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n Genome Read Mapping is a very important problem and is the first 
step in genome analysis

n Read Mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an algorithm called GRIM-Filter
q Accelerates read mapping by reducing the number of required 

alignments
q GRIM-Filter can be accelerated using processing-in-memory

n Adds simple logic into 3D-Stacked memory
n Uses high internal memory bandwidth to perform parallel filtering

n GRIM-Filter with processing-in-memory delivers a 3.7x speedup
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Motivation	and	Goal
n Sequencing: determine the [A,C,G,T] series in DNA strand 

n Today’s machines sequence short strands (reads)
q Reads are on the order of 100 – 20k base pairs (bp)
q The human genome is approximately 3 billion bp

n Therefore genomes are cut into reads, which are sequenced 
independently, and then reconstructed 
q Read mapping is the first step in analyzing someone’s genome to 

detect predispositions to diseases, personalize medicine, etc.

n Goal: We want to accelerate end-to-end performance     
of read mapping
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Background:	Read	Mappers
We now have sequenced reads and want a full genome
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via Read Mapping

We map reads to a known reference genome (>99.9% 
similarity across humans) with some minor errors allowed

Because of high similarity, long sequences in reads
perfectly match in the reference genome

… G   A   C   T   G   T   G   T   C   G   A   …

G   A   C   T   G   T   G   T   C   A   A

✔✔✔✔✔✔✔✔✔✘✔

We can use a hash table to help quickly map the reads!
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Generating	Hash	Tables	
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To map any reads, generate a hash table per reference genome.

A   A   A   A   A 12    35    502    610    721    989

A   A   A   A   C 13    609    788

A   A   A   A   T 36   434

G   G   G   G   G 52    67    334    634    851 

…

k-length sequences 
(k-mers)  

Location list where k-mer occurs 
in the reference genome

@36:  AAAAT

@434:  AAAAT

We can query the table with substrings from reads 
to quickly find a list of possible mapping locations



Aligning .. .Mismatch

8943715641401203

1564
894 1203
37 140

Hash Table Based Read Mapping
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Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping
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Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203 

1564

We want to filter these out 
so we do not waste time 

trying to align them

Aligning .. .Match! Aligning .. .Mismatch

Aligning .. .MismatchAligning .. .Mismatch

✘ ✘
✘✘

99.9% of locations 
result in a mismatch



Location	Filtering
n Alignment is expensive and requires the use of O(n2) 

dynamic programming algorithm 
q We need to align millions to billions of reads 

n Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways:
1. Optimize the algorithm for alignment
2. Reduce the number of alignments necessary by filtering

out mismatches quickly 

n Both methods are used by mappers today, but filtering has 
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013]
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Our goal is to accelerate read mapping
by improving the filtering step 
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Filter

8943715641401203

1564
894 1203
37 140

Hash Table Based Read Mapping
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Hash Table

Read Sequence

Hash	Tables	in	Read	Mapping
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Hash Table

Read Sequence (100 bp)

✔

Reference Genome

37 140
894 1203 

1564

Aligning .. .Match! Aligning .. .Mismatch

✘✘✘

False 
Negative

✘
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Our	Proposal:	GRIM-Filter

1. Data	Structures:	Bins	&	Bitvectors

2. Checking	a	Bin

3. Integrating	GRIM-Filter	into	a	Mapper
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GRIM-Filter:	Bins
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n We partition the genome into large sequences (bins). 

