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GPU Programming



Recommended Readings (I)

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
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Recommended Readings (II)

n Hwu, Kirk, El Hajj , “Programming Massively Parallel 
Processors,” Fourth Edition, 2022
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Recommended Readings (III)

n CUDA Programming Guide
q https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


GPU Computing
n Computation is offloaded to the GPU
n Three steps

q CPU-GPU data transfer (1)
q GPU kernel execution (2)
q GPU-CPU data transfer (3)
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n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure
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n Function prototypes
float serialFunction(…);

__global__ void kernel(…);

n main()
q 1) Allocate memory space on the device – cudaMalloc(&d_in, bytes);

q 2) Transfer data from host to device – cudaMemCpy(d_in, h_in, …);

q 3) Execution configuration setup: #blocks and #threads
q 4) Kernel call – kernel<<<execution configuration>>>(args…);

q 5) Transfer results from device to host – cudaMemCpy(h_out, d_out, …);

n Kernel – __global__ void kernel(type args,…)
q Automatic variables transparently assigned to registers
q Shared memory:  __shared__
q Intra-block synchronization: __syncthreads();
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Traditional Program Structure in CUDA
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CUDA Programming Language
n Memory allocation

cudaMalloc((void**)&d_in, #bytes);

n Memory copy
cudaMemcpy(d_in, h_in, #bytes, cudaMemcpyHostToDevice);

n Kernel launch
kernel<<< #blocks, #threads >>>(args);

n Memory deallocation
cudaFree(d_in);

n Explicit synchronization
cudaDeviceSynchronize();
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Vector Addition (I)
n Our first GPU programming example
n We assign one GPU thread to each element-wise addition

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

10



Vector Addition (II)
n The whole set of threads is called a grid
n We need a way to assign threads to GPU cores

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]
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Vector Addition (III)
n We group threads into blocks

A[0] A[1] A[N-1]

B[0] B[1] B[N-1]

C[0] C[1] C[N-1]

Block 0 Block 1 Block 2 Block 3
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Host Code Example: Vector Addition
void vecadd(float* A, float* B, float* C, int N) {

// Allocate GPU memory
float *A_d, *B_d, *C_d;
cudaMalloc((void**) &A_d, N*sizeof(float));
cudaMalloc((void**) &B_d, N*sizeof(float));
cudaMalloc((void**) &C_d, N*sizeof(float));

// Copy data to GPU memory
cudaMemcpy(A_d, A, N*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(B_d, B, N*sizeof(float), cudaMemcpyHostToDevice);

// Perform computation on GPU
...

// Copy data from GPU memory
cudaMemcpy(C, C_d, N*sizeof(float), cudaMemcpyDeviceToHost);

// Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);

}

13
Slide credit: Izzat El Hajj

const unsigned int numThreadsPerBlock = 512;
const unsigned int numBlocks = N/numThreadsPerBlock;

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);



Boundary Conditions
n What if the size of the input is not a multiple of the number 

of threads per block?
q Solution: use the ceiling to launch extra threads then omit the 

threads after the boundary

n Kernel code

const unsigned int numBlocks = (N +numThreadsPerBlock – 1)/numThreadsPerBlock;

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {

int i = blockDim.x*blockIdx.x + threadIdx.x;

if(i < N) {
C[i] = A[i] + B[i];

}
}
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Indexing and Memory Access
n Images are 2D data structures

q height x width
q Image[j][i], where 0 ≤ j < height, and 0 ≤ i < width

Image[0][1]

Image[1][2]
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Image Layout in Memory
n Row-major layout
n Image[j][i] = Image[j x width + i] 

Image[0][1] = Image[0 x 8 + 1]

Image[1][2] = Image[1 x 8 + 2]
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Stride = width



Indexing and Memory Access: 2D Grid
n 2D blocks

q gridDim.x, gridDim.y

Block (0, 0)

blockIdx.x = 2
blockIdx.y = 1

Row = blockIdx.y * 
blockDim.y + threadIdx.y

Row = 1 * 2 + 1 = 3

threadIdx.x = 1
threadIdx.y = 0

Col = blockIdx.x * 
blockDim.x + threadIdx.x

Col = 0 * 2 + 1 = 1

Image[3][1] = Image[3 * 8 + 1]
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n GPUs grow beyond 100 GPU cores (SMs): a new level in the software 
hierarchy can improve execution efficiency
q Programmatic control of locality at a granularity larger than a single thread 

block on a single SM
n Thread blocks in the same cluster can synchronize and exchange data
n Thread blocks in the same cluster are guaranteed to be concurrently 

scheduled
q Thread blocks in the same cluster run on the SMs within a GPU Processing 

Cluster (GPC)

