## Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques <u>Jeremie S. Kim</u> Minesh Patel A. Giray Yağlıkçı Hasan Hassan Roknoddin Azizi Lois Orosa Onur Mutlu SAFARI Carnegie Mellon ## **Executive Summary** - <u>Motivation</u>: Denser DRAM chips are more vulnerable to RowHammer but no characterization-based study demonstrates how vulnerability scales - **Problem**: Unclear if existing mitigation mechanisms will remain viable for future DRAM chips that are likely to be more vulnerable to RowHammer - **Goal**: - 1. Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and study how this vulnerability will scale going forward - 2. Study viability of existing mitigation mechanisms on more vulnerable chips - Experimental Study: First rigorous RowHammer characterization study across a broad range of DRAM chips - 1580 chips of different DRAM {types, technology node generations, manufacturers} - We find that RowHammer vulnerability worsens in newer chips - RowHammer Mitigation Mechanism Study: How five state-of-the-art mechanisms are affected by worsening RowHammer vulnerability - Reasonable performance loss (8% on average) on modern DRAM chips - Scale poorly to more vulnerable DRAM chips (e.g., 80% performance loss) - <u>Conclusion:</u> it is critical to research more effective solutions to RowHammer for future DRAM chips that will likely be even more vulnerable to RowHammer ### Outline RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology Characterization Results **Evaluation of Mitigation Mechanisms** RowHammer Solutions Going Forward Conclusion ### Outline #### RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology Characterization Results Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward Conclusion ## The RowHammer Vulnerability Repeatedly **opening** (activating) and **closing** (precharging) a DRAM row causes **RowHammer bit flips** in nearby cells ### Outline RowHammer Introduction #### DRAM Background Motivation and Goal Experimental Methodology Characterization Results **Evaluation of Mitigation Mechanisms** RowHammer Solutions Going Forward Conclusion # **DRAM Organization** Row of storage cells # **DRAM Cell Leakage** Each cell encodes information in **leaky** capacitors Stored data is **corrupted** if too much charge leaks (i.e., the capacitor voltage degrades too much) SAFARI #### **DRAM Refresh** Periodic **refresh operations** preserve stored data ## RowHammer Bit Flips #### **RowHamme** #### **Cell-to-Cell Variation** Some cells are more vulnerable due to process variation ### Outline RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology Characterization Results Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward Conclusion #### **Motivation** - Denser DRAM chips are more vulnerable to RowHammer - Three prior works [Kim+, ISCA'14], [Park+, MR'16], [Park+, MR'16], over the last six years provide RowHammer characterization data on real DRAM - However, there is no comprehensive experimental study that demonstrates how vulnerability scales across DRAM types and technology node generations - It is unclear whether current mitigation mechanisms will remain viable for future DRAM chips that are likely to be more vulnerable to RowHammer ### Goal 1. Experimentally demonstrate how vulnerable modern DRAM chips are to RowHammer and predict how this vulnerability will scale going forward 2. Examine the viability of current mitigation mechanisms on more vulnerable chips ### Outline RowHammer Introduction DRAM Background Motivation and Goal #### Experimental Methodology Characterization Results Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward Conclusion ## **DRAM Testing Infrastructures** Three separate testing infrastructures - 1. DDR3: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx ML605) - 2. DDR4: FPGA-based SoftMC [Hassan+, HPCA'17] (Xilinx Virtex UltraScale 95) - 3. LPDDR4: In-house testing hardware for LPDDR4 chips All provide fine-grained control over DRAM commands, timing parameters and temperature **DDR4 DRAM testing infrastructure** # **DRAM Chips Tested** | DRAM | Numbe | er of Chips | (Modules) | ) Tested | |-----------|----------|-------------|-----------|----------| | type-node | Mfr. A | Mfr. B | Mfr. C | Total | | DDR3-old | 56 (10) | 88 (11) | 28 (7) | 172 (28) | | DDR3-new | 80 (10) | 52 (9) | 104 (13) | 236 (32) | | DDR4-old | 112 (16) | 24 (3) | 128 (18) | 264 (37) | | DDR4-new | 264 (43) | 16 (2) | 108 (28) | 388 (73) | | LPDDR4-1x | 12 (3) | 180 (45) | N/A | 192 (48) | | LPDDR4-1y | 184 (46) | N/A | 144 (36) | 328 (82) | #### **1580** total DRAM chips tested from **300** DRAM modules - Three major DRAM manufacturers {A, B, C} - **Three** DRAM *types* or *standards* {DDR3, DDR4, LPDDR4} - LPDDR4 chips we test implement