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Genome Sequencing
❑ Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:

▪ Personalized medicine

▪ Outbreak tracing

▪ Understanding of evolution

❑ Modern genome sequencing machines extract smaller randomized 

fragments of the original DNA sequence, known as reads

o Short reads: a few hundred base pairs, error rate of ∼0.1%

o Long reads: thousands to millions of base pairs, error rate of 10–15%
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Genome Sequence Analysis
❑ Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within          

the reference genome, and

o Finds the matches and differences between the read and 

the reference genome segment at that location 

❑ Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to 

account for sequencing errors and genetic variations in the reads

❑ Bottlenecked by the computational power and memory bandwidth 

limitations of existing systems
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GenASM: ASM Framework for GSA

❑ GenASM: First ASM acceleration framework for GSA

o Based upon the Bitap algorithm 

▪ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm

▪ Highly-parallel Bitap with long read support

▪ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 

with low-power and area-efficient hardware accelerators

Our Goal:

Accelerate approximate string matching 

by designing a fast and flexible framework, 

which can accelerate multiple steps of genome sequence analysis
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Use Cases & Key Results
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(1) Read Alignment

❑ 116× speedup, 37× less power than Minimap2 (state-of-the-art SW)

❑ 111× speedup, 33× less power than BWA-MEM (state-of-the-art SW)

❑ 3.9× better throughput, 2.7× less power than Darwin (state-of-the-art HW)

❑ 1.9× better throughput, 82% less logic power than GenAx (state-of-the-art HW)

(2) Pre-Alignment Filtering

❑ 3.7× speedup, 1.7× less power than Shouji (state-of-the-art HW)

(3) Edit Distance Calculation

❑ 22–12501× speedup, 548–582× less power than Edlib (state-of-the-art SW)

❑ 9.3–400× speedup, 67× less power than ASAP (state-of-the-art HW)
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Outline
❑ Introduction

❑ Background
o Genome Sequencing & Genome Sequence Analysis

o Approximate String Matching (ASM)

o ASM with Bitap Algorithm

❑ GenASM: ASM Acceleration Framework
o GenASM Algorithm

o GenASM Hardware Design

o Use Cases of GenASM

❑ Evaluation

❑ Conclusion
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Genome Sequencing

❑Goal is to determine the order of the DNA sequence 

(composed of A, C, G, Ts) in an organism’s genome

❑Challenges:

o There is no machine that takes long DNA as an input, and 

gives the complete sequence as output

oAll sequencing machines chop DNA into pieces and 

identify relatively small pieces (but not how they fit 

together)
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Genome Sequencing (cont’d.)
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Large DNA molecule

Small DNA fragments

Reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT
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Sequencing of COVID-19

Why genome sequencing and sequence data analysis 
are important?

❑To detect the virus from a human sample

❑To understand the sources and modes of transmission of the virus

❑To sequence the genome of the virus itself, COVID-19, in order to 
track the mutations in the virus

❑To explore the genes of infected patients

o To understand why some people get more severe symptoms 
than others

o To help with the development of new treatments
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Future of Genome Sequencing & Analysis
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ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Source: Prof. Onur Mutlu’s lecture slides

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf
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Billions of Short Reads
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3 4Variant Calling Scientific Discovery

300 M
bases/min

Illumina HiSeq4000  

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!

Source: Prof. Onur Mutlu’s lecture slides

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf
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Read Mapping
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Indexing

Seeding

Pre-Alignment Filtering

Read Alignment

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read
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❑ Sequenced genome may not exactly map to the reference genome due 

to genetic variations and sequencing errors

❑ Approximate string matching (ASM):

o Detect the differences and similarities between two sequences

o In genomics, ASM is required to:

▪ Find the minimum edit distance (i.e., total number of edits)

▪ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,      

along with their positions 

◦ 3M-1D-6M-1S-6M-1I-2M for the above example

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching
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Reference:

Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G

A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA C T G C TA C T T G

A A A AT G T T TA G T G C TA C T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T G

A A A AT G T T TA G T G C TA C T T GC

A

T

G
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Bitap Algorithm
❑ Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration

o Computes the minimum edit distance between a text (e.g., reference 

genome) and a pattern (e.g., read) with a maximum of k errors 

❑ Step 1: Pre-processing (per pattern)

o Generate a pattern bitmask (PM) for each character in the alphabet  

(A, C, G, T)

o Each PM indicates if character exists at each position of the pattern

❑ Step 2: Searching (Edit Distance Calculation)

o Compare all characters of the text with the pattern by using:

▪ Pattern bitmasks 

▪ Status bitvectors that hold the partial matches 

▪ Bitwise operations
[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.

