P&S Heterogeneous Systems

Programming Heterogeneous Computing
Systems with GPUs and other Accelerators

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2022
3 October 2022




P&S: Heterogeneous Systems (1)
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The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical
knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the
methodology of project work.

The increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into
heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them.
More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make their outstanding
processing capabilities available to many workloads beyond graphics. GPUs have been a critical key to the recent rise of Machine Learning and
Artificial Intelligence, which took unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example
computing device that can deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of
specialized accelerators (e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute
capabilities near or inside memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine
learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.

- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory
scheduling, etc.

- Workload characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture projects for heterogeneous systems, this is your
P&S. You will have the opportunity to program heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose
algorithmic changes to important applications to better leverage the compute power of heterogeneous systems, understand different workloads and
identify the most suitable device for their execution, design optimized scheduling techniques, etc. In general, the goal will be to reach the highest
performance reported for a given important application.

The course is conducted in English.
The course has two main parts:
Weekly lectures on GPU and heterogeneous programming.

Hands-on project: Each student develops his/her own project.

Course website: https:/safari.ethz.ch/projects_and_seminars/doku.php?id=heterogeneous_systems =

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2022\W&ansicht=KATALOGDATEN&lerneinheitld=164141&lang=en
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The increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into
heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them.
More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make

their outstanding processing capabilities available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Atrtificial Intelligence, which took

unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example computing device that can
deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators
(e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside
memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine
learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.

- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory
scheduling, etc.

- Workload characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2022\W&ansicht=KATALOGDATEN&lerneinheitld=164141&lang=en 3
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Flynn’s Taxonomy ot Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor



SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension

Instructions

o Single instruction acts on multiple pieces of data at once

o Common application: graphics

a Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers

Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32

24 23

16 15

87

0  Bit position

$s0

$s1

$s2




Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A /a array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind
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Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.
Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.



MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x{i] == Blue) new_imageli] =ylil;

else new_imageli] = x[i;

MM1

Image x[ | MM3

Bit mask Mm1

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.



MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
M4 (B Y, #[@Y, df@ Y. Vel YEP Y EP Y @F V.4 Mm1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0~0000]0xFFFF J0xFFFF|
MM 1 loxoooo}0><0000|0><FFFF|0xFFﬂ0x0000|oxooooloxFFFF10xFFFﬂ MM X, | X | Xs | X | X [ X | X X |
MM4 [0x0000]0x0000]® Y5 ¥ Y, #0x0000[0x0000[% Y, & Yo& Mm1[ X, | X; Jox0000]0x0000] X5 [ X [0x0000|0x0006|

g

POR MM4, MM1

MM X, | X [PYs TR Y] Xs | X [P Y 9P Yo

for (i=0; i<image_size; i++) {
if (x[i] == Blue) new_imagelil =ylil;
else new_imageli] = x[il;

}

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movag- g mm3, memt. -/ Load _éight pixels from
a S woman’s image
Movg ~~ mmd4,mem2 - /*Load eight pixels from the

o : blossom image
Pcmpegb. mm1, mm3

Pand  mmd4, mm1.
Pandn  mmi, mm3

Por mmd, mmt.

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.
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Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous

systems

More suitable devices for each type of workload
Increased performance and energy efficiency

(CPU ( CPU CPU e N
core || core | | core
_ 0 1 N-1 GPU
[ L1 ][ L1 ][ L1 ] x J) Scratchpad | pMm
L2 ] L2 4
A A |
| I I
I ( Coherent interconnect ) |
| i' LLC ' !
( Crossbar )

DRAM controller

o [ | om

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

A
‘ Non-coherent bus

I Coherent bus
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Goals of this P&S Course




P&S Heterogeneous Systems: Contents

We will introduce the need for heterogeneity in current
computing systems, in order to achieve high performance and
energy efficiency

You will get familiar with some of the different heterogeneous
devices that are available in computing systems

You will learn GPU programming with CUDA/OpenCL

You will learn workload distribution and parallelization strategies
that leverage heterogeneous devices

You will work hands-on: analyzing workloads, programming
heterogeneous architectures, proposing scheduling/offloading
mechanisms, etc.

11



NVIDIA A100 (2020)

PCI Express 4.0 Host Interface

1

Memory Ct

Memory C

Memory Controller

Memory C
13jj03u0Q AlowRp

J13)j0u09 Alowsapy

Memory C

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache



https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Core

L1 Instruction Cache

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Data Cache / Shared Memory

Tex

GPU compute throughput:
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

Sparse Tensor I
Core

Select

T

Input activations

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

R /
=

Output activations

Non-zero
data values
Fine-tuned sparse and
compressed weights

Dense trained
weights

D

Fine-tune weights

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA H100 Block Diagram

PCl Express 5.0 Host Interface

Memory Controller
9ll01U0) Alowaly
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23 1 1+ 32
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

144 cores on the full GH100
60MB L2 cache



https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

Lt nsuction e 48 TFLOPS Single Precision*
erpLsot:::::'I:‘(’:zc!::':dlclk) erpL:cI:::::?‘(’:z‘:ha::lclk) 24 TF LO PS DO u b I e P rec i S i O n *

