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Executive Summary

* Motivation: Denser DRAM chips are more vulnerable to RowHammer but no
characterization-based study demonstrates how vulnerability scales

* Problem: Unclear if existing mitigation mechanisms will remain viable for
future DRAM chips that are likely to be more vulnerable to RowHammer
* Goal:
1. Experimentally demonstrate how vulnerable modern DRAM chips are to
RowHammer and study how this vulnerability will scale going forward
2. Study viability of existing mitigation mechanisms on more vulnerable chips

* Experimental Study: First rigorous RowHammer characterization study across
a broad range of DRAM chips

- 1580 chips of different DRAM {types, technology node generations, manufacturers}
- We find that RowHammer vulnerability worsens in newer chips

RowHammer Mitigation Mechanism Study: How five state-of-the-art
mechanisms are affected by worsening RowHammer vulnerability

- Reasonable performance loss (8% on average) on modern DRAM chips
- Scale poorly to more vulnerable DRAM chips (e.g., 80% performance loss)

Conclusion: it is critical to research more effective solutions to RowHammer for
future DRAM chips that will likely be even more vulnerable to RowHammer
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The RowHammer Vulnerability

a DRAM Chip N\

Row O Victim Row

Repeatedly opening (activating) and closing (precharging)

a DRAM row causes RowHammer bit flips in nearby cells
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DRAM Organization

Row of storage cells
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DRAM Bank

\ Row 4 /
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DRAM Cell Leakage

Each cell encodes information in leaky capacitors
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leakage
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Stored data is corrupted if too much charge leaks

(i.e., the capacitor voltage degrades too much)

SAFARI [Patel+, ISCA’17]



DRAM Refresh

Refresh Operations

Refresh Windov/ ‘ \
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Periodic refresh operations preserve stored data
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RowHammer Bit Flips

RowHamme
r
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RowHammer Attack:
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Cell-to-Cell Variation

Different RowHammer
vulnerabilities
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RowHammer Attack:

Accesses to nearby row
Some cells are more vulnerable due to process variation
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Motivation

- Denser DRAM chips are more vulnerable to RowHammer

- Three prior works [Kim+, ISCA’14], [Park+, MR’16], [Park+, MR'16],
over the last six years provide RowHammer
characterization data on real DRAM

- However, there is no comprehensive experimental
study that demonstrates how vulnerability scales across
DRAM types and technology node generations

- Itis unclear whether current mitigation mechanisms
will remain viable for future DRAM chips that are likely
to be more vulnerable to RowHammer
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Goal

1. Experimentally demonstrate how vulnerable modern
DRAM chips are to RowHammer and predict how this
vulnerability will scale going forward

2. Examine the viability of current mitigation mechanisms
on more vulnerable chips

SAFARI 14
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DRAM Testing Infrastructures

Three separate testing infrastructures
1. DDR3: FPGA-based SoftMC [Hassan+, HPCA'17]
(Xilinx ML605)
2. DDR4: FPGA-based SoftMC [Hassan+, HPCA'17]
(Xilinx Virtex UltraScale 95)
3. LPDDR4: In-house testing hardware for LPDDR4 chips

All provide fine-grained control over DRAM commands, timing
parameters and temperature

T TRy I TR L
: FPGAégoa rd'withitwo
DDR4 SODIMM Slots

SAFARI DDR4 DRAM testing infrastructure 16



DRAM Chips Tested

1580 total DRAM chips tested from 300 DRAM modules

DRAM Number of Chips (Modules) Tested
type-node Mfr. A Mfr.B  Mfr. C Total
DDR3-old 56 (10) 88 (11) 28 (7) 172 (28)
DDR3-new 80 (10) 52(9) 104 (13) 236 (32)
DDR4-old 112 (16) 24 (3) 128 (18) 264 (37)
DDR4-new 264 (43) 16 (2) 108 (28) 388 (73)
LPDDRA4-1x 12 (3) 180 (45) N/A 192 (48)
LPDDR4-1y 184 (46) N/A 144 (36) 328 (82)

 Three major DRAM manufacturers {A, B, C}

* Three DRAM types or standards {DDR3, DDR4, LPDDR4}
* LPDDR4 chips we test implement on-die ECC