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC …

Bin x - 3

Bin x - 2

Bin x - 1

Bin x

1
0
1
…
1
0
0
…
1

Bitvector
AAAAA
AAAAC
AAAAT

…
CCCCC
CCCCT
CCCCG

…
GGGGG

AAAAA
exists in 
bin x

CCCCT
doesn’t 
exist in 
bin x

q Represent each bin with a bitvector
that holds the occurrence of all 
permutations of a small string (token) in 
the bin

q To account for matches that straddle 
bins, we employ overlapping bins
n A read will now always completely fall within 

a single bin



GRIM-Filter:	Bitvectors
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… C     G     T     G     A     G     T     C …

Bin x
0
…

…

…

…

…

Bi
n 

x 
Bi

tv
ec

to
r
AAAAA

…
CGTGA

…
TGAGT

…
GAGTC

…
GTGAG

…

C     G     T     G     AG     T     G     A     GT     G     A     G     TG     A     G     T     C
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0

0

0

1

1

1



GRIM-Filter:	Bitvectors
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Storing all bitvectors
requires 4! ∗ 𝑡 bits
in memory, 
where t = number 
of bins.

For bin size ~200, 
and n = 5, 
memory footprint
~3.8 GB 

Reference
Genome
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.
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.
.
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.
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.
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.
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.
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.

.

.
TTTTT

� � � �

b1 b2

b2:	bitvector
for	bin2
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.
.
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0
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.
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TTTTT

*	t	=	number	of	bins

bt-2 bt-1	bt *

Le
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	4
5

GACAG
exists	in	
2nd bin

TTTTT	
doesn’t	
exist	in	
2nd bin

bin2

bin3
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bin1

tokens

(a)

(b)

���
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TTGGAGAACTAACTTACTTGCTTGG
INPUT: Read Sequence r

GAACTTGGAGTCTA     CGAG... Read bitvector for bin_num(x)

...

1

+ ≥ Threshold?

Send to
Read Mapper
for Sequence

Alignment

tokens
Discard

NO YES

Sum

GRIM-Filter:	Checking	a	Bin
How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment
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2

4 5

1
0
1

0
1
1 

1
0
0

...

...

Get tokens

Match tokens to bitvector

Compare
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Integrating	GRIM-Filter	into	a	Read	Mapper

GRIM-Filter:
Seed Location Checker

0001010     011010... ......

GAACTTGCGAG GTATT ...INPUT: Read Sequence

GRIM-Filter:
Filter Bitmask Generator

Seed Location Filter Bitmask
0001010     011010... ......

020128 020131 414415... ... ... ...

KEEP

x
DISCARD

KEEP

INPUT: All Potential Seed Locations

Read Mapper:
Sequence Alignment

Reference Segment Storage

Edit-Distance Calculation

reference 
segment

@ 020131
reference 
segment

@ 414415. . .

OUTPUT: Correct Mappings

1

2

4

3
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Key	Properties	of	GRIM-Filter
1. Simple Operations:

q To check a given bin, find the sum of all bits corresponding to 
each token in the read

q Compare against threshold to determine whether to align

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM
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3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing-in-Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory

28

DRAM Layers

Logic Layer

TSVs



DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked	Memory

n 3D-stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer
q Logic Layer enables Processing in Memory, offloading 

computation to this layer and alleviating the memory bus
q Embed GRIM-Filter operations into DRAM logic layer and 

appropriately distribute bitvectors throughout memory
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GRIM-Filter	in	3D-Stacked	DRAM

n Each DRAM layer is organized as an array of banks
q A bank is an array of cells with a row buffer to transfer data

n The layout of bitvectors in a bank enables filtering many 
bins in parallel
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GRIM-Filter	in	3D-Stacked	DRAM

n Customized logic for accumulation and comparison 
per genome segment
q Low area overhead, simple implementation
q For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and 

comparators in logic layer
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Details are in the paper
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Methodology
n Performance simulated using an in-house 3D-Stacked DRAM 

simulator

n Evaluate 10 real read data sets (From the 1000 Genomes 
Project)
q Each data set consists of 4 million reads of length 100

n Evaluate two key metrics
q Performance
q False negative rate

§ The fraction of locations that pass the filter but result in a mismatch

§ Compare against a state-of-the-art filter, FastHASH [Xin+, BMC 
Genomics 2013] when using mrFAST, but GRIM-Filter can be 
used with ANY read mapper
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GRIM-Filter	Performance
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2.1x average performance benefit
1.8x-3.7x performance benefit across real data sets