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 800 TF LO PS ( F P 1 6, Ten SO r CO reS)
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP64
TENSOR CORE FP32 FP32 FP64 TENSOR CORE
4™ GENERATION FP32 FP32 FP64 4" GENERATION
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP64
FP32 FP64
FP32 FP64
FP32 FP64 Ve \
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST SFU FP8 FPs
. matrix matrix
< Range Precision
LO Instruction Cache LO Instruction Cache k=] ¢ .
- = — R ——— » exponen mantissa
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk) e8 m23 multiply
FP32 [T
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP16 @—D:?f[] m10 accumulate into
INT32 FP32 FP64 INT32 FP32 FPe4 FP32 or FP16
INT32 FP32 FP64 INT32 FP32 e8 m7
INT32 FP32 FP64 INT32 FP32
INT32 FP32 FP64 INT32 FP32 BF16 ST bias/act/...
INT32 FP32 FP64 INT32 7] ) e5 | m2
INT32 FP64 INT32
INT32 FP64 INT32 convert
INT32 FP64 TENSOR CORE INT32 TENSOR CORE
INT32 4™ GENERATION INT32 4™ GENERATION
INT32 INT32 FP32|FP16|BF16 |FP8
INT32 INT32

INT32 INT32 matrix SM
INT32 INT32 - )
INT32 INT32

INT32 INT32

INT32 INT32 Allocate 1 bit to either Support for multiple accumulator
g s s S S SS s s S range or precision and output types

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 15
* Preliminary performance estimates
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Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip (2019

= 400,000 cores

J TS
T TAIWAN 1723A1

PFBY82.M00 ‘&i
8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2
NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning 16

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2
NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning 17
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
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SAFARI Live Seminar: Sean Lie

»
Share

@ SAFARI Live Seminar - Thinking Outside the Die: Architecting the ML Accel...

Thinking Outside the Die:

Architecting the ML Accelerator of the Future
>

Sean Lie
Co-founder & Chief HW Architect, Cerebras

Watch on (3 Youlube

SAFARI Live Seminar: Sean Lie, 28 Feb 2022

Posted on January 19, 2022 by ewent

Join us for our SAFARI Live Seminar with Sean Lie, Cerebras Systems
Monday, February 28 2022 at 6:00 pm Zurich time (CET)

Sean Lie, co-founder and Chief Hardware Architect at Cerebras Systems
Thinking Outside the Die: Architecting the ML Accelerator of the Future

Livestream on YouTube Link

https://safari.ethz.ch/safari-live-seminar-sean-lie-28-feb-2022/
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Google TPU Generation I (~20106)

—> —> —>» Data

R

VR

i Partial Sums
o[22 [
] | ,| ) ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
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Google TPU Generation 11 (2017)

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

20



Google TPU Generation 111 (2019)

Core Core Core
scalar/ vector scalar/ vector scalar/

units units vector units
Dooooooo oooooooo [ | HEEEEEER | REEEEEEE
D0ooooooo oooooooo i} e HBM
Doooooooo Oooooooo 8] SENEEEEE (I EEEEEEE 16GB
oooooooo OOoooooao al SIEEEEEE | FEEEEEER
DOooooooo DEpEEEED i EEEEEEEN || EEEEREEE
oooooooo oooooooo @ SEEEEEEE | IEEEEEEN
oooooooo oooooooo a SENEEEEE (I EEEEEEE
Doooooooo Oooooooo B SENEEEEE (A EEEEEEE

MXU MXU MXU MXU

128x128 128x128 128x128 128x128

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

32GB HBM per chip
vs 16GB HBM in TPU2

4 Matrix Units per chip 90 TFLOPS per chip
vs 2 Matrix Units in TPU2 vs 45 TFLOPS in TPU2

https://cloud.google.com/tpu/docs/system-architecture 2 1



Google TPU Generation IV (2019)
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250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @

« Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
22




An Example Modern Systolic Array: TPU (11

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

N

I
Y
: L j Pairtial Sums
ey

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
23




An F anmple Modern Systolic Array: TPU (I11)
@ | DDR3 DRAM Chips | |

) 30 GiB/s
14 GiB/s DDR3 30 GiB/s M \yeight FIFO
Interfaces |::> (Weight Fetcher)
o o
e N BEEE
- SEEH
badl _ Unified - Matrix Multiply
g £ . @ 10 GiB/s Buffer Systolic Tnit
14 GiB/s | © % 14 GiB/s “E (Loca| Data 1 '(64!'(; er uyuw’
(] % % |
<:::> o- <::> 8 Activation Setup j I
o £ Storage) J
§ |
= - \ j & Accumulators
1 Activation
T 167 GiB/s
—__J = Normalize / Pool
|:| Off-Chip /0 l |
I:I Data Buffer
— [ = e
. Control

Not to Scale

Figure 1. TPU Block Diagram. The main computation part 1s the
yellow Matrix Multiply unit in the upper right hand corner. Its inputs
are the blue Weight FIFO and the blue Unified Buffer (UB) and its
output 1s the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB.
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Xilinx Versal ACAP (2020) (I)

= Three compute engines inside the same chip

o Different workloads, different devices

Scalar Processing Adaptable Hardware Vector Processing

(e.g., GPU, DSP)

E =CINE SUIEE G

2°n| (B°n| (B°n
FEE [olo-
& n| [®s| (@

Complex Algorithms Processing of Domain-specific

and Decision Making Irregular Data Structures Parallelism

Genomic Sequencing

Latency
Critical Workloads
Real-Time Control

Signal Processing
Complex Math, Convolutions

Sensor Fusion Video and
Pre-processing, Programmable I/O Image Processing

https://www.xilinx.com/products/silicon-devices/acap/versal.html 25
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Xilinx Versal ACAP (2020) (II)

= Three compute engines inside the same chip
o Scalar cores, reconfigurable engines, vector processors

Scalar Engines Adaptable Engines Intelligent Engines
Arm - ) ~
Dual-Core - Al Engines
Cortex-A72
. KR
J
- ~ _
DSP Engines
v ' W
\. J
= Network-on-Chip S
| mP || 112Gbis |
PCle DDR Nx 100G 600G Direct
ceix HIEM tpopR | VoS || s8abs || Ehoret || Gores RF
[ saverio | [ s2abs |

