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Mendel's Law
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The Genomic Era
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Stephens, Zachary D., et al. PLoS biology (2015)

1 Zetta-Bases/year (1021) capacity 
105 Million Sequenced Human genome

2025
Medical Press

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195
https://medicalxpress.com/news/2020-05-genetic-database-rare-disease-clues.html
https://www.cancer.gov/about-nci/organization/ccg/research/computational-genomics/gdc/gdc-video


The Genomic Era
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69–92% of  the respondents in these studies had positive attitudes 

towards genomics research and donating their DNA samples. 
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If the owner of a genome is 
identified:
• He/she will face the risk of discrimination

by employers or insurance companies.
• DNA sequences are highly correlated to

the relatives’ sequences, so relative’s
privacy will be at risk (Henrietta Lacks).

Privacy Risks
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Genome-Wide Association Study (GWAS)

Detecting genetic variants associated with phenotypes using 
two groups of people.
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Genetic Data Restriction 
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➢ Researchers have assumed that case-control studies are
safe to publish aggregate statistics of SNPs. Such belief
was challenged when Homer Attack happened.

➢ NIH restricts the access to key results and data of GWAS
to only trusted individuals.



Privacy-Utility Tradeoff
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• Hiding some important data needs to 
tradeoff between privacy and utility.

➢ Privacy preserving techniques:
• K-anonymity.
• l-diversity.
• t-closeness. 
• Differential privacy.
• Crypto-based techniques.



NIH

Privacy-Preserving 

Computing Sharing
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https://www.cancer.gov/about-nci/organization/ccg/research/computational-genomics/gdc/gdc-video


Differential Privacy
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cleverhans

http://www.cleverhans.io/privacy/2018/04/29/privacy-and-machine-learning.html
https://www.cancer.gov/about-nci/organization/ccg/research/computational-genomics/gdc/gdc-video


Differential Privacy
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Pr[A(T) ∈ O] ≤ eᵋ Pr[A(T’) ∈ O]

Bounded Differential Privacy (BDP)Unbounded Differential Privacy (UDP)

T T’ T’T

Liu, et al. Applied Sciences (2018)

https://www.mdpi.com/2076-3417/8/11/2081
https://www.cancer.gov/about-nci/organization/ccg/research/computational-genomics/gdc/gdc-video


T

T’ DP 
Interface

Q

A(T)= Q(T) + 𝛅1
A(T)= Q(T’) + 𝛅2

Laplace Perturbation Mechanism (LPM)

◼ Q(T) + 𝛅 where 𝛅 is drawn from a Laplace distribution 

with mean 0 and scale  ΔQ/Ԑ

◼ ΔQ : query global sensitivity
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Differential Privacy
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Google Developer (2019)
Differential Privacy Team, 
Apple (2017)

Collecting Telemetry Data Privately (2017) Differentially Private Publication System (2018)

https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
https://docs-assets.developer.apple.com/ml-research/papers/learning-with-privacy-at-scale.pdf
https://papers.nips.cc/paper/6948-collecting-telemetry-data-privately.pdf
https://dl.acm.org/doi/pdf/10.1145/3219819.3226070


Research Problem

◼ DP standard mechanism does not

consider the dependency
between the data tuples in the
dataset.

◼ Current DP-based mechanisms
which consider the tuples

correlation, provide poor
accuracy.
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Related Works
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Pufferfish Framework
(Kifer and Machanavajjhala, 2012)

No perturbation algorithm

A generalization of DP 

Blowfish Framework
(He et al., 2014)

Deterministic 
constraints for the 

adversary

Perturbation
mechanisms

Bayesian DP
(Yang et al., 2015) 

Correlation modeled 
by Gaussian Markov

Random Fields

Perturbation
mechanisms



Related Works
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Network Correlation
(Chen et al., 2014) 

Excessive added 
noise

Perturbation
mechanisms

Correlation modeled 
by Gaussian Markov

Random Fields

Temporal Correlation
(Cao et al., 2017 )

Perturbation
mechanisms

Dependent DP
(Liu et al., 2016) 

pairwise
correlations

Perturbation
mechanisms

Less Utility

Dependent DP
(Zhao et al., 2017)

Perturbation
mechanisms



Our Contributions

Attribute Inference Attack 

Differentially private SUM query
results in a static genomic dataset with
dependent tuples.

[Bioinformatics’19]

Differentially private MAF and 𝝌𝟐

query results in a static genomic
dataset with dependent tuples.

[Bioinformatics’20] [ISMB’20]

Membership Inference Attack 

Differentially private MAF in a
static genomic dataset.

[Bioinformatics’20] 
[ISMB’20]



Countermeasures

ℇ-differential privacy for sharing
genomic datasets with dependent
tuples .

[Bioinformatics’19]

Our Contributions

Selective hiding mechanism and
differential privacy.