0
10
20
30
40
50
60
70

ER
R2
40
72
6-1

ER
R2
40
72
6-2

ER
R2
40
72
7-1

ER
R2
40
72
7-2

ER
R2
40
72
8-1

ER
R2
40
72
8-2

ER
R2
40
72
9-1

ER
R2
40
72
9-2

ER
R2
40
73
0-1

ER
R2
40
73
0-2

Av
era
ge

e = 0.05

Sequence Alignment
Error Tolerance (e)

Ti
m

e 
(×

10
00

 s
ec

on
ds

) FastHASH filter GRIM-Filter
Benchmarks and their Execution Times

GRIM-Filter gets performance due to its hardware-software co-design



GRIM-Filter	False	Negative	Rate
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6.0x average reduction in False Negative Rate
5.6x-6.4x False Negative reduction across real data sets
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Other	Results	in	the	Paper	

n Sensitivity of execution time and false negative rates to 
error tolerance of string matching

n Read mapper execution time breakdown

n Sensitivity studies on the filter
q Token Size
q Bin Size
q Error Tolerance
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Conclusion
We propose an in-memory filtering algorithm to accelerate end-to-end 
read mapping by reducing the number of required alignments

Key ideas:
n Introduce a new representation of coarse-grained segments of the 

reference genome 
n Use massively-parallel in-memory operations to identify read 

presence within each coarse-grained segment 

Key contributions and results:
n Customized filtering algorithm for 3D-Stacked DRAM
n Compared to the previous best filter

q We observed 1.8x-3.7x read mapping speedup
q We observed 5.6x-6.4x fewer false negatives

GRIM-Filter is a universal filter that can be applied to any read mapper 

39



Jeremie S. Kim, 
Damla Senol Cali, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu

GRIM-Filter:	
Fast	seed	location	filtering	in	DNA	read	mapping

using	processing-in-memory	technologies



P&S Accelerating Genomics
Lecture 9: GRIM-Filter

Jeremie S. Kim

ETH Zurich
Fall 2022

15 December 2022



42

Package Substrate

Interposer

PHY PHY

TSV
MicrobumpHBM DRAM Die

Logic Die
.  .  .

Processor (GPU/CPU/SoC) Die

.   .   .

3D-Stacked DRAM



43



44



45

0.0
0.1
0.2
0.3
0.4
0.5

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

FastHASH filter GRIM-Filter

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0

20

40

60

Ex
ec
ut
io
n	T

im
e	
(×
10
00
	se

co
nd
s)

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

mrFAST with	FastHASH GRIM-3D

Fa
lse

	N
eg
at
ive

	R
at
e

GOOD	ONE	

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

0.0
0.1
0.2
0.3
0.4
0.5

Fa
lse

	N
eg
at
ive

	R
at
e

Sequence	Alignment
Error	Tolerance	(e)

e =	0.00

e =	0.01

e =	0.02

e =	0.03

e =	0.04

e =	0.05

FastHASH filter GRIM-Filter

0.0
0.1
0.2
0.3
0.4
0.5

BAD	ONE	



46

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

0

5

10

15

0
5

10
15
20
25
30

0
10
20
30
40
50
60
70

Ex
ec

ut
io

n 
Ti

m
e 

(×
10

00
 s

ec
on

ds
)

Sequence Alignment
Error Tolerance (e)

e = 0.00

e = 0.01

e = 0.02

e = 0.03

e = 0.04

e = 0.05

mrFAST with FastHASH GRIM-3D



GRIM-Filter:	Error	Tolerance

one substitution error 
affects four tokens

when n = 4

Threshold =  read_length – (n–1)  –

n × éread_length × eù

number of errors
allowed per read

maximum
number of tokens

that could contain errors

total number of tokens in a read

tokens affected

by the error

single substitution error

More details in the paper

GRIM-Filter can support different error tolerances by 
simply changing the threshold value
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