'

https://www.xilinx.com/products/silicon-devices/acap/versal.html
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Tesla Dojo (2022) (I)

Tesla Dojo Chip & System
V1 Dojo Training Matrix

Switch

1
| ! | ! |

DNIC DNIC DNIC DNIC DNIC

CPU CPU CPU CPU CPU

1 EFLOP sri6/crrs
1.3TB High-Speed ECC SRAM
13 TB High-BW DRAM

https://www.nextplatform.com/2022/08/23/inside-teslas-innovative-and-homegrown-dojo-ai-su
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Tesla Dojo (2022) (1I)

Tesla Dojo Chip & System

V1 Dojo Interface Processor

32GB High-Bandwidth Memory

- 800 GB/s Total Memory Bandwidth

900 GB/s TTP Interface

- Tesla Transport Protocol (TTP) - Full custom protocol
- Provides full DRAM bandwidth to Training Tile

50 GB/s TTP over Ethernet (TTPOE)

- Enables extending communication over standard Ethernet
- Native hardware support

32 GB/s Gen4 PCle Interface



https://www.youtube.com/watch?v=j0z4FweCy4M&t=6340s

Tesla Dojo (2022) (I1I)

Tesla Dojo Chip & System

D1 Chip
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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 30

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEws | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the
industry’s first High Bandwidth Memory (HBM) integ
HBM-PIMJ The new processing-in-memory (PIM) architecture brings powerful Al computing capabilities inside high-

rated with artificial intelligence (Al) processing power — the

performance memory, to accelerate large-scale processing In data centers, nigh perrormance computing

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 31



https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Samsung Function-in-Memory DRAM (2021)

H FIMDRAM based on HBM2

SID1
Core-die -
(HBM2)

SIDO
Core-die -
(FIMDRAM)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM]

Chip Specification

128DQ / 8CH / 16 banks / BL4
32 PCU blocks (1 FIM block/2 banks)

1.2 TFLOPS (4H)

FP16 ADD /
Multiply (MUL) /
Multiply-Accumulate (MAC) /
Multiply-and- Add (MAD)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0", Hak-Soo Yu', Haesuk Lee’,

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',
Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim',

Myeong Jun Song’, Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo?, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea
El i Jose, CA

= s
3Samsung Electronics, Suwon, Korea 32



Samsung Function-in-Memory DRAM (2021)

Chip Implementation

. 1 1 m(":ell array Cell array Cell Snay Cellarray
Ixe e S Ig n « - for bank0 for bank4 | - for bank0 for bank4

! il

| PCU block PCU block PCU block PCU block ||

r'lethOdOIOQy to |.for bank0 & 1 |, for bank4 & 5 |, for bank0 & 1 |, for bank4 & 5 |

\ |

Cellarray. Cell-array Cell érray Cell érray

1 nn I nn t F I M D R AM for bank1 for bank5 for: bank1 for bank5
I p e e n Cell array Cell array Cell array Cell array
;. for bank2 for bank6 for bank2 for bank6

@ Fu I |-CU Stom + Di ital RTL PCUblock | PCUblock | PCUblock | PCUblock |
g | for bank2 & 3 | for bank6 & 7 | for bank2 & 3 | for bank6 & 7 |
Cell array i Cell array Cell array Cell array
|

for bank3 for bank7 for bank3

TSV & Peri Control Block

Cell array Cell array ‘ Cell array Cell array
for bank11 - | - for bank15 | = for bank11 | ' for bank15
‘{ PCU block PCU block PCU block PCU block
Ffor bank10 & 11|for bank14 & 15|for bank10 & 11|for bank14 & 1

Celra;ray Cell array Cell array Cell array
for bank10 for bank14 for bank10 for bank14

Cellarrgy |- Cell array Cell array Cell array

[Digrtal RTL design for PCU block] | for bank9 " |  for.bank13 - | "' for bank | " for bank13

{

' PCU block PCU block PCU block PCU block

f for bank8 & 9 |for bank12 & 13| for bank8 & 9 |for bank12 & 13|
{ i |
1SSCC 2021 / SESSION 25 / DRAM / 25.4 i :Cellarray | Cell'array | Cell array Cell array

i for bank8 for bank12 for bank8 for bank12

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 e
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee', Jaghoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0', Hak-Soo Yu', Haesuk Lee’,

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',
Hyun-Sung Shin', Jin Kim', BengSeng Phuah’, HyoungMin Kim’,

Myeong Jun Song’, Ahn Choi', Daeho Kim’, SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro?, Seungwoo Seo, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

*Samsung Electronics, Hwaseong, Korea

28amsung Electronics, San Jose, CA
*Samsung Electronics, Suwon, Korea



Samsung AXDIMM (2021)

m DIMM-based PIM o Baseline Systm
o DLRM recommendation system

CHo! CH1! CH3!
1 1

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHO! CH2!
1 1

OS/FC/Others SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 34



SK Hynix Accelerator-in-Memory (2022)

SKhynix Newsroom ® e -

INSIGHT SK hynix STORY PRESS CENTER MULTIMEDIA Search Q

SK hynix Develops PIM, Next-Generation Al Accelerator

February 16, 2022 in)(f)(w

Seoul, February 16, 2022

SK hynix (or “the Company”, www.skhynix.com) announced on February 16 that it has developed PIM", a next-

generation memory chip with computing capabilities.

*PIM(Processing In Memory): A next-generation technology that provides a solution for data congestion issues for Al and big data by adding

computational functions to semiconductor memory

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK
hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory,

has found a breakthrough solution with the development of the latest technology.

