. Reach profiling: Profile at a longer refresh interval and/or higher temperature, where cells are more likely to fail

Evaluation:

- 2.5x faster profiling with 99% coverage and 50% false positives
- Enables longer refresh intervals that were previously unreasonable

REAPER Outline

1. DRAM Refresh Background

- 2. Failure Profiling Challenges
- 3. Current Approaches
- 4. LPDDR4 Characterization
- 5. Reach Profiling
- 6. End-to-end Evaluation

DRAM Cell Leakage

DRAM encodes information in leaky capacitors

Stored data is corrupted if too much charge leaks (i.e., the capacitor voltage degrades too far)

DRAM Cell Retention

Retention failure – when leakage corrupts stored data **Retention time** – how long a cell holds its value

DRAM is Much More Than Just One Cell!

8 GiB DRAM = $6.4 * 10^{10}$ cells

DRAM Refresh

DRAM refresh periodically restores leaked charge

- Every cell every refresh interval (default = 64ms)
- Significant system performance/energy overhead

Decreasing Refresh Overhead

Most cells do not fail at a longer refresh interval

Retention Failure Mitigation

- Prior works handle these few failures to allow reliable operation at a longer refresh interval
 - RAIDR [Liu+, ISCA'12]

Need a fast and reliable profiling mechanism to find the set of retention failures!

• However, they **assume** they can **perfectly** identify the set of failing cells to handle

REAPER Outline

- 1. DRAM Refresh Background
- 2. Failure Profiling Challenges
- 3. Current Approaches
- 4. LPDDR4 Characterization
- 5. Reach Profiling
- 6. End-to-end Evaluation

Idealized DRAM Refresh Operation

Unfortunately, real DRAM cells have variation in retention times

- Here, all cells have identical retention times
- All cells require the same short refresh interval

Sources of Retention Time Variation

Process/voltage/temperature

- Data pattern dependence (DPD)
 - Retention times change with data in cells/neighbors
 - e.g., all 1's vs. all o's
- Variable retention time (VRT)
 - Retention time changes randomly (unpredictably)
 - Due to a combination of various circuit effects

Heterogeneous Retention Times

Extended Refresh Interval (128ms)

How can we quickly and reliably determine the failing cells at an increased refresh interval **7**?

SA SA SA SA SA

Long Moderate Short

REAPER Outline

- 1. DRAM Refresh Background
- 2. Failure Profiling Challenges
- 3. Current Approaches
- 4. Individual Bit Failures
- 5. Reach Profiling
- 6. End-to-end Evaluation

Solution #1: ECC-Scrubbing

Key idea: leverage error-correcting codes (ECC) by periodically accessing all ECC words to continuously detect new failures (e.g., **AVATAR** [Qureshi+, DSN'15])

Pros

- Simple: read accesses to all DRAM locations
- Low overhead: DRAM is available during scrubs

Cons

- Unreliable: does not account for changes in data pattern, which changes cell retention times
 - Can potentially miss failures between scrubs

Solution #2: Brute-force Profiling

Key idea: for {N data patterns} * {M test rounds}:

- 1) Write data pattern to DRAM
- 2) Wait for the refresh interval

Our goals:

- 1) study profiling tradeoffs
- 2) develop a fast and reliable profiling mechanism
- · Jiow: many test rounds required for reliability
- High overhead: DRAM is unavailable for a long time

REAPER Outline

- 1. DRAM Refresh Background
- 2. Failure Profiling Challenges
- 3. Current Approaches
- 4. LPDDR4 Characterization
- 5. Reach Profiling
- 6. End-to-end Evaluation

Experimental Infrastructure

- 368 2y-nm LPDDR4 DRAM chips
 - 4Gb chip size
 - From 3 major DRAM manufacturers
- Thermally controlled testing chamber
 - Ambient temperature range: $\{40^{\circ}C 55^{\circ}C\} \pm 0.25^{\circ}C$
 - DRAM temperature is held at 15°C above ambient

LPDDR4 Studies

- 1. Temperature
- 2. Data Pattern Dependence
- 3. Retention Time Distributions
- 4. Variable Retention Trime
- 5. Individual Call Chanacteizization

Long-term Continuous Profiling

Error correction codes (ECC) and online profiling are necessary to manage new failing cells