[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Bitap Algorithm (cont’d.)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Bitap Algorithm (cont’d.)

Large number of 
iterations

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Bitap Algorithm (cont’d.)

Data dependency 
between iterations 

(i.e., no 
parallelization)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Bitap Algorithm (cont’d.)

❑ Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1

insertion         = R[d-1] << 1

match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

19

Does not store and process 
these intermediate bitvectors 
to find the optimal alignment 

(i.e., no traceback)
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Hardware

Algorithm

Limitations of Bitap

1) Data Dependency Between Iterations:

o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:

o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:

o Each bitvector has a length equal to the length of the pattern

o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:

o Text-level parallelism

o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:

o High memory bandwidth required to read and write the computed 

bitvectors to memory
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Outline
❑ Introduction

❑ Background
o Genome Sequencing & Genome Sequence Analysis

o Approximate String Matching (ASM)

o ASM with Bitap Algorithm

❑ GenASM: ASM Acceleration Framework
o GenASM Algorithm

o GenASM Hardware Design

o Use Cases of GenASM

❑ Evaluation

❑ Conclusion
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GenASM: ASM Framework for GSA
❑ Approximate string matching (ASM) acceleration framework based 

on the Bitap algorithm

❑ First ASM acceleration framework for genome sequence analysis

❑ We overcome the five limitations that hinder Bitap’s use in genome 

sequence analysis:

o Modified and extended ASM algorithm

▪ Highly-parallel Bitap with long read support

▪ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for both  

modified Bitap and novel traceback algorithms
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GenASM Algorithm

❑ GenASM-DC Algorithm: 

o Modified Bitap for Distance Calculation

o Extended for efficient long read support

o Besides bit-parallelism that Bitap has, extended for parallelism:

▪ Loop unrolling

▪ Text-level parallelism

❑ GenASM-TB Algorithm: 

o Novel Bitap-compatible TraceBack algorithm

o Walks through the intermediate bitvectors (match, deletion, 

substitution, insertion) generated by GenASM-DC 

o Follows a divide-and-conquer approach to decrease the    

memory footprint
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GenASM-DC GenASM-TB

GenASM Hardware Design

24

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM

GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

.

.

.
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GenASM Hardware Design

25

GenASM-DC GenASM-TB

Host 
CPU
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2
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3
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5 6

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Read 
bitvectors

6
Write 
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5

Generate 
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sub-text & 
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text 
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2
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1

Find the 
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GenASM Hardware Design

26

GenASM-DC GenASM-TB
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7

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Our specialized compute units and on-chip SRAMs help us to: 

→ Match the rate of computation with memory capacity and bandwidth 

→ Achieve high performance and power efficiency

→ Scale linearly in performance with                                                                     

the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design
❑ Linear cyclic systolic array based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint
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Processing Block (PB)
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192
insertion

deletion

subs

64

64

64

64

1

2

Next Rd 
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

❑ Very simple logic: 

❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors
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Use Cases of GenASM

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation

o Measure the similarity or distance between two sequences

❑ We also discuss other possible use cases of GenASM in our paper:

o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search

29
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Outline
❑ Introduction

❑ Background
o Genome Sequencing & Genome Sequence Analysis

o Approximate String Matching (ASM)

o ASM with Bitap Algorithm

❑ GenASM: ASM Acceleration Framework
o GenASM Algorithm

o GenASM Hardware Design

o Use Cases of GenASM

❑ Evaluation

❑ Conclusion
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Evaluation Methodology

❑We evaluate GenASM using:

o Synthesized SystemVerilog models of the GenASM-DC and 

GenASM-TB accelerator datapaths 

o Detailed simulation-based performance modeling

❑ 16GB HMC-like 3D-stacked DRAM architecture

o 32 vaults 

o 256GB/s of internal bandwidth, clock frequency of 1.25GHz

o In order to achieve high parallelism and low power-consumption

o Within each vault, the logic layer contains a GenASM-DC 

accelerator, its associated DC-SRAM, a GenASM-TB accelerator, 

and TB-SRAMs.
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Evaluation Methodology (cont’d.)

