
P&S Accelerating Genomics
Lecture 9: GRIM-Filter

Jeremie S. Kim

ETH Zurich
Fall 2022

15 December 2022

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

GRIM-Filter:	
Fast	seed	location	filtering	in	DNA	read	mapping

using	processing-in-memory	technologies

n Genome Read Mapping is a very important problem and is the first
step in genome analysis

n Read Mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between

two strings, but is very expensive

n We propose an algorithm called GRIM-Filter
q Accelerates read mapping by reducing the number of required

alignments
q GRIM-Filter can be accelerated using processing-in-memory

n Adds simple logic into 3D-Stacked memory
n Uses high internal memory bandwidth to perform parallel filtering

n GRIM-Filter with processing-in-memory delivers a 3.7x speedup

3

Executive	Summary

1.	Motivation	and	Goal

2.	Background Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Motivation	and	Goal
n Sequencing: determine the [A,C,G,T] series in DNA strand

n Today’s machines sequence short strands (reads)
q Reads are on the order of 100 – 20k base pairs (bp)
q The human genome is approximately 3 billion bp

n Therefore genomes are cut into reads, which are sequenced
independently, and then reconstructed
q Read mapping is the first step in analyzing someone’s genome to

detect predispositions to diseases, personalize medicine, etc.

n Goal: We want to accelerate end-to-end performance
of read mapping

6

1.	Motivation	and	Goal

2.	Background:	Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Background:	Read	Mappers
We now have sequenced reads and want a full genome

8

via Read Mapping

We map reads to a known reference genome (>99.9%
similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in reads
perfectly match in the reference genome

… G A C T G T G T C G A …

G A C T G T G T C A A

✔✔✔✔✔✔✔✔✔✘✔

We can use a hash table to help quickly map the reads!

1.	Motivation	and	Goal

2.	Background:	Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Generating	Hash	Tables	

10

To map any reads, generate a hash table per reference genome.

A A A A A 12 35 502 610 721 989

A A A A C 13 609 788

A A A A T 36 434

G G G G G 52 67 334 634 851

…

k-length sequences
(k-mers)

Location list where k-mer occurs
in the reference genome

@36: AAAAT

@434: AAAAT

We can query the table with substrings from reads
to quickly find a list of possible mapping locations

Aligning .. .Mismatch

8943715641401203

1564
894 1203
37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping

11

Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203

1564

We want to filter these out
so we do not waste time

trying to align them

Aligning .. .Match! Aligning .. .Mismatch

Aligning .. .MismatchAligning .. .Mismatch

✘ ✘
✘✘

99.9% of locations
result in a mismatch

Location	Filtering
n Alignment is expensive and requires the use of O(n2)

dynamic programming algorithm
q We need to align millions to billions of reads

n Modern read mappers reduce the time spent on alignment
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly

n Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]

12

Our goal is to accelerate read mapping
by improving the filtering step

1.	Motivation	and	Goal

2.	Background:	Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Filter

8943715641401203

1564
894 1203
37 140

Hash Table Based Read Mapping

6

Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping

14

Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203

1564

Aligning .. .Match! Aligning .. .Mismatch

✘✘✘

False
Negative

✘

1.	Motivation	and	Goal

2.	Background: Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin

3. Integrating	GRIM-Filter	into	a	Mapper

16

GRIM-Filter:	Bins

17

n We partition the genome into large sequences (bins).

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector
AAAAA
AAAAC
AAAAT

…
CCCCC
CCCCT
CCCCG

…
GGGGG

AAAAA
exists in
bin x

CCCCT
doesn’t
exist in
bin x

q Represent each bin with a bitvector
that holds the occurrence of all
permutations of a small string (token) in
the bin

q To account for matches that straddle
bins, we employ overlapping bins
n A read will now always completely fall within

a single bin

GRIM-Filter:	Bitvectors

18

… C G T G A G T C …

Bin x
0
…

…

…

…

…

Bi
n

x
Bi

tv
ec

to
r
AAAAA

…
CGTGA

…
TGAGT

…
GAGTC

…
GTGAG

…

C G T G AG T G A GT G A G TG A G T C

10

0

0

0

1

1

1

GRIM-Filter:	Bitvectors

19

Storing all bitvectors
requires 4! ∗ 𝑡 bits
in memory,
where t = number
of bins.