NVIDIA H100: Thread Block Clusters

18https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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n GPUs grow beyond 100 GPU cores (SMs): a new level in the software 
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n GPUs grow beyond 100 GPU cores (SMs): a new level in the software 
hierarchy can improve execution efficiency
q Programmatic control of locality at a granularity larger than a single thread 

block on a single SM
n Thread blocks in the same cluster can synchronize and exchange data
n Thread blocks in the same cluster are guaranteed to be concurrently 

scheduled
q Thread blocks in the same cluster run on the SMs within a GPU Processing 

Cluster (GPC)
q Data sharing via SM-to-SM network in a GPC

NVIDIA H100: Thread Block Clusters

20https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Thread - Thread block - Thread block cluster - Grid

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


GPU Memories



NVIDIA H100 Block Diagram

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


NVIDIA H100 Core
48 TFLOPS Single Precision*
24 TFLOPS Double Precision*
800 TFLOPS (FP16, Tensor Cores)*

23
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
* Preliminary performance estimates

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


Memory in the GPU Architecture
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n Example of data movement between GPU global memory 
(DRAM) and GPU cores.

NVIDIA A100 Tensor Core GPU Architecture In-Depth 

40 
NVIDIA A100 Tensor Core GPU Architecture 
 

 
A100 improves SM bandwidth efficiency with a new load-global-store-shared asynchronous copy 
instruction that bypasses L1 cache and register file (RF).  Additionally, A100’s more efficient Tensor 
Cores reduce shared memory (SMEM) loads. 

Figure 15. A100 SM Data Movement Efficiency 

New asynchronous barriers work together with the asynchronous copy instruction to enable 
efficient data fetch pipelines, and A100 increases maximum SMEM allocation per SM 1.7x to 
164 KB (vs 96 KB on V100). With these improvements A100 SMs continuously data stream 
data to keep the L2 cache constantly utilized. 
 
L2 Cache and DRAM Bandwidth improvements - The NVIDIA A100 GPU’s increased 
number of SMs and more powerful Tensor Cores in turn increase the required data fetch rates 
from DRAM and L2 cache. To feed the Tensor Cores, A100 implements a 5-site HBM2 memory 
subsystem with bandwidth of 1555 GB/sec, over 1.7x faster than V100. A100 further provides 
2.3x the L2 cache read bandwidth of V100.  
 
Alongside the raw data bandwidth improvements, A100 improves data fetch efficiency and 
reduces DRAM bandwidth demand with a 40 MB L2 cache that is almost 7x larger than that of 
Tesla V100. To fully exploit the L2 capacity A100 includes improved cache management 
controls. Optimized for neural network training and inferencing as well as general compute 
workloads, the new controls ensure that data in the cache is used more efficiently by minimizing 
writebacks to memory and keeping reused data in L2 to reduce redundant DRAM traffic. 
  

NVIDIA V100 & A100 Memory Hierarchy

A100 feature: 
Direct copy from L2 
to scratchpad, 
bypassing L1 and 
register file.

25https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


n Asynchronous memory copy with LDGSTS instruction vs. TMA

NVIDIA H100 Tensor Memory Accelerator

26https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

TMA unit reduces addressing overhead

A single thread per warp issues the 
TMA operation 

Support for different tensor layouts 
(1D-5D)

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


n Shared memory virtual address space distributed across the 
blocks of a cluster

n Load, store, and atomic operations to other SM’s shared memory

NVIDIA H100 Distributed Shared Memory

27https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Thread block clusters and distributed shared memory (DSMEM) are leveraged 
via cooperative_groups API

TMA unit supports copies across thread blocks in a cluster

Asynchronous transaction barriers

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/


Memory in the H100 GPU Architecture
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CUDA Variable Type Qualifiers

n __device__ is optional when used with __shared__, or __constant__

n Recall cudaMalloc(…) allocates memory from the host
q Constant memory can also be allocated and initialized from the host

n Automatic variables without any qualifier reside in a register
q Except arrays that reside in global memory

Variable declaration Memory Scope Lifetime
int LocalVar; register thread thread
int localArr[N]; global thread thread

__device__ __shared__ int SharedVar; shared block block
__device__ int GlobalVar; global grid application
__device__ __constant__ int ConstantVar; constant grid application
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Memory Hierarchy in CUDA Programs

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host
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Data Reuse
n Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){

sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
}

}

31



Data Reuse: Tiling
n To take advantage of data reuse, we divide the input into tiles 

that can be loaded into shared memory

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
…
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

}
}

32



n void __syncthreads();

n Synchronizes all threads in a block

n Once all threads in a block have reached this point, 
execution resumes normally

n Used to avoid RAW / WAR / WAW hazards when 
accessing shared or global memory

33

Synchronization Function



Tiling/Blocking in On-chip Memories
n Tiling or Blocking

q Divide loops operating on arrays into computation chunks so 
that each chunk can hold its data in the cache (or other on-
chip memory, e.g., scratchpad)

q Avoids cache conflicts between different chunks of 
computation

q Essentially: Divide the working set so that each piece fits in 
the cache

q Let’s first see an example for CPUs
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Naïve Matrix Multiplication (I)
n Matrix multiplication: C = A x B
n Consider two input matrices A and B in row-major layout

q A size is M x P
q B size is P x N
q C size is M x N
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Naïve Matrix Multiplication (II)
n Naïve implementation of matrix multiplication has poor 

cache locality

36

#define A(i,j) matrix_A[i * P + j] 
#define B(i,j) matrix_B[i * N + j] 
#define C(i,j) matrix_C[i * N + j]

for (i = 0; i < M; i++){ // i = row index
for (j = 0; j < N; j++){ // j = column index