on-die ECC - Two technology nodes per DRAM type {old/new, 1x/1y} - Categorized based on manufacturing date, datasheet publication date, purchase date, and characterization results **Type-node:** configuration describing a chip's type and technology node generation: **DDR3-old/new, DDR4-old/new, LPDDR4-1x/1y** #### **Effective RowHammer Characterization** To characterize our DRAM chips at worst-case conditions, we: #### 1. Prevent sources of interference during core test loop - We disable: - **DRAM refresh**: to avoid refreshing victim row - DRAM calibration events: to minimize variation in test timing - **RowHammer mitigation mechanisms**: to observe circuit-level effects - Test for less than refresh window (32ms) to avoid retention failures #### 2. Worst-case access sequence - We use worst-case access sequence based on prior works' observations - For each row, repeatedly access the two directly physically-adjacent rows as fast as possible # **Testing Methodology** | | Row 0 | Aggressor Row | |---------|-------|---------------| | REFRESH | Row 1 | Victim Row | | | Row 2 | Aggressor Row | | | Row 3 | Row | | | Row 4 | Row | | | Row 5 | Row | #### **DRAM\_RowHammer\_Characterization(): foreach** *row* in *DRAM*: set victim\_row to row set aggressor\_row1 to victim\_row - 1 set aggressor\_row2 to victim\_row + 1 Disable DRAM refresh Refresh victim\_row for $n = 1 \rightarrow HC$ : // core test loop activate $aggressor\_row1$ activate $aggressor\_row2$ Enable DRAM refresh Record RowHammer bit flips to storage Restore bit flips to original values Disable refresh to **prevent interruptions** in the core loop of our test **from refresh operations** Induce RowHammer bit flips on a fully charged row # **Testing Methodology** | <b>—</b> closed | Row 0 | Aggressor Row | |-----------------|-------|---------------| | | Row 1 | Aggressor Row | | | Row 2 | Row | | | Row 3 | Aggressor Row | | | Row 4 | Victim Row | | | Row 5 | Aggressor Row | #### DRAM RowHammer Characterization(): **foreach** row in DRAM: set victim row to row set aggressor\_row1 to victim\_row - 1 set aggressor\_row2 to victim\_row + 1 Disable DRAM refresh Refresh victim row **for** $n = 1 \rightarrow HC$ : // core test loop activate aggressor\_row1 activate aggressor\_row2 Enable DRAM refresh Record RowHammer bit flips to storage Restore bit flips to original values Disable refresh to **prevent interruptions** in the core loop of our test from refresh operations Induce RowHammer bit flips on a fully charged row Core test loop where we alternate accesses to adjacent rows 1 Hammer (HC) = two accesses Prevent further retention failures Record bit flips for analysis ### Outline RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology #### Characterization Results Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward Conclusion # **Key Takeaways from 1580** Chipps newer DRAM technology nodes are more vulnerable to RowHammer There are chips today whose weakest cells fail after only 4800 hammers • Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row. ## 1. RowHammer Vulnerability Q. Can we induce RowHammer bit flips in all of our DRAM chips? #### All chips are vulnerable, except many DDR3 chips - A total of 1320 out of all 1580 chips (84%) are vulnerable - Within DDR3-old chips, only 12% of chips (24/204) are vulnerable - Within DDR3-new chips, 65% of chips (148/228) are vulnerable Newer DRAM chips are more vulnerable to RowHammer # 2. Data Pattern Dependence Q. Are some data patterns more effective in inducing RowHammer bit flips? We test several data patterns typically examined in prior work to identify the worst-case data pattern • The worst-case data pattern is **consistent across chips** of the same manufacturer and DRAM type-node configuration We use the worst-case data pattern per DRAM chip to characterize each chip at worst-case conditions and minimize the extensive testing time [More detail and figures in paper] # 3. Hammer Count (HC) Effects Q. How does the Hammer Count affect the number of bit flips induced? Hammer Count = 2 Accesses, one to each adjacent row of victim # 3. Hammer Count (HC) Effects RowHammer bit flip rates **increase** when going **from old to new** DDR4 technology node generations RowHammer bit flip rates (i.e., RowHammer vulnerability) increase with technology node generation ## 4. Spatial Effects: Row Distance Q. Where do RowHammer bit flips occur relative to aggressor rows? The number of RowHammer bit flips that occur in a given row decreases as the distance from the **victim row (row 0)** increases. ## 4. Spatial Effects: Row Distance We normalize data by inducing a bit flip rate of 10<sup>-6</sup> in each chip Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row. ## 4. Spatial Effects: Row