SK hynix plans to showcase its PIM development at the world's most prestigious semiconductor conference, 2022 111 A1ynm1.25V 8Gb, 16Gh/s/pin GDDRG-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and
Various Activation Functions for Deep-Learning Applications
Seongiju Lee, SK hynix, Icheon, Korea

technology to bring the memory-centric computing, in which semiconductor memory p|ay5 a central role, a step closer In Paper 11.1, SK Hynix describes an 1ynm, GDDR6-based accelerator-in-memory with a command set for deep-learning operation. The
8Gb design achieves a peak throughput of 1TFLOPS with 1GHz MAC operations and supports major activation functions to improve

to the reality in devices such as smartphones. accuracy.

ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this

*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of “Intelligent Silicon for a
Sustainable World”

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AIM (Accelerator” in
memory). The GDDR6-AIM adds computational functions to GDDR6™ memory chips, which process data at 16Gbps. A
combination of GDDR6-AIM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times

faster. GDDR6-AIM is widely expected to be adopted for machine learning, high-performance computing, and big data

computation and storage.

35

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/



https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/

SK Hynix AiM: Chip Implementation (2022)

= 4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph 1 Process Unit (PU) Area
; Total 0.19mm?

MAC 0.11mm?

Activation Function (AF) 0.02mm?

Reservoir Cap. 0.05mm?2

Etc. 0.01mm?

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TTFLOPS MAC Operation and Various Activation Functions for 36
Deep-Learning Applications, ISSCC 2022



Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous

systems

More suitable devices for each type of workload
Increased performance and energy efficiency

(CPU ( CPU CPU e N
core || core | | core
_ 0 1 N-1 GPU
[ L1 ][ L1 ][ L1 ] x J) Scratchpad | pMm
L2 ] L2 4
A A |
| I I
I ( Coherent interconnect ) |
| i' LLC ' !
( Crossbar )

DRAM controller

o [ | om

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

A
‘ Non-coherent bus

I Coherent bus
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Background: Traditional 1/O Technology

Device Driver
Storage Area

Virt Addr
Variables

Variables

Input
Data

Input
Data

Output
Data

3 versions of the data (not coherent).
1000s of instructions in the device driver.

Typical I/O Model Flow:| Total ~13us for data prep

300 Instructions 10,000 Instructions Application 3,000 Instructions 1,000 Instructions
1,000 Instructions
/ Dependent, but \ /
7.9|JS Equal to below 4.9|JS

Dionysios Diamantopoulos, IBM Research — Zurich, COOL Chips 2018




CAPI/OpenCAPI Overview

= CAPI/CAPI2 (Coherent Accelerator Processor Interface)
= OpenCAPI

Virt Addr

W0 1000

POWERS POWERS POWERS

POWERS
Core

Core Core

Flow with a CAPI Model: Total 0.36us

400 Instructions

0.3us

Application 100 Instructions
Dependent, but

Equal to above 0.06ps

POWERS - POWERS Processor

Dionysios Diamantopoulos, IBM Research — Zurich, COOL Chips 2018




Collaborative Computing on CPU+FPGA

= Traditionally, accelerators
(GPUs, FPGAs, etc.) have
been used as offload engines

Intel® Xeon® CPU

= Heterogeneous architectures Software Framework
moving towards tighter

integration
a Unified memory
o System-wide atomics

Integrated FPGA

Hardware Framework

= Tighter integration allows
fine-grained collaboration

HSSI

Multi Chip Package

Key challenge: ident.ify the best Intel Xeon + FPGA Integrated Platform (MCP)
CPU-FPGA collaboration strategy

Huang+, "Analysis and Modeling of Collaborative Execution Strategies for Heterogeneous CPU-FPGA Architectures," 40
ICPE 2019



Compute Express Link (CXL)

= Compute Express Link (CXL) is an open industry standard
interconnect offering high-bandwidth, low-latency connectivity
between host processor and devices such as accelerators,
memory buffers, and smart I/O devices

Caching Devices [ Accelerators Accelerators with Memory Memory Buffers

Processor Processor Processor

PROTOCOLS PROTOCOLS PROTOCOLS

CXL * CXL.o * CXL.o * CXL.o
¢ CXL.cache ¢ CXL.cache ¢ CXL.memory
¢ CXL.memory

Accelerator —_ Accelerator Memory Buffer
NIC

Cache — Cache

USAGES USAGES USAGES

+ PGASNIC + GPU + Memory BW expansion
+ NIC atomics + Dense computation + Memory capacity expansion

+ Storage Class Memory

https://www.computeexpresslink.org/ files/ugd/0c1418 14c5283e7f3e40f9b2955c7d0f60bebe.pdf 41



https://www.computeexpresslink.org/_files/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf

Key Takeaways

This P&S is aimed at improving your

o Knowledge in Computer Architecture and Heterogeneous

Systems
o Technical skills in programming heterogeneous architectures
a Critical thinking and analysis
o Interaction with a nice group of researchers
o Familiarity with key research directions

o Technical presentation of your project

42



Key Goal

(Learn how to) take advantage of

existing heterogeneous devices
by programming them,

analyzing workloads, proposing

offloading/scheduling techniques...