C(i, j) = 0; // Set to zero
for (k = 0; k < P; k++) // Row x Col

C(i, j) += A(i, k) * B(k, j); 
} 

} 
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Consecutive accesses to B are far from 
each other, in different cache lines. 
Every access to B is likely to cause a 
cache miss



Tiled Matrix Multiplication (I)
n We can achieve better cache 

locality by computing on 
smaller tiles or blocks that fit in 
the cache
q Or in the scratchpad memory 

and register file if we compute 
on a GPU
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Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4


Tiled Matrix Multiplication (II)
n Tiled implementation operates on submatrices (tiles or 

blocks) that fit fast memories (cache, scratchpad, RF)

38

#define A(i,j) matrix_A[i * P + j] 
#define B(i,j) matrix_B[i * N + j] 
#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){
for (J = 0; J < N; J += tile_dim){ 

Set_to_zero(&C(I, J)); // Set to zero 
for (K = 0; K < P; K += tile_dim) 

Multiply_tiles(&C(I, J), &A(I, K), &B(K, J)); 
} 

} 

Multiply small submatrices (tiles or 
blocks) of size tile_dim x tile_dim
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Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4


Lecture on Advanced Caches

39
DDCA - Lecture 24: Advanced Caches (Spring 2021) https://youtu.be/89Q7OdhmQ9o
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Example: Matrix-Matrix Multiplication (I)

C = A x B
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Slide credit: Izzat El Hajj
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Example: Matrix-Matrix Multiplication (II)
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Parallelization approach: assign one thread to each element in the output matrix (C)

Slide credit: Izzat El Hajj

C = A x B
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Example: Matrix-Matrix Multiplication (III)

__global__ void mm_kernel(float* A, float* B, float* C, unsigned int N) {

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;
for(unsigned int i = 0; i < N; ++i) {

sum += A[row*N + i]*B[i*N + col];
}
C[row*N + col] = sum;

}

Slide credit: Izzat El Hajj
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Reuse in Matrix-Matrix Multiplication (I)
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Slide credit: Izzat El Hajj

C = A x B
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Reuse in Matrix-Matrix Multiplication (II)
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Slide credit: Izzat El Hajj

C = A x B
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Reuse in Matrix-Matrix Multiplication (III)
n Sometimes, we are lucky:

q The thread finds the data in the L1 cache because it was 
recently loaded by another thread

n Sometimes, we are not lucky:
q The data gets evicted from the L1 cache before another 

thread tries to load it
n Solution:

q Let the threads work together to load part of the data and 
ensure that all threads that need it use it before loading more 
data

q Use shared memory to ensure data stays close
q Optimizing called tiling because divides input to tiles

Slide credit: Izzat El Hajj
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Tiled Matrix-Matrix Multiplication (I)
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each input 
matrix to 

shared memory 
(each thread 

loads one 
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Slide credit: Izzat El Hajj

C = A x B
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Tiled Matrix-Matrix Multiplication (II)

Ctile = Atile x Btile

Atile

Btile

Ctile

Step 2: Each 
thread 

computes its 
partial sum 

from the tiles in 
shared memory 
(threads wait 
for each other 

to finish)

Slide credit: Izzat El Hajj
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Tiled Matrix-Matrix Multiplication (III)
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Slide credit: Izzat El Hajj

C = A x B
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Tiled Matrix-Matrix Multiplication (IV)
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Slide credit: Izzat El Hajj

C = A x B
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Tiled Matrix-Matrix Multiplication (V)
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

// Load tile to shared memory
A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
__syncthreads();

// Compute with tile
for(unsigned int i = 0; i < TILE_DIM; ++i) {

sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
}
__syncthreads();

}

C[row*N + col] = sum;

Declare arrays in shared memory

Threads wait for each other to finish loading before computing

Threads wait for each other to finish computing before loading

Slide credit: Izzat El Hajj
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Tiled Matrix Multiplication on GPU

51
Computer Architecture - Lecture 9: GPUs and GPGPU Programming (Fall 2017) https://youtu.be/mgtlbEqn2dA?t=8157

https://youtu.be/mgtlbEqn2dA?t=8157


Recommended Readings (I)

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 4: Memory and data locality
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Recommended Readings (II)

n Hwu and Kirk and El Hajj, “Programming Massively Parallel 
Processors,” Fourth Edition, 2022
q Chapter 5 - Memory architecture and
data locality
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