* Two technology nodes per DRAM type {old/new, 1x/1y}

» C(Categorized based on manufacturing date, datasheet publication date, purchase

date, and characterization results

Type-node: configuration describing a chip’s type and technology

node generation: DDR3-o0ld/new, DDR4-0ld /new, LPDDR4-1x/1y

SAFARI
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Effective RowHammer Characterization

To characterize our DRAM chips at worst-case conditions, we:

1. Prevent sources of interference during core test loop

- We disable:
 DRAM refresh: to avoid refreshing victim row
 DRAM calibration events: to minimize variation in test timing
 RowHammer mitigation mechanisms: to observe circuit-level effects

- Test for less than refresh window (32ms) to avoid retention failures

2. Worst-case access sequence
- We use worst-case access sequence based on prior works’ observations

- For each row, repeatedly access the two directly physically-adjacent
rows as fast as possible

SAFARI [More details in the paper] 18



Testing Methodology

/ Row 0
REFRESH Row 1

ROW 2 Aggressor Row

Aggressor Row \

Victim Row

\_

DRAM_RowHammer_Characterization():
foreach row in DRAM:

set victim_row to row

set aggressor_rowl to victim_row — 1

set aggressor_row?2 to victim_row + 1

Disable DRAM refresh

Refresh victim_row

forn=1— HC:// core test loop
activate aggressor_rowl
activate aggressor_row?2

Enable DRAM refresh

Record RowHammer bit flips to storage

Restore bit flips to original values

SAFARI

Disable refresh to prevent
interruptions in the core loop of
our test from refresh operations

Induce RowHammer bit flips on a
fully charged row
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Testing Methodology

-

\_

Row 0

Row 1 Aggressor Row
Row 2

Row 3
Row 4
Row 5

Aggressor Row

Aggressor Row

Victim Row

Aggressor Row

DRAM_RowHammer_Characterization():
foreach row in DRAM:

SAFARI

set victim_row to row

set aggressor_rowl to victim_row — 1

set aggressor_row2 to victim_row + 1

Disable DRAM refresh

Refresh victim_row

for n =1 — HC: // core test loop
activate aggressor_rowl

activate aggressor_row?2
Enable DRAM refresh

Record RowHammer bit flips to storage

Restore bit flips to original values

(/NN

Disable refresh to prevent
interruptions in the core loop of
our test from refresh operations

Induce RowHammer bit flips on a
fully charged row

Core testloop where we alternate
accesses to adjacent rows

1 Hammer (HC) = two accesses

Prevent further retention failures

Record bit flips for analysis 20
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Key Takeaways from 1580

C(hii)pﬁnewer DRAM technology nodes are more
vulnerable to RowHammer

* There are chips today whose weakest cells fail after
only 4800 hammers

* Chips of newer DRAM technology nodes can exhibit
RowHammer bit flips 1) in more rows and 2) farther
away from the victim row.

SAFARI 22



1. RowHammer Vulnerability

Q. Can we induce RowHammer bit flips in all of our DRAM chips?

All chips are vulnerable, except many DDR3 chips
* Atotal of 1320 out of all 1580 chips (84%) are vulnerable
* Within DDR3-old chips, only 12% of chips (24/204) are vulnerable

* Within DDR3-new chips, 65% of chips (148/228) are vulnerable

Newer DRAM chips are more vulnerable to RowHammer

SAFARI 23



2. Data Pattern Dependence

Q. Are some data patterns more effective in inducing RowHammer bit flips?

 We test several data patterns typically examined in prior
work to identify the worst-case data pattern

 The worst-case data pattern is consistent across chips of the
same manufacturer and DRAM type-node configuration

 We use the worst-case data pattern per DRAM chip to
characterize each chip at worst-case conditions and
minimize the extensive testing time

More detail and figures in paper
SAFARI : s paper] 24



3. Hammer Count (HC) Effects

Q. How does the Hammer Count affect the number of bit flips induced?

Mfr. A DDR4-new

10V ¢
1071 E
1072 F
1073 |
104 ¢
107 F
10 F 3
107 F
108 }
1094
10710 t - — '
104 10°
Hammer Count (HC)

RowHammer
Bit Flip Rate

Hammer Count = 2 Accesses,
SAFARI one to each adjacent row of victim 25



3. Hammer Count (HC) Effects

o0 DDR3-new ESmDDR4-old DDR4-new _mmmm| PDDR4-1x = LPDDR4-1y
10 MAT. A { | Mfr. B { © Mfr. C
o) 318-3, 1 1 1t ]
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10* 10°  10* 10° 104 10°