43



Prerequisites of the Course

Digital Design and Computer Architecture (or equivalent

course)
o https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
o https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

Familiarity with C/C++ programming
o FPGA implementation or GPU programming (desirable)

Interest in
o computer architectures and computing paradigms

o discovering why things do or do not work and solving
problems

o making systems efficient and usable

44
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Course Info: Who Are We? (I)

Onur Mutlu

o 0o 0o 0 o 0O

Full Professor @ ETH Zurich ITET (INFK), since September 2015
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)
https://people.inf.ethz.ch/omutlu/projects.htm

Research and Teaching in:

o 0o 0o 0 o O

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation

Architectures for bioinformatics, health, medicine

45
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https://people.inf.ethz.ch/omutlu/projects.htm

Course Info: Who Are Wer (1I)

Lead Supervisor:
o Dr. Juan Gomez Luna

Supervisors:

a Dr. Mohammed Alser
a Dr. Behzad Salami

a Dr. Mohammad Sadr
o Joel Lindegger

Get to know us and our research
a https://safari.ethz.ch/safari-group/

46
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Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-january-2021/

40+ Researchers

T

https://safari.ethz.ch 47
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SAFARI Newsletter December 2021 Edition

= https://safari.ethz.ch/safari-newsletter-december-2021/
SAFARI

SAFARI Researc h Group

Think Big, Aim High
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View in your browser
December 2021

fln
' "! !! e

10 (P G
YIll)u\l

W NV NEEL ... 48


https://safari.ethz.ch/safari-newsletter-december-2021/

SAFARI Live

Seminars (I)

SAFARI Live Seminars in Computer Architecture SA FAR’

. X SAFARI Research Group
Dr. Juan Gémez Luna, ETH Zurich

Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental
Characterization

SAFARI Live Seminars in Computer Architecture

ARI

Gennady Pekhimenko, University of Toronto SAAR re:eeehlciotd

Efficient DNN Training at Scale: from Algorithms to Hardware

DNN Training vs. Inference

Step 1 - Forward Pass (makes a prediction) ——
«—— Step 2- Backward Pass (calculates error gradients)

. \I\\. !|mermemamaveruumm

Generated in the forward pass  Used in the backward pass

DNN training requires stashing feature maps for the backward pass
(not required in Inference)

SAFARI Live Seminars in Computer Architecture SAFARI

SAFARI Research Group

Minesh Patel, ETH Zurich Tues
Enabling Effective Error Mitigation in Memory Chips That Use On-Die ECCs 2 1 Sep

2021
@ Position Paper (Ongoing) @ REAPER (ISCA'17)

® BEER (MICRO'20, best paper)

1
DRAM Chi
" | onDie Data
f ECC Logic 1 Store
@ EIN (DSN'1g, best paper)

@ HARP (MICRO"21)

To processor

SAFARI Live Seminars in Computer Architecture SAFARI
SAFARI Research Group

Dr. Andrew Walker, Schiltron Corporation & Nexgen Power Systems

An Addiction to Low Cost Per Memory Bit — How to Recognize it and What to Do About it

Mo
Jul
2021

Watch on @8 Youl

SAFARI Live Seminars in Computer Architecture

SAFARI

Jawad Haj-Yahya, Huawei Research Center Zurich SAFARI Research Group

Power Management Mechanisms in Modern Microprocessors and Their Security Implications

Overview of a Modern SoC Architecture

* 3 domains in modern
thermally-constrained mobile
SoC: Compute, Memory, 10

==l LE o

« 10 controllers and engines,
10 interconnect, memory
controller, and DDRIO
typically each has an
independent clock

SAFARI Live Seminars in Computer Architecture

Christina Giannoula, National Technical University of Athens

Efficient Synchronization Support for Near-Data-Processing Architectures

NDP Synchronization Solution Space

—_

[ shoreamemory ) [ Messagerpassing |

Hardware | Remote || Specialized | Software- || Specialized
Cache Atomics Hardware based Hardware
|_Coherence | Support _ Scheme:

Support |

NDP Systems:

SynCron
[HPCA'21]

. [oearer_ ||
* Several voltage sources exist, Controllers.

e g
and some of them are shared | (gt £
between domains S

10 Domain

System On Chip

Graphics
Engines
Compute Domain
VG

ARI

SAFARI Research Group

27%
2021

SAFARI Live Seminars in Computer Architecture SA FAR’
SAFARI Research Group

Geraldo F. Oliveira, ETH Zurich

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

Near-Data Processing (2/2)

UPMEM (2019)

Samsung FIMDRAM (2021)

Near-DR

nks processt
for general-purpose computing

ng Near-DRAM-banks processing
for neural networks

0.9 TOPS compute throughput 1.2 TFLOPS compute throughput?

SAFARI 7

ARI

SAFARI Research Group

SAFARI Live Seminars in Computer Architecture

Ataberk Olgun, TOBB & ETH Zurich
QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in

Commodity DRAM Chips
UAC to Generate Random Values

Use QUAC to activate DRAM rows that are initialized with conflicting
data (g, two ‘1's and two 0's) to generate random values

/| Wordiine
Capacitor

&
Random Values

Sense Amplifiers

ACT 42> PRE > ACT

SAFARI (>Kasirga

SAFARI Live Seminars in Computer Architecture A R ’

Jawad Haj-Yahya, Huawei Research Center Zurich SAFARI Research Group
Security Implications of Power Management Mechanisms In Modern Processors, Current
Studies and Future Trends

Experimental Methodology

+ We experimentally study three modern Intel processors
- Haswell, Coffee Lake, and Cannon La

+ We measure voltage and current using a Data Acquisition card (NI-DAQ)

Configure/
Log data
o
Host Computer  [JJNEDAGH Processor
U i
cPuC
Cores VR Sense ores

Resistor

https:/ /safari.ethz.ch/safari-seminar-series/



https://safari.ethz.ch/safari-seminar-series/

SAFARI Live Seminars (II)

SAFARI Live Seminars in Computer Architecture s A FA R ’
Nastaran Hajinazar, ETH Zurich SAFARI Research Group
Data-Centric and Data-Aware Frameworks for Fundamentally Efficient Data Handling in Modern
Computing Systems

Overview of Our Approach

wed
oo
“' Data and the efficient computation of data should
be the ultimate priority of the system