32

SW Baselines HW Baselines

Read Alignment
Minimap21

BWA-MEM2

GACT (Darwin)3

SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.
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Evaluation Methodology (cont’d.)

❑ For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)

▪ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating 

@2.60GHz with 64GB DDR4 memory

▪ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate

◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)

▪ Open-source RTL for GACT

▪ Data reported by the original work for SillaX

▪ GACT is best for long reads, SillaX is best for short reads
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Evaluation Methodology (cont’d.)
❑ For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)

▪ Using two datasets provided as test cases:

• 100bp reference-read pairs with an edit distance threshold of 5

• 250bp reference-read pairs with an edit distance threshold of 15

❑ For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)

▪ Using two 100Kbp and 1Mbp sequences with similarity ranging 

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)

▪ Using data reported by the original work

34
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Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W

Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

35
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Key Results – Area and Power
❑ Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:

o Both GenASM-DC and GenASM-TB operate @ 1GHz
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GenASM has low area and power overheads
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Key Results – Use Case 1

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences

37
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Key Results – Use Case 1 (Long Reads)
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Key Results – Use Case 1 (Long Reads)
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Key Results – Use Case 1 (Short Reads)
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GenASM achieves 111× and 158× speedup over 

12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 33× and 31×
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GenASM provides 1.9× better throughput and 
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compared to SillaX of GenAx
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Key Results – Use Case 2

41

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences
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Key Results – Use Case 2
❑ Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

42

GenASM is more efficient in terms of 

both speed and power consumption, 

while significantly improving the accuracy 

of pre-alignment filtering

HW
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Key Results – Use Case 3

43

(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads

oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation

oMeasure the similarity or distance between two sequences
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Key Results – Use Case 3

44

GenASM provides 146 – 1458× and 627 – 12501× speedup, 

while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP, 

while consuming 67× less power

146×
1458×

627×
12501×

HW

SW
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Outline
❑ Introduction

❑ Background
o Genome Sequencing & Genome Sequence Analysis

o Approximate String Matching (ASM)

o ASM with Bitap Algorithm

❑ GenASM: ASM Acceleration Framework
o GenASM Algorithm

o GenASM Hardware Design

o Use Cases of GenASM

❑ Evaluation

❑ Conclusion

45



Damla Senol Cali

Additional Details in the Paper

❑ Details of the GenASM-DC and GenASM-TB algorithms

❑ Big-O analysis of the algorithms

❑ Detailed explanation of evaluated use cases

❑ Evaluation methodology details                                             

(datasets, baselines, performance model)

❑ Additional results for the three evaluated use cases

❑ Sources of improvements in GenASM                             

(algorithm-level, hardware-level, technology-level)

❑ Discussion of four other potential use cases of GenASM 

46
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Conclusion
❑ Problem: 

o Genome sequence analysis is bottlenecked by the computational power and

memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

❑ Key Contributions: 

o GenASM: An approximate string matching (ASM) acceleration framework to 

accelerate multiple steps of genome sequence analysis

▪ First to enhance and accelerate Bitap for ASM with genomic sequences

▪ Co-design of our modified scalable and memory-efficient algorithms with 

low-power and area-efficient hardware accelerators

▪ Evaluation of three different use cases: read alignment, pre-alignment 

filtering, edit distance calculation

❑ Key Results: GenASM is significantly more efficient for all the three use cases 

(in terms of throughput and throughput per unit power) than state-of-the-art 

software and hardware baselines

47
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GenASM [MICRO 2020]

48

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, 

Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, 

Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, 

Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching 

Acceleration Framework for Genome Sequence Analysis”

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), 

Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
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Discussion 

❑ GenASM for generic text search

o Any other use cases?