Hammer Count (HC)

RowHammer bit flip rates increase
when going from old to new DDR4 technology node generations

RowHammer bit flip rates (i.e., RowHammer vulnerability)
increase with technology node generation
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4. Spatial Effects: Row Distance

Q. Where do RowHammer bit flips occur relative to aggressor rows?
Mfr. A DDR4-old

© 0 o0 o0 o=
O MM O O

Fraction of RowHammer bit flips
with distance X from the victim row

6 4 -2 0 2 4 6

Distance from the victim row (row 0)

The number of RowHammer bit flips that occur in a given row
decreases as the distance from the victim row (row 0) increases.

SAFARI 27



4. Spatial Effects: Row Distance

We normalize data by inducing a bit flip rate of 10-° in each chip
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Fraction of RowHammer bit flips
with distance X from the victim row

Chips of newer DRAM technology nodes can exhibit RowHammer
bit flips 1) in more rows and 2) farther away from the victim row.
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4. Spatial Effects: Row Distance

We plot this data for each DRAM type-node configuration per manufacturer

Mfr. A Mfr. B Mfr. C
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[More analysis in the paper]
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4. Spatial Distribution of Bit Flips

Q. How are RowHammer bit flips spatially distributed across a chip?

We normalize data by inducing a bit flip rate of 10-¢ in each chip

Representative of DDR3/DDR4 chip Representative of LPDDR4 chip
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Fraction of 64-bit words containing X bit flips
over all 64-bit words containing bit flips

The distribution of RowHammer bit flip density per word
changes significantly in LPDDR4 chips from other DRAM types

At a bit flip rate of 10-%, a 64-bit word can contain up to 4 bit flips.
Even at this very low bit flip rate, a very strong ECC is required



4. Spatial Distribution of Bit Flips

We plot this data for each DRAM type-node configuration per manufacturer
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[More analysis in the paper]
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5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HCp,,)?
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5. First RowHammer Bit Flips per Chip

What is the minimum Hammer Count required to cause bit flips (HCp,,)?

SAFARI
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DRAM types on the x-axis:
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type to draw conclusions
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Mfr. B Mfr. C

5. First RowHammer Bit Flips per Chip
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Newer chips from a given DRAM manufacturer

more vulnerable to RowHammer
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5. First RowHammer Bit Flips per Chip

In a DRAM type, HC;; ., reduces significantly from
old to new chips, i.e.,, DDR3: 69.2k to 22.4Kk,
DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k

There are chips whose weakest cells fail
after only 4800 hammers

SAFARI 35




Key Takeaways from 1580 Chips

* Chips of newer DRAM technology nodes are more
vulnerable to RowHammer

* There are chips today whose weakest cells fail after
only 4800 hammers

* Chips of newer DRAM technology nodes can exhibit
RowHammer bit flips 1) in more rows and 2) farther
away from the victim row.

SAFARI 36
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Evaluation Methodology

* Cycle-level simulator: Ramulator [Kim+, CAL'15]
https://github.com/CMU-SAFARI/ramulator

- 4GHz, 4-wide, 128 entry instruction window

- 48 8-core workload mixes randomly drawn from SPEC
CPU2006 (10 < MPKI < 740)

* Metrics to evaluate mitigation mechanisms

1. DRAM Bandwidth Overhead: fraction of total system DRAM
bandwidth consumption from mitigation mechanism

2. Normalized System Performance: normalized weighted
speedup to a 100% baseline

SAFARI 38



https://github.com/CMU-SAFARI/ramulator

Evaluation Methodology

* We evaluate five state-of-the-art mitigation mechanisms:
Increased Refresh Rate [Kim+, 1scA'14]

PARA [Kim+, ISCA'14]

ProHIT [Son+, DAC'17]

MRLoc [you+, DAC’19]

TWiCe [Lee+, 1SCA'19]

* and one ideal refresh-based mitigation mechanism:
- Ideal

* More detailed descriptions in the paper on:

- Descriptions of mechanisms in our paper and the original publications
- How we scale each mechanism to more vulnerable DRAM chips (lower HCg,.,)

SAFARI 39



Mitigation Mech. Eval. (Increased Refresh)

- Increased |
40 Refresh Rate -\ - b

Normalized

105 10* 103 102
HCﬁrst (number of hammers required to induce first RowHammer bit flip)

Substantial overhead for high HC; ., values.