* Data-Centric Architectures
- Enable computation with minimal data movement
- Compute where data resides

* Data-Aware Architectures
- Understand what they can do with and to each piece of data

- Make use of different properties of data to improve
performance, efficiency, etc.
SAFARI 1

SAFARI Live Seminar: Nastaran Hajinazar 27 Oct 2021

Posted on October 1, 2021 by ewent

SAFARI Live Seminars in Computer Architecture
= SAFARI
Serghei Mangul, Mangul Lab, USC ETHziirich

Opportunities and challenges of computational data-driven immunology

Opportunities and
challenges of
computational data-
driven immunology

Serghei Mangul, Ph.D
Assistant Professor,
University of Southern California

SAFARI Live Seminar: Serghei Mangul 11 Nov 2021

Posted on November 5, 2021 by ewent

= CODIC substrate enables greater control over DRAM internal
circuit timings

= CODIC is an efficient and low-cost way to enable new
functionalities and optimizations in DRAM

= CODIC controls four key suat
orchestrate DRAM internal circuit timings
« wordline (wl): Connects DRAM cells to bitlines
« sense_p and sense_n: Trigger sense amplifiers
« EQ: Triggers the logic that prepares a DRAM
bank for the next access

Sense Amplifir (s2)

Precharge Unit

Watch on @ YouTube

SAFARI Live Seminar: Lois Orosa, 10 Feb 2022

Posted on January 16, 2022 by ewent

Join us for our next SAFARI Live Seminar with Lois Orosa.
Thursdav. February 10 at 5:00 pom Zurich time (CET)

~ SAFARI Live Seminars in Computer Architecture s R ' * SAFARI Live Seminars in Computer Architecture ETHziirich
Damla Senol Cali, Bionano Genomics SAFARI Research Group G b Dabbi, Dy (Va0 4 T
Accelerating Genome Sequence Analysis via Efficient Hardware/Algorithm Co-Design Machine’Lreamin e Actio,n°f Slonto SA FA R’
9 SAFARI Research Group
Our Goal & Approach 7 e =
s 2021 @\ RL-Scope: Cross-Stack Profiling for 8 Nov,

Accelerating genome sequence analysis by efficient Deep Reinforcement Learning Workloads

hardware/algorithm co-design

O OurApproach: ¢ = o et
(1) Analyze the multiple steps and the a: ed in ¥ o + any o = -Bs
the genome sequence analysis pipeline, 5 o et
(2) Expose the tradeoffs between accuracy, performance, = :-= mm}mgl;ﬁf“m
memory usage and scalability, and Opetaton i z
(3) Co-design fast and efficient algorithms along with GPU usage i fow (< 14%)
bl oo i s RL# Supervised Leaming
accelerators for the key bottleneck steps of the pipeline
fp—— SAFARI 0
SAFARI Live Seminar: Damla Senol Cali 07 Nov 2021 SAFARI Live Seminar: Gennady Pekhimenko 08 Nov 2021

Posted on October 18, 2021 by ewent Posted on November 1, 2021 by ewent

@ A

<

$ L ntoith
Wa e i

N — SR s 18 UPMEM PIM DRAM (1/2)

Pythia: A C izable Hardware F ing F rk Using

Online Reinforcement Learning

eminar - Introd

8 x 32-bit CPU added to a 4Gb DRAM die:
Brief Overview of Pythia

t
State (S,)  Reward (Res1) Action (4,)
|

Y

. First Gen: 8 x CPU @450MHz, 8 x 64 MB banks (1 CPU for 1 bank )
. Second Gen: 8 x CPU @600MHz, 16 x 32 MB banks (1 CPU for 2 banks), secure Enclave

Multi-threaded CPU:

® Inorder execution at the thread level
e out of order execution between threads when executing DMA instructions

[_'—| Offeing/Roadmap:
Featuresofmemas
fimrivlret BRI i
| e e 1stGen: 24 hardware threads, scalar in production
° 2nd Gen: 16 hardware threads, scalar in design u
e Memory Subsystem =

-— .
threads, 2 I; I;
Watch on @8 YouTube jware threads, 2 way superscalar planning

I

SAFARI Live Seminar: Rahul Bera 20 Dec 2021 SAFARI Live Seminar: Fabrice Devaux, 2 Feb 2022
Posted on January 15, 2022 by ewent
SAFARI Live Seminars in Computer Architecture SA FA R’ Join us for our joint SAFARI Live Seminar & EFCL Seminar with Fabrice Devaux, UPMEM
Sean Lie, Cerebras SAFAR! Research 6roup Wednesdav. February 2 2022 at 11:00 am Zurich time (CET)

Thinking Outside the Die: Architecting the ML Accelerator of the Future
Livestream on YouTube: Feb 28, 2022 18:00 Zurich time

Thinking Outside the Die:

Architecting the ML Accelerator of the Future

Sean Lie
Co-founder & Chief HW Architect, Cerebras

on January 19, 2022 by ewent

Join us for our SAFARI Live Seminar with Sean Lie, Cerebras Systems
Monday. February 28 2022 at 6:00 pm Zurich time (CET)

https:/ /www.youtube.com/watch?v=D8Hjy2iU914&list=PL5Q2s0XY2Zi tOTAYm--dYByNPL7ZJhwR9&index=1
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SAFARI Live Seminars (Upcoming Talks)

SAFARI Live Seminars in Computer Architecture -

HBM3 RAS: The Journey to Enhancing Die-Stacked
DRAM Resilience at Scale

THE HBM3 ECC ARCHITECTURE
Comrect fautts ciated 1o ‘

o

1
y J Rual-tiwe signaling of ECC |
—==—__ avenfs + emorf logging |
et VEASURE e ]

~===—Can be used for robusk faufl | SPEAKER

Sudhanva Gurumurthi

]delmaoﬂuuym |
metadata |
AMD Fellow

SAFARI ETH:iirich

OCT 25, 2022 4:00PM CEST

SAFARI Live Seminar: Sudhanva Gurumurthi, Oct 25 2022
Posted on September 6, 2022 by ewent

We’re excited to have Sudhanva Gurumurthi with us for our upcoming SAFARI Live
Seminar!