❑ Most efficient porting locations of GenASM accelerators

❑ What about GenASM algorithms?

o GPU mapping?

o FPGA mapping?

❑ Portable sequencing devices + low-power, memory-efficient 

designs for sequence analysis

❑ HW/SW co-design for other emerging applications/domains

49
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Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis
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Read Mapping

❑ Read mapping: First key step in genome sequence analysis

o Align reads to one or more possible locations within the reference 

genome and 

o Find the matches and differences between the read and the 

reference genome segment at that location 

53
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Approximate String Matching (ASM)
Approximate string matching algorithms:

❑ Smith-Waterman (SW) algorithm [Smith+, Advances in Applied Mathematics 1981]

o Dynamic programming (DP) algorithm, with quadratic time and space 

complexity

o Common algorithm used by read mappers

❑ Myers’ bitvector algorithm [Myers, Journal of the ACM 1999]

o Transformed version of SW algorithm into bitvectors and bitwise operations

❑ Bitap algorithm [Baeza-Yates+, Communications of the ACM 1992]

o [Wu+, Communications of the ACM 1992] extended Bitap to perform 

approximate string matching

o Bitvectors and bitwise operations

We have focused on the Bitap algorithm.

→ Reason: Bitap algorithm can perform ASM with fast and simple bitwise operations,

which makes it amenable to efficient hardware acceleration.
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Example for the Bitap Algorithm
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Loop Unrolling in GenASM-DC

56

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −

#2 T1-R0 T0-R1 − −

#3 T2-R0 T1-R1 T0-R2 −

#4 T3-R0 T2-R1 T1-R2 T0-R3

#5 T0-R4 T3-R1 T2-R2 T1-R3

#6 T1-R4 T0-R5 T3-R2 T2-R3

#7 T2-R4 T1-R5 T0-R6 T3-R3

#8 T3-R4 T2-R5 T1-R6 T0-R7

#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7

#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1) 

data written to memory

data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7

#9 T1-R0

… …

#16 T1-R7

#17 T2-R0

… …

#24 T2-R7

#25 T3-R0
… …

#32 T3-R7
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Traceback Example with GenASM-TB

57

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Match(C)       Del(–)        Match(T)      Match(G) Match(A)
<3,0,1>       <2,1,1> <2,2,0>       <1,3,0> <0,4,0>

R0- : ....
R1-M : 0111

R0- : ....
R1-D : 1011

R0-M : 1011
R1- : ....

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Subs(C)       Match(T)      Match(G)       Match(A)
<3,1,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-S : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Insertion Example (Text Location=2)

Text[–]    Text[2]: T Text[3]: G    Text[4]: A

Ins(C)       Match(T)      Match(G)       Match(A)
<3,2,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-I : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....
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Short Reads vs. Long Reads
➢ Short Reads

❑ Sequences with tens to hundreds of bases

❑ Highly accurate sequences

❑ Output of SRS technologies (e.g., Illumina, Ion Torrent)

➢ Long reads

❑ Sequences with thousands or millions of bases

❑ Sequences with high error rates

❑ Output of LRS technologies (e.g., Oxford Nanopore Technologies, PacBio)
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Cost of Sequencing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

60

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Cost of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

61

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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COVID-19 Sequencing with ONT

• From ONT (https://nanoporetech.com/covid-19/overview)

62

https://nanoporetech.com/covid-19/overview
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COVID-19 Sequencing with ONT (cont’d.)

• From ONT (https://nanoporetech.com/covid-19/overview)

63

https://nanoporetech.com/covid-19/overview
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Nanopore Genome Assembly Pipeline

64

Basecalling

Read-to-Read Overlap Finding

Assembly

Read Mapping (Optional)

Polishing (Optional)

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly
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Nanopore Sequencing  & Tools

65

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can 
Alkan, and Onur Mutlu. "Nanopore Sequencing 
Technology and Tools for Genome Assembly: 
Computational Analysis of the Current State, Bottlenecks 
and Future Directions." Briefings in Bioinformatics (2018).
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