This mechanism does not support HC;, . < 32k
due to the prohibitively high refresh rates required
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Mitigation Mechanism Evaluation (PARA)

=9 Increased Refresh Rate ‘ z I
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Mitigation Mechanism Evaluation (ProHIT)

ﬂ
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Mitigation Mechanism Evaluation (MRLoc)

[H Increased Refresh Rate  ¥=¥ PARA B8 ProHIT I]

T

10— . w7
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20 R e I T
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System Performance (%)

Models for scaling ProHIT and MRLoc for HC;, , < 2k

are not provided and how to do so is not intuitive
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Mitigation Mechanism Evaluation (TWiCe)

[H Increased Refresh Rate  ¥=¥ PARA #—# ProHIT JA=4 MRLoc I]

100
90
801
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50|
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30|
201
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ET'E 10 103 102
HC, (number of hammers required to induce first RowHammer bit flip)

Normalized
System Performance (%)

TWiCe does not support HC;; ., < 32k.

We evaluate an ideal scalable version (TWiCe-ideal)
assuming it solves two critical design issues
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Mitigation Mechanism Evaluation (Ideal)

[H Increased Refresh Rate  ¥=¥ PARA B8 ProHIT J=4 MRLoc += TwWiCe + - TwiCe-ideal I]
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Ideal mechanism issues a refresh command

to a row only right before the row
can potentially experience a RowHammer bit flip
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Mitigation Mechanism Evaluation

[H Increased Refresh Rate Y=y PARA B ProHi k- MRLoc F+ TwiCe F- TwiCe-ideal I]
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PARA, ProHIT, and MRLoc mitigate RowHammer bit flips

in worst chips today with reasonable system performance
(92%, 100%, 100%)

SAFARI 46



Mitigation Mechanism Evaluation

[H Increased Refresh Rate  ¥=¥ PARA B8 ProHIT J=4 MRLoc += TwWiCe + - TwiCe-ideal I]
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Only PARA'’s design scales to low HC;, ., values

but has very low normalized system performance
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Mitigation Mechanism Evaluation

[H Increased Refresh Rate  ¥=¥ PARA B8 ProHIT J=4 MRLoc += TwWiCe + - TwiCe-ideal I]
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Ideal mechanism is significantly better
than any existing mechanism for HC;, ,, < 1024

Significant opportunity for developing a RowHammer solution
with low performance overhead that supports low HC_,




Key Takeaways from Mitigation Mechanisms

* Existing RowHammer mitigation mechanisms can prevent
RowHammer attacks with reasonable system performance
overhead in DRAM chips today

* Existing RowHammer mitigation mechanisms do not scale
well to DRAM chips more vulnerable to RowHammer

* There is still significant opportunity for developing a
mechanism that is scalable with low overhead
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Additional Details in the Paper

* Single-cell RowHammer bit flip probability
* More details on our data pattern dependence study

* Analysis of Error Correcting Codes (ECC) in mitigating
RowHammer bit flips

* Additional observations on our data
* Methodology details for characterizing DRAM

* Further discussion on comparing data across different
infrastructures

 Discussion on scaling each mitigation mechanism
SAFARI 50
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RowHammer Solutions Going Forward

Two promising directions for new RowHammer solutions:

1. DRAM-system cooperation

- We believe the DRAM and system should cooperate more to provide a
holistic solution can prevent RowHammer at low cost

2. Profile-guided

- Accurate profile of RowHammer-susceptible cells in DRAM provides a
powerful substrate for building targeted RowHammer solutions, e.g.:

* Only increase the refresh rate for rows containing RowHammer-susceptible cells

- A fast and accurate profiling mechanism is a key research challenge for
developing low-overhead and scalable RowHammer solutions

SAFARI 52
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Conclusion

* We characterized 1580 DRAM chips of different DRAM types,
technology nodes, and manufacturers.