Distance We plot this data for each DRAM type-node configuration per manufacturer [More analysis in the paper] ## 4. Spatial Distribution of Bit Flips Q. How are RowHammer bit flips spatially distributed across a chip? We normalize data by inducing a bit flip rate of 10<sup>-6</sup> in each chip The distribution of RowHammer bit flip density per word changes significantly in LPDDR4 chips from other DRAM types At a bit flip rate of 10<sup>-6</sup>, a 64-bit word can contain up to **4 bit flips**. Even at this very low bit flip rate, a **very strong ECC** is required ## 4. Spatial Distribution of Bit Flips We plot this data for each DRAM type-node configuration per manufacturer [More analysis in the paper] What is the minimum Hammer Count required to cause bit flips $(HC_{first})$ ? What is the minimum Hammer Count required to cause bit flips $(HC_{first})$ ? We note the different DRAM types on the x-axis: **DDR3**, **DDR4**, **LPDDR4**. We focus on trends across chips of the same DRAM type to draw conclusions Newer chips from a given DRAM manufacturer **more** vulnerable to RowHammer Newer chips from a given DRAM manufacturer more vulnerable to RowHammer # Key Takeaways from 1580 Chips Chips of newer DRAM technology nodes are more vulnerable to RowHammer There are chips today whose weakest cells fail after only 4800 hammers • Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row. ## Outline RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology **Characterization Results** Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward Conclusion # **Evaluation Methodology** - Cycle-level simulator: Ramulator [Kim+, CAL'15] <a href="https://github.com/CMU-SAFARI/ramulator">https://github.com/CMU-SAFARI/ramulator</a> - 4GHz, 4-wide, 128 entry instruction window - 48 8-core workload mixes randomly drawn from SPEC CPU2006 (10 < MPKI < 740) - Metrics to evaluate mitigation mechanisms - DRAM Bandwidth Overhead: fraction of total system DRAM bandwidth consumption from mitigation mechanism - 2. Normalized System Performance: normalized weighted speedup to a 100% baseline # **Evaluation Methodology** - We evaluate **five** state-of-the-art mitigation mechanisms: - Increased Refresh Rate [Kim+, ISCA'14] - **PARA** [Kim+, ISCA'14] - ProHIT [Son+, DAC'17] - MRLoc [You+, DAC'19] - TWiCe [Lee+, ISCA'19] - and one ideal refresh-based mitigation mechanism: - Ideal - More detailed descriptions in the paper on: - Descriptions of mechanisms in our paper and the original publications - How we scale each mechanism to more vulnerable DRAM chips (lower **HC**<sub>first</sub>) #### Mitigation Mech. Eval. (Increased Refresh) **Substantial** overhead for high HC<sub>first</sub> values. This mechanism does not support $HC_{first} < 32k$ due to the prohibitively high refresh rates required #### Mitigation Mechanism Evaluation (PARA) #### Mitigation Mechanism Evaluation (ProHIT) #### Mitigation Mechanism Evaluation (MRLoc) Models for scaling ProHIT and MRLoc for HC<sub>first</sub> < 2k are not provided and how to do so is not intuitive #### Mitigation Mechanism Evaluation (TWiCe) TWiCe does not support $HC_{first} < 32k$ . We evaluate an ideal scalable version (TWiCe-ideal) assuming it solves two critical design issues ### Mitigation Mechanism Evaluation (Ideal) Ideal mechanism issues a refresh command to a row only right before the row can potentially experience a RowHammer bit flip PARA, ProHIT, and MRLoc mitigate RowHammer bit flips in worst chips today with reasonable system performance (92%, 100%, 100%) Only PARA's design scales to low HC<sub>first</sub> values but has very low normalized system performance $HC_{first}$ (number of hammers required to induce first RowHammer bit flip) Ideal mechanism is significantly better than any existing mechanism for $HC_{first} < 1024$ Significant opportunity for developing a RowHammer solution with low performance overhead that supports low HC<sub>first</sub> #### **Key Takeaways from Mitigation Mechanisms** Existing RowHammer mitigation mechanisms can prevent RowHammer attacks with reasonable system performance overhead in DRAM chips today Existing RowHammer mitigation mechanisms do not scale well to DRAM chips more vulnerable to RowHammer • There is still **significant opportunity** for developing a mechanism that is **scalable with low overhead** # Additional Details in the Paper - Single-cell RowHammer bit flip probability - More details on our data pattern dependence study - Analysis of Error Correcting Codes (ECC) in mitigating RowHammer bit flips - Additional observations on our data - Methodology details for characterizing DRAM - Further discussion on comparing data across different infrastructures - Discussion on scaling each mitigation mechanism ## Outline RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology Characterization Results Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward Conclusion ### **RowHammer Solutions Going Forward** **Two** promising directions for new RowHammer solutions: #### 1. DRAM-system cooperation We believe the DRAM and system should cooperate more to provide a holistic solution can prevent RowHammer at low cost #### 2. Profile-guided - Accurate **profile of RowHammer-susceptible cells** in DRAM provides a powerful substrate for building **targeted** RowHammer solutions, e.g.: - Only increase the refresh rate for rows containing RowHammer-susceptible cells - A **fast and accurate** profiling mechanism is a key research challenge for developing low-overhead and scalable RowHammer solutions ## Outline RowHammer Introduction DRAM Background Motivation and Goal Experimental Methodology Characterization Results Evaluation of Mitigation Mechanisms RowHammer Solutions Going Forward #### Conclusion ### Conclusion - We characterized **1580 DRAM** chips of different DRAM types, technology nodes, and manufacturers. - We studied **five** state-of-the-art RowHammer mitigation mechanisms and an ideal refresh-based mechanism - We made two key observations - 1. RowHammer is getting much worse. It takes much fewer hammers to induce RowHammer bit flips in newer chips - e.g., **DDR3**: 69.2k to 22.4k, **DDR4**: 17.5k to 10k, **LPDDR4**: 16.8k to 4.8k - **2. Existing mitigation mechanisms do not scale** to DRAM chips that are more vulnerable to RowHammer - e.g., 80% performance loss when the hammer count to induce the first bit flip is 128 - We conclude that it is critical to do more research on RowHammer and develop scalable mitigation mechanisms to prevent RowHammer in future systems # Revisiting RowHammer An Experimental Analysis of Modern Devices and Mitigation Techniques <u>Jeremie S. Kim</u> Minesh Patel A. Giray Yağlıkçı Hasan Hassan Roknoddin Azizi Lois Orosa Onur Mutlu SAFARI Carnegie Mellon ### **Evaluation** PARA, ProHIT, and MRLoc are viable options for mitigating RowHammer bit flips in worst chips today with reasonable system performance (92%, 100%, 100%) as HC<sub>first</sub> reduces below 1024 This indicates significant opportunity for developing a RowHammer solution with low performance overhead that also scales to low HC<sub>first</sub> values #### **Effective RowHammer Characterization** To characterize our DRAM chips at worst-case conditions, we: #### 1. Prevent sources of interference during core test loop - **We disable**: DRAM refresh, DRAM calibration events, RowHammer mitigation mechanisms - Ensure **test shorter than refresh window** (i.e., 32ms) to prevent retention failures #### 2. Worst-case access sequence We construct based on three observations from prior work: - 1. An aggressor row causes the most RowHammer bit flips in immediately adjacent rows - 2. A **double-sided hammer** targeting victim row N (i.e., repeatedly accessing rows N+1 and N-1) causes the most bit flips in row N compared to other access patterns - 3. **Increasing the rate of DRAM activations** results in more RowHammer bit flips Using these observations, we test each row's worst-case vulnerability to RowHammer by repeatedly accessing the two directly physically-adjacent rows as fast as possible ## 6. Error-Correcting Code (ECC) Effects Q. How would different Error Correction Codes (ECC) change the Hammer Count required to cause RowHammer bit flips? ## 6. Error-Correcting Code (ECC) Effects Single-error correcting code can improve HC<sub>first</sub> by up to 2.78× in DDR4 DRAM chips, and 1.65× in DDR3-new DRAM chips. ### **RowHammer Solutions Going Forward** **Two** promising directions for new RowHammer solutions: #### 1. DRAM-system cooperation - DRAM-based or system-level mechanism **alone** ignores potential benefits of addressing the RowHammer vulnerability **holistically** - We believe a **holistic** solution can prevent RowHammer at **low cost** #### 2. Profile-guided - Accurate **profile of RowHammer-susceptible cells** in DRAM provides a powerful substrate for building **targeted** RowHammer solutions, e.g.: - Only increase the refresh rate for rows containing RowHammer-susceptible cells - We believe a **fast and accurate** profiling mechanism is a key research challenge for developing low-overhead and scalable RowHammer solutions ### 5. First RowHammer Bit Flips per Chip In a DRAM type, HC<sub>first</sub> reduces significantly from old to new chips, i.e., DDR3: 69.2k to 22.4k, **DDR4:** 17.5k to 10k, **LPDDR4:** 16.8k to 4.8k Newer chips from a given DRAM manufacturer more vulnerable to RowHammer ## 5. First RowHammer Bit Flips per Chip Newer chips from a given DRAM manufacturer more vulnerable to RowHammer