Date: Tuesday, October 25 at 4:00 pm Zurich time (CEST)
Speaker: Sudhanva Gurumurthi, AMD Fellow
Link: Livestream on YouTube Link

Title: HBM3 RAS: The Journey to Enhancing Die-Stacked DRAM Resilience at Scale

https://safari.ethz.ch/safari-seminar-series/ 51
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SAFARI Live Seminars (Upcoming Talks)

SAFARI Live Seminars in Computer Architecture

From C/C++ Code to High-Performance
Dataflow Circuits

for (1=8; 1o 1e9) {
hist[x[i]] = hist[x[i]] » w[i];

: x[@]=5 « 1d hist[S]; st hist[5];

: x[1)«4 + 1d hist{a]; st (4];

1 x[2]=4 » 1d hist{4) hist[4];
read-afer- write dependency
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SAFARI Live Seminar: Lana Josipovi¢, Nov 7 2022
Posted on September 9, 2022 by ewent

Join us for our upcoming SAFARI Live Seminar

Date: Monday, November 7 at 4:00 pm Zurich time (CET)
Speaker: Lana Josipovic, DYNAMO Research Group, ETH Zurich
Link: Livestream on YouTube Link

Title: From C/C++ Code to High-Performance Dataflow Circuits

https://safari.ethz.ch/safari-seminar-series/
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SAFARI Live Seminars (Upcoming Talks)

SAFARI Live Seminars in Computer Architecture

Accelerating Irregular Applications via Efficient Synchronization and Data Access Techniques

Graph  ColorTM (ISC’18, SRC rregular SynCron (HPCA'21)
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Coloring for CPU Systems for PIM Systems
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-
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- »

Pointer- SmartPQ (CF’19) Sparse  SparseP (Sigmetrics'22)
Chasing An Adaptive Priority Linear A Library of Efficient Sparse
Queue for NUMA CPU Algebra Matrix Vecter Multiplication SPEAKER
Systems @ Kernels for Real PIM Systems Ch oI .
ristina Giannoula

Computing Systems Lab, NTUA

ETHzirich SAFARI Q.

NOV 9, 2022 4:00PM CST

SAFARI Live Seminar, Christina Giannoula, Nov 9 2022
Posted on September 15, 2022 by ewent

Join us for our upcoming SAFARI Live Seminar

Date: Wednesday, November 9 at 4:00 pm Zurich time (CET)
Speaker: Christina Giannoula, School of Electrical and Computer Engineering, NTUA
Link: Livestream on YouTube Link

Title: Accelerating Irregular Applications via Efficient Synchronization and Data Access
Techniques

https://safari.ethz.ch/safari-seminar-series/
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Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics
* Memory and storage (DRAM, flash, emerging), interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

» Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems design for bio/medicine

@ cormnientn

Heterogeneos Persistent Memory/Storage

Processors and
Accelerators

ooooooooooooooo

Broad research
spanning apps, systems, logic

—————

Graphics and Vision Processing >



Course Requirements and Expectations

= Attendance required for all meetings
= Study the learning materials

= Each student will carry out a hands-on project

o Build, implement, code, and design with close engagement from
the supervisors

= Participation
o Ask questions, contribute thoughts/ideas
o Read relevant papers

We will help in all projects!
If your work is really good, you may get it published!
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Course Website

= https://safari.ethz.ch/projects and_seminars/doku.php?id=

heterogeneous_systems

= Useful information about the course
= Check your email frequently for announcements

= We also have Moodle for Q&A
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Meeting 1

Recommended materials:

1. An introduction to SIMD processors and GPUs (Dr. Juan Gomez Luna, lecture).
(PDF) (PPT) Video

2. An introduction to GPUs and heterogeneous programming (Dr. Juan Gomez Luna, lecture).
(PDF) (PPT) Video

Other recommended materials:

3. Juan Gomez-Luna, Izzat El Hajj, Li-Wen Chang, Victor Garcia-Flores, Simon Garcia de Gonzalo, Thomas B. Jablin, Antonio J. Pefia and Wen-mei Hwu,
"Chai: Collaborative Heterogeneous Applications for Integrated-architectures”

Proceedings of the 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa, California, April 2017.
https://chai-benchmarks.github.io https://github.com/chai-benchmarks/chai

4. Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gémez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"

Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (23 minutes)]

5. Mohammed Alser, Taha Shahroodi, Juan Gomez Luna, Can Alkan, and Onur Mutlu,

"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 26 December 2020.

[Source Code] [Online link at Bioinformatics Journal]

6. Real Processing-in-DRAM with UPMEM (Dr. Juan Gomez Luna, SAFARI Live Seminar, July 2021).

"Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture"
Preprint in arXiv, 9 May 2021.