* We studied five state-of-the-art RowHammer mitigation
mechanisms and an ideal refresh-based mechanism

* We made two key observations

1. RowHammer is getting much worse. It takes much fewer hammers to
induce RowHammer bit flips in newer chips

* e.g., DDR3: 69.2k to 22.4k, DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k

2. Existing mitigation mechanisms do not scale to DRAM chips that are
more vulnerable to RowHammer

* e.g, 80% performance loss when the hammer count to induce the first bit flip is 128

* We conclude that it is critical to do more research on
RowHammer and develop scalable mitigation mechanisms to
prevent RowHammer in future systems
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Evaluation
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Mitigation Mechanism Evaluation

DRAM bandwidth overhead
%) of RowHammer mitigation (%)
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Mitigation Mechanism Evaluation
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Mitigation Mechanism Evaluation
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Mitigation Mechanism Evaluation
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Mitigation Mechanism Evaluation

DRAM bandwidth overhead
%) of RowHammer mitigation (%)

3 [H Increased Refresh Rate  ¥=¥ PARA #—# ProHIT JA=4 MRLoc

Twice|

e

[EEY
o
N

N \ ””””””” ]L\\L\

=
o
w

100

(
3

80
70}

60
90|
40
30|
20
10|

Normalized

System Performance

TWiCe-ideal “l S

e &
)

TWiCe’s current form does not support HC;, ., < 32Kk,
but we evaluate an ideal version (TWiCe-ideal)
assuming it solves two critical design issues

SAFARI

104 103

H Cfirst

105

102

61



Mitigation Mechanism Evaluation
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Mitigation Mechanism Evaluation

PARA, ProHIT, and MRLoc are viable options

for mitigating RowHammer bit flips in worst chips today
with reasonable system performance (92%, 100%, 100%)
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Mitigation Mechanism Evaluation

Only PARA’s design scales to low HC;, ., values

that we may see in future DRAM chips but
has very low normalized system performance
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Mitigation Mechanism Evaluation

The ideal refresh-based mitigation mechanism
is significantly better than any existing mechanism
as HC;, . reduces below 1024

This indicates significant opportunity for developing
a RowHammer solution with low performance overhead
that also scales to low HC; ., values
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Effective RowHammer Characterization

To characterize our DRAM chips at worst-case conditions, we:

1. Prevent sources of interference during core test loop

- We disable: DRAM refresh, DRAM calibration events, RowHammer mitigation
mechanisms

- Ensure test shorter than refresh window (i.e., 32ms) to prevent retention failures

2. Worst-case access sequence

We construct based on three observations from prior work:

1. An aggressor row causes the most RowHammer bit flips in immediately adjacent rows

2. A double-sided hammer targeting victim row N (i.e., repeatedly accessing rows N+1
and N-1) causes the most bit flips in row N compared to other access patterns

3. Increasing the rate of DRAM activations results in more RowHammer bit flips

Using these observations, we test each row’s worst-case vulnerability
to RowHammer by repeatedly accessing the two directly

physically-adjacent rows as fast as possible
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6. Error-Correcting Code (ECC) Effects

Q. How would different Error Correction Codes (ECC) change
the Hammer Count required to cause RowHammer bit flips?
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6. Error-Correcting Code (ECC) Effects
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Single-error correcting code can improve HC; ., by up to 2.78x in DDR4
DRAM chips, and 1.65x% in DDR3-new DRAM chips.
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RowHammer Solutions Going Forward

Two promising directions for new RowHammer solutions:
1. DRAM-system cooperation

- DRAM-based or system-level mechanism alone ignores potential benefits
of addressing the RowHammer vulnerability holistically

- We believe a holistic solution can prevent RowHammer at low cost

2. Profile-guided

- Accurate profile of RowHammer-susceptible cells in DRAM provides a
powerful substrate for building targeted RowHammer solutions, e.g.:

* Only increase the refresh rate for rows containing RowHammer-susceptible cells

- We believe a fast and accurate profiling mechanism is a key research
challenge for developing low-overhead and scalable RowHammer solutions
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5. First RowHammer Bit Flips per Chip

In a DRAM type, HC;, ., reduces significantly from

old to new chips, i.e., DDR3: 69.2k to 22.4Kk,
DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k
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5. First RowHammer Bit Flips per Chip

In a DRAM type, HC;; ., reduces significantly from
old to new chips, i.e.,, DDR3: 69.2k to 22.4Kk,
DDR4: 17.5k to 10k, LPDDR4: 16.8k to 4.8k

There are chips whose weakest cells fail
after only 4800 hammers
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