For bin size ~200,
and n = 5,
memory footprint
~3.8 GB

Reference
Genome

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2

1
0
0
0
1
1
1
.
.
.
.
1
1
1
0

0
0
1
0
1
0
1
.
.
.
.
0
1
1
0

1
0
1
1
1
1
1
.
.
.
.
1
0
0
0

AAAAA
AAAAC
AAAAG
AAAAT
AAACA
AAACC
AAACG

.

.

.

.
TTTTA
TTTTC
TTTTG
TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

Le
ng
th
	=
	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

tokens

(a)

(b)

���

bin4

AAAAA
AAAAC
AAAAG
AAAAT
.

CCCCT
.
.
.
.

GCATG
.

TTGCA
.

TTTTT

1
1
0
0
.
1
.
.
.
.
1
.
1
.
0

0
1
0
.
1
.
1
.
1
.
1
.
.
.
0

AAAAA
AAAAC
AAAAG

.
AGAAA

.
GAAAA

.
GACAG

.
GCATG

.

.

.
TTTTT

� � �

b1 b2

tokens

Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin

3. Integrating	GRIM-Filter	into	a	Mapper

20

TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter:	Checking	a	Bin
How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

3

2

4 5

1
0
1

0
1
1

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare

20

Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin

3. Integrating	GRIM-Filter	into	a	Mapper

22

Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin

3. Integrating	GRIM-Filter	into	a	Mapper

24

Integrating	GRIM-Filter	into	a	Read	Mapper

GRIM-Filter:
Seed Location Checker

0001010 011010...

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010 011010...

020128 020131 414415...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference
segment

@ 020131
reference
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3

1.	Motivation	and	Goal

2.	Background: Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Key	Properties	of	GRIM-Filter
1. Simple Operations:

q To check a given bin, find the sum of all bits corresponding to
each token in the read

q Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

27

3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing-in-Memory, offloading

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and

appropriately distribute bitvectors throughout memory

28

DRAM Layers

Logic Layer

TSVs

DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and

appropriately distribute bitvectors throughout memory

29
http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and

appropriately distribute bitvectors throughout memory

30
http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

GRIM-Filter	in	3D-Stacked	DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many
bins in parallel

31

DRAM	Layers

Logic	Layer

TSVs

Bank

Row	Buffer

Bank
Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault

...

DRAM	Layers

Logic	Layer

TSVs

Bank

Bi
tv
ec
to
rf
or
	b
in
	0

Bi
tv
ec
to
rf
or
	b
in
	1

Bi
tv
ec
to
rf
or
	b
in
	2

Bi
tv
ec
to
rf
or
	b
in
	t–

1

Row	Buffer

Bank
Row	0:	AAAAA
Row	1:	AAAAC
Row	2:	AAAAG

.

.

.
Row	R–1:	TTTTT

.	.	.

Vault

GRIM-Filter	in	3D-Stacked	DRAM

n Customized logic for accumulation and comparison
per genome segment
q Low area overhead, simple implementation
q For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and

comparators in logic layer

32

DRAM	Layers

Logic	Layer

TSVs

Bank
Seed	Location	Filter	Bitmask

Row	Data	Register

In
cr.

Ac
cu
m
ul
at
or

Co
m
pa
ra
to
r

Pe
r-B

in
	

Lo
gi
c	M

od
ul
e

.			

Per-Vault
Custom	GRIM-Filter	Logic

Vault

Details are in the paper

1.	Motivation	and	Goal

2.	Background: Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Methodology
n Performance simulated using an in-house 3D-Stacked DRAM

simulator

n Evaluate 10 real read data sets (From the 1000 Genomes
Project)
q Each data set consists of 4 million reads of length 100

n Evaluate two key metrics
q Performance
q False negative rate

§ The fraction of locations that pass the filter but result in a mismatch

§ Compare against a state-of-the-art filter, FastHASH [Xin+, BMC
Genomics 2013] when using mrFAST, but GRIM-Filter can be
used with ANY read mapper

34

GRIM-Filter	Performance

35

2.1x average performance benefit
1.8x-3.7x performance benefit across real data sets

0
10
20
30
40
50
60
70

ER
R2
40
72
6-1

ER
R2
40
72
6-2

ER
R2
40
72
7-1

ER
R2
40
72
7-2

ER
R2
40
72
8-1

ER
R2
40
72
8-2

ER
R2
40
72
9-1

ER
R2
40
72
9-2

ER
R2
40
73
0-1

ER
R2
40
73
0-2

Av
era
ge

e = 0.05

Sequence Alignment
Error Tolerance (e)