[PrIM Benchmarks Source Code]

[Slides (pptx) (pdf)]

[SAFARI Live Seminar Slides (pptx) (pdf)]

[SAFARI Live Seminar Video (2 hrs 57 mins)]
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https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture24-simdandgpu-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture24-simdandgpu-afterlecture.pptx
http://www.youtube.com/watch?v=hOeIkAYraTE
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pptx
http://www.youtube.com/watch?v=y40-tY5WJ8A
https://chai-benchmarks.github.io/assets/ispass17.pdf
https://chai-benchmarks.github.io/
https://github.com/chai-benchmarks/chai
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015
https://arxiv.org/pdf/2105.03814.pdf
https://arxiv.org/abs/2105.03814
https://github.com/CMU-SAFARI/prim-benchmarks
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-20min-2021-07-04-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/PrIM-UPMEM-Tutorial-Analysis-Benchmarking-SAFARI-Live-Seminar-2021-07-12-talk.pdf
https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

Meeting 2

We will announce the projects and will give you some
description about them

We will give you a chance to select a project

Then, we will have 1-1 meetings to match your interests,
skills, and background with a suitable project

It is important that you study the learning materials before
our next meeting!
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Next Meetings

Individual meetings with your mentor/s

Tutorials and short talks
o GPU programming
o Recent research works

Presentation of your work
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Hetero. Systems (Spring 2022)
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= Spring 2022 Edition:
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a httDS : //Safa rl L] ethz L] Ch/D ro] eCtS a nd Sem I g for Heterogeneous Integrated Systems,” ICPE 2017. 52
nars/spring2022/doku.php?id=heterogen P a—
eo U S Svste m s Week Date Livestream Meeting Learning Assignments

Materials
w1 15.03  Yulll Premiere M1: P&S Course Presentation Required Materials | HW 0 Out
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Materials
-
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= Youtube Livestream: wa | 2203 Wl Prarir | WSS RS RGES
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FT_I mY6 h 7sz W5 12.04 Yl Premiere MS5: GPU Performance

Tue. Considerations
am (PDF) zw (PPT)

W6  19.04 YulB Premiere = M6: Parallel Patterns: Reduction

Tue. m (PDF) zm (PPT)
W7 26.04 Yulll® Premiere = M7: Parallel Patterns: Histogram
Tue. m (PDF) zm (PPT)

w8 03.05 | Youll[® Premiere = MB8: Parallel Patterns: Convolution

= Project course aa PO aa(PP)

w9 10.05 | Yl Premiere = M9: Parallel Patterns: Prefix Sum

o Taken by Bachelor's/Master’s students (sean)

am (PDF) @z (PPT)
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Wed. Sort
am (PDF) @m (PPT)

W13 07.06 Youl[® Premiere = M13: Dynamic Parallelism
Tue. am (PDF) zm (PPT)
W14 15.06 Yol Premiere = M14: Collaborative Computing
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https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm
https://www.youtube.com/watch?v=oFO5fTrgFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm
https://www.youtube.com/onurmutlulectures

Exploiting Data Parallelism:
SIMD Processors and GPUs




Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor
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Recall: MMX

Hxample: Image Overlaying (I)

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x{i] == Blue) new_imageli] =ylil;

else new_imageli] = x[i;

MM1

Image x[ | MM3

Bit mask Mm1

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 04



SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)
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Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Different ti
LD VR € A[3:0] Lpo| D1 [LD2 D3  Lpp Drerenters@tme
ADD VR ¢ VR, 1
’ ADO| AD1 |AD2
MUL VR € VR 2 0 AD3 LD1 | ADO
ST A[3:0] € VR MUO| MU1 IMU2 MU3 LD2 | AD1 [MUO
STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
—
Different ops @ same space AD3 |MU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—™> <«<——Space———>
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NVIDIA A100 Core

L1 Instruction Cache

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Data Cache / Shared Memory

Tex

GPU compute throughput:
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

Sparse Tensor I
Core

Select

T

Input activations

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

R /
=

Output activations

Non-zero
data values
Fine-tuned sparse and
compressed weights

Dense trained
weights

D

Fine-tune weights

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irreqular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983, 68



Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. DI DO DI DO
Parallel Kernel (device) S || SSBDS || S S
KernelA<<<nBlk , nThr>>> ( args ) ; )( )“ )()( )()() )()()() )“) )()()( )( )() )()()() S )(
Serial Code (host)
. DO DO SSUSSIISH SIS
Parallel Kernel (device) < > S

A
AN AN/A

A /)
n
Va
7\

KernelB<<<nBlk, nThr>>>(args) ;|| 5SS

Slide credit: Hwu & Kirk

09




Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii)
C[ii] = A[ii] + BJ[ii];

b
CUDA code I

/// there are 100000 threads
__global__ void KernelFunction(...) {

~

int tid = blockDim.x * blockIdx.x + threadldx.x;

int varA = aa[tid];
int varB = bb[tid];

C[tid] = varA + varB;

J

J

Slide credit: Hyesoon Kim
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Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irreqular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 7!



Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous

systems

More suitable devices for each type of workload
Increased performance and energy efficiency

(CPU ( CPU CPU e N
core || core | | core
_ 0 1 N-1 GPU
[ L1 ][ L1 ][ L1 ] x J) Scratchpad | pMm
L2 ] L2 4
A A |
| I I
I ( Coherent interconnect ) |
| i' LLC ' !
( Crossbar )

DRAM controller

o [ | om

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

A
‘ Non-coherent bus

I Coherent bus
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Chai Benchmark Suite

= Heterogeneous execution on CPU, GPU, FPGA

= Collaboration patterns
o 8 data partitioning benchmarks

o 3 coarse-grain task partitioning benchmarks

0 3 fine-grain task partitioning benchmarks - I I I 1

= Discrete (D) and Unified (U) versions
= Chai versions
o CUDA and OpenCL for CPU+GPU

o OpenCL for CPU+FPGA
- CUDA-Sim for Gem5-GPU CHAI

https://chai-benchmarks.github.io

Gomez-Luna+, “Chai: Collaborative Heterogenous Applications for Integrated Architectures,” ISPASS 2017.

73



P&S Heterogeneous Systems

Programming Heterogeneous Computing
Systems with GPUs and other Accelerators

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2022
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