- New failing cells continue to appear over time
 - Attributed to variable retention time (VRT)
- The set of failing cells changes over time

Single-cell Failure Probability (Cartoon)

REAPER Outline

- 1. DRAM Refresh Background
- 2. Failure Profiling Challenges
- 3. Current Approaches
- 4. LPDDR4 Characterization
- 5. Reach Profiling
- 6. End-to-end Evaluation

Reach Profiling

Key idea: profile at a longer refresh interval and/or a higher temperature

A Complex Tradeoff Space

refresh interval

Towards an Implementation

Reach profiling is a general methodology

3 key questions for an implementation:

What are desirable profiling conditions?

How often should the system profile?

What information does the profiler need?

Three Key Profiling Metrics

- 1. Runtime: how long profiling takes
- 2. Coverage: portion of all possible failures discovered by profiling

We explore how these metrics change under **many** different profiling conditions

Q1: Desirable Profiling Conditions

- Similar trends across chips and vendors!
- For 99% coverage, we find on average:
 - •2.5x speedup by profiling at +250ms at a cost of a 50% false positive rate
 - •>3.5x speedup by profiling at + >500ms at a cost of a >75% false positive rate
- More examples and detail in the paper

Q2: How Often to Profile

- Estimation using a probabilistic model
 - Can use our empirical data for estimates
 - Details are in the paper
- e.g., Need to reprofile every **2.3 days** for a:
 - 2GB ECC DRAM
 - •1024ms refresh interval at 45°C
 - Profiling with 99% coverage

Q3: Necessary Information

- The cost of handling identified failures
 - Determines how many errors we can mitigate
 - e.g., error-correction codes (ECC)
- Empirical per-chip characterization data
 - Used to reliably estimate profiling parameters
 - Details are in the paper

REAPER Outline

- 1. DRAM Refresh Background
- 2. Failure Profiling Challenges
- 3. Current Approaches
- 4. LPDDR4 Characterization
- 5. Reach Profiling
- 6. End-to-end Evaluation

Our Mechanism: REAPER

- Simple implementation of reach profiling
- Pessimistic assumptions
 - Whole system pauses during profiling
 - Firmware executes profiling routine
 - Exclusive DRAM access
 - Only manipulates refresh interval, not temperature

Evaluation Methodology

- Simulators
 - Performance: Ramulator [Kim+, CAL'15]
 - Energy: DRAMPower [Chandrasekar+, DSD'11]
- Configuration
 - 4-core (4GHz), 8MB LLC
 - LPDDR4-3200, 4 channels, 1 rank/channel
- Workloads
 - 20 random 4-core benchmark mixes
 - SPEC CPU2006 benchmark suite

Simulated End-to-end Performance

Brute-force profiling

ZZ Ideal profiling

On average, REAPER enables:

16.3% system performance improvement 36.4% DRAM power reduction

REAPER enables longer refresh intervals,

which are unreasonable using brute-force profiling

Reprofile rarely

Reprofile often

Other Analyses in the Paper

Detailed LPDDR4 characterization data

- Temperature dependence effects
- Retention time distributions
- Data pattern dependence
- Variable retention time
- Individual cell failure distributions

Profiling tradeoff space characterization

- Runtime, coverage, and false positive rate
- Temperature and refresh interval
- Probabilistic model for tolerable failure rates
- Detailed results for end-to-end evaluations

Executive Summary

- Motivation: DRAM refresh energy/performance overhead is high
- Problem: DRAM retention failure profiling is hard
 - Complicated by cells changing retention times dynamically
 - Current profiling methods are unreliable or too slow

• Goals:

- 1. Thoroughly analyze tradeoffs in retention failure profiling
- 2. Develop a **fast** and **reliable** profiling mechanism

Key Contributions:

- **1. First** detailed characterization of 368 LPDDR4 DRAM chips
- 2. Reach profiling: Profile at a longer refresh interval and/or higher temperature, where cells are more likely to fail

Evaluation:

- 2.5x faster profiling with 99% coverage and 50% false positives
- Enables longer refresh intervals that were previously unreasonable

The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel, Jeremie S. Kim, Onur Mutlu

Presented at ISCA, June 2017

SAFARI ETHzürich Carnegie Mellon