Ti
m

e
(×

10
00

 s
ec

on
ds

) FastHASH filter GRIM-Filter
Benchmarks and their Execution Times

GRIM-Filter gets performance due to its hardware-software co-design

GRIM-Filter	False	Negative	Rate

36

6.0x average reduction in False Negative Rate
5.6x-6.4x False Negative reduction across real data sets

Fa
ls

e
N

eg
at

iv
e

Ra
te

e = 0.05

FastHASH filter GRIM-Filter

0.0
0.1
0.2
0.3
0.4
0.5

ER
R2
40
72
6-1

ER
R2
40
72
6-2

ER
R2
40
72
7-1

ER
R2
40
72
7-2

ER
R2
40
72
8-1

ER
R2
40
72
8-2

ER
R2
40
72
9-1

ER
R2
40
72
9-2

ER
R2
40
73
0-1

ER
R2
40
73
0-2

Av
era
ge

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0

20

40

60

Ex
ec
ut
io
n	T

im
e	
(×
10
00
	se

co
nd
s)

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

mrFAST with	FastHASH GRIM-3D

Benchmarks and their False Negative Rates

Sequence Alignment
Error Tolerance (e)

GRIM-Filter utilizes more information available in the read to filter

Other	Results	in	the	Paper	

n Sensitivity of execution time and false negative rates to
error tolerance of string matching

n Read mapper execution time breakdown

n Sensitivity studies on the filter
q Token Size
q Bin Size
q Error Tolerance

37

1.	Motivation	and	Goal

2.	Background: Read	Mappers

4.	Mapping	GRIM-Filter	to	3D-Stacked	Memory

5.	Results

3.	Our	Proposal:	GRIM-Filter

GRIM-Filter	Outline

6. Conclusion

a.	Hash	Table	Based
b.	Hash	Table	Based	with	Filter

Conclusion
We propose an in-memory filtering algorithm to accelerate end-to-end
read mapping by reducing the number of required alignments

Key ideas:
n Introduce a new representation of coarse-grained segments of the

reference genome
n Use massively-parallel in-memory operations to identify read

presence within each coarse-grained segment

Key contributions and results:
n Customized filtering algorithm for 3D-Stacked DRAM
n Compared to the previous best filter

q We observed 1.8x-3.7x read mapping speedup
q We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper

39

Jeremie S. Kim,
Damla Senol Cali, Hongyi Xin, Donghyuk Lee,

Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

GRIM-Filter:	
Fast	seed	location	filtering	in	DNA	read	mapping

using	processing-in-memory	technologies

P&S Accelerating Genomics
Lecture 9: GRIM-Filter

Jeremie S. Kim

ETH Zurich
Fall 2022

15 December 2022

42

Package Substrate

Interposer

PHY PHY

TSV
MicrobumpHBM DRAM Die

Logic Die
. . .

Processor (GPU/CPU/SoC) Die

. . .

3D-Stacked DRAM

43

44

45

0.0
0.1
0.2
0.3
0.4
0.5

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

FastHASH filter GRIM-Filter

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0

20

40

60

Ex
ec
ut
io
n	T

im
e	
(×
10
00
	se

co
nd
s)

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

mrFAST with	FastHASH GRIM-3D

Fa
lse

	N
eg
at
ive

	R
at
e

GOOD	ONE	

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Fa
lse

	N
eg
at
ive

	R
at
e

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

FastHASH filter GRIM-Filter

0.0
0.1
0.2
0.3
0.4
0.5

BAD	ONE	

46

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0
10
20
30
40
50
60
70

Ex
ec

ut
io

n
Ti

m
e

(×
10

00
 s

ec
on

ds
)

Sequence Alignment
Error Tolerance (e)

e = 0.00

e = 0.01

e = 0.02

e = 0.03

e = 0.04

e = 0.05

mrFAST with FastHASH GRIM-3D

GRIM-Filter:	Error	Tolerance

one substitution error
affects four tokens

when n = 4

Threshold = read_length – (n–1) –

n × éread_length × eù

number of errors
allowed per read

maximum
number of tokens

that could contain errors

total number of tokens in a read

tokens affected

by the error

single substitution error

More details in the paper

GRIM-Filter can support different error tolerances by
simply changing the threshold value

22