[arXiv’21]
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Dataset Description
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https://commons.wikimedia.org/wiki/File:1000_Genomes_Project.svg
https://www.cancer.gov/about-nci/organization/ccg/research/computational-genomics/gdc/gdc-video


DP Inference Attacks
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Attribute Inference Attack
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Sending 
Query 

Receiving Query 
Results

Estimate 𝑸𝒐𝒋
𝒊

• The adversary generates its queries that include
the members of the same family (e.g., by
forming a query based on age, location, street
level, city level, state level, etc.)

The adversary utilize the probabilistic
dependence for SUM :

❖𝑻𝒑
𝒊 = 𝑻𝒋

𝒊 + Dy

• The adversary receives the differentially-private

SUM (෪𝑇𝑝𝑗
𝑖 )

• ෪𝑇𝑝𝑗
𝑖 = 𝑇𝑝

𝑖 + 𝑇𝑗
𝑖 + 𝛿
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Coin 
Change

Check Validity
Quantify the 

Attack Success

• The adversary obtains all the possible partitions

of 𝑻𝒑𝒋
𝒊 (each partition will include (p+1)

individuals).

𝑻𝒑𝒋
𝒊

(Sum)
p+1 participants 0 1 2

6 4 0 2 2

6 4 1 2 1

6 4 1 3 1

𝑭𝒂𝒕𝒉𝒆𝒓 Mother Son Son

1 2 2 1

1 2 1 0

Attribute Inference Attack

• Estimation error metric:

• Leaked information metric

• The adversary uses Mendel’s law to find the
valid permutations for each partition. Then, he
computes the probability by considering
potential values of SNP i (0, 1, 2) for target j.



Key Results

The adversary can infer the actual value of the targeted SNPs
by up to 50%.
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Our proposed mechanism can achieve up to 50% better
privacy guarantees than the traditional DP-based solutions.



DP Inference Attacks
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Nour Almadhoun, Erman Ayday, and Ozgur Ulusoy
”Differential privacy under dependent tuples—the case of genomic 
privacy”
Bioinformatics, 2020
[Source code]

https://academic.oup.com/bioinformatics/article/36/6/1696/5614817
https://github.com/nourmadhoun/Differential-privacy-genomic-inference-attack


Threat Model
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Infer Target’s SNPs 



Membership Inference Attack
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Adversary 
Prior Info

Queries LLR Computations

The adversary knows:
➢ the set of MAF values of SNPs for individuals in the control group (MC)
➢ the set of MAF values of SNPs for a similar population including both the

case and control individuals (MP).

• Null hypothesis: target j is not a part of the
case.

• Alternative hypothesis: target j is part of the
case group S.

• The adversary receives the differentially-private
MAF value of a SNP i for individuals in the case

group ෪𝑀𝑆
𝑖 = 𝑀𝑆

𝑖+ 𝛿.



Key Results

An adversary can reveal up to 40% ~ 50% more sensitive
information about the genome of a target (compared to
original privacy guarantees of standard DP-based
mechanisms).
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The inference power of the adversary can be significantly
high in the membership attack even using inferred (and hence
partially incorrect) genomes.



DP Inference Attacks
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Nour Almadhoun, Erman Ayday, and Ozgur Ulusoy
”Inference attacks against differentially private query results from 
genomic datasets including dependent tuples” 
Bioinformatics, 2020
[Source code]

https://academic.oup.com/bioinformatics/article/36/Supplement_1/i136/5870519
https://github.com/nourmadhoun/Inference-Attacks-Differential-Privacy


Dataset Owner

Adversary

QueriesQueries

Responses
Responses

(𝐷𝑖 + 𝐷𝑝) 

෫(𝐷𝑖 + 𝐷𝑝)

          
         
      

          
         
      

          
             

        
             

                    
             

        

    

D

LPM 
Perturbation

Selective 
Data Hiding

Background Knowledge

Familial 
Relationship

Membership 
Information

Selective Hiding Model



Selective Hiding Model
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Key Results

We provide similar privacy guarantees of ℇ-differential
privacy, with higher utility than the state-of-the-art
schemes.
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Selective SNP Hiding
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Nour Almadhoun Alserr, Gulce Kale, Onur Mutlu, Oznur Tastan, Erman Ayday
“Near-Optimal Privacy-Utility Tradeoff in Genomic Studies Using Selective 
SNP Hiding”
arXiv, 2021
[Source code]

https://arxiv.org/abs/2106.05211
https://github.com/CMU-SAFARI/SNP-Selective-Hiding
https://github.com/nourmadhoun/Inference-Attacks-Differential-Privacy


GenShare Model



GenShare
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Nour Almadhoun Alserr, Ozgur Ulusoy, Erman Ayday, Onur Mutlu
“GenShare: Sharing Accurate Differentially-Private Statistics for Genomic 
Datasets with Dependent Tuples”
arXiv, 2021

https://arxiv.org/abs/2112.15109


Full Model
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