
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2022

31 October 2022

P&S Heterogeneous Systems

GPU Performance Considerations

GPU Memories

n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nThr >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nThr >>>(args);

Traditional Program Structure

3Slide credit: Hwu & Kirk

Memory Hierarchy in CUDA Programs

Grid (Device)

Block (0, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Block (1, 0)

Thread (0, 0) Thread (1, 0)

Registers

Shared memory

Registers

Global / Texture & Surface memory

Constant memory
Host

4

Tiled Matrix Multiplication (II)
n Tiled implementation operates on submatrices (tiles or

blocks) that fit fast memories (cache, scratchpad, RF)

5

#define A(i,j) matrix_A[i * P + j]
#define B(i,j) matrix_B[i * N + j]
#define C(i,j) matrix_C[i * N + j]

for (I = 0; I < M; I += tile_dim){
for (J = 0; J < N; J += tile_dim){

Set_to_zero(&C(I, J)); // Set to zero
for (K = 0; K < P; K += tile_dim)

Multiply_tiles(&C(I, J), &A(I, K), &B(K, J));
}

}

Multiply small submatrices (tiles or
blocks) of size tile_dim x tile_dim

A

B

C

P

M

P N

k

k
tile_dim

t
i
l
e
_
d
i
m

i

j

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix-Matrix Multiplication (V)
__shared__ float A_s[TILE_DIM][TILE_DIM];
__shared__ float B_s[TILE_DIM][TILE_DIM];

unsigned int row = blockIdx.y*blockDim.y + threadIdx.y;
unsigned int col = blockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;

for(unsigned int tile = 0; tile < N/TILE_DIM; ++tile) {

// Load tile to shared memory
A_s[threadIdx.y][threadIdx.x] = A[row*N + tile*TILE_DIM + threadIdx.x];
B_s[threadIdx.y][threadIdx.x] = B[(tile*TILE_DIM + threadIdx.y)*N + col];
__syncthreads();

// Compute with tile
for(unsigned int i = 0; i < TILE_DIM; ++i) {

sum += A_s[threadIdx.y][i]*B_s[i][threadIdx.x];
}
__syncthreads();

}

C[row*N + col] = sum;

Declare arrays in shared memory

Threads wait for each other to finish loading before computing

Threads wait for each other to finish computing before loading

Slide credit: Izzat El Hajj
6

Performance Considerations

Performance Considerations
n Main bottlenecks

q CPU-GPU data transfers
q Global memory access

n Memory access
q Latency hiding

n Occupancy
q Memory coalescing
q Data reuse

n Shared memory usage
n SIMD (Warp) Utilization: Divergence
n Other considerations

q Atomic operations: Serialization
q Data transfers between CPU and GPU

n Overlap of communication and computation

8

Memory Access

Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that

execute the same instruction
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in

pipeline at a time (No
interlocking)

q Interleave warp execution to
hide latencies

n Register values of all threads stay
in register file

n FGMT enables long latency
tolerance
q Millions of pixels

10

Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll Hit?

Miss?

Warps accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Warps available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline

Slide credit: Tor Aamodt

Latency Hiding and Occupancy
n FGMT can hide long latency operations (e.g., memory accesses)
n Occupancy: ratio of active warps to the maximum number of

warps per GPU core

Warp 0

ti
m

e

Instruction 3

4 active warps
Warp 0

ti
m

e

Instruction 3

2 active warps

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 2

Instruction 1

Warp 3

Instruction 1

Warp 1

Instruction 3

Warp 0

Instruction 5

Warp 1

Instruction 2

Warp 0

Instruction 4

(Long latency)

Warp 1

Instruction 3

Warp 0

Instruction 5

11

Occupancy
n GPU core, a.k.a. SM, resources (typical values)

q Maximum number of warps per SM (64)
q Maximum number of blocks per SM (32)
q Register usage (256KB)
q Shared memory usage (64KB)

n Occupancy calculation
q Number of threads per block (defined by the programmer)
q Registers per thread (known at compile time)
q Shared memory per block (defined by the programmer)

12

CUDA Occupancy Calculator (I)

13https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

CUDA Occupancy Calculator (II)

14https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

CUDA Occupancy Calculator (III)

15https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

Memory Layout of a Matrix in C

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

16Slide credit: Hwu & Kirk

The DRAM Subsystem
The Top-Down View

DRAM Subsystem Organization

n Channel
n DIMM
n Rank
n Chip
n Bank
n Row/Column

18

The DRAM Subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”

19

Breaking down a DIMM (module)

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1

20

Breaking down a Rank

Rank 0

<0:63>

Ch
ip

 0

Ch
ip

 1

Ch
ip

 7. . .

<0
:7

>

<8
:1

5>

<5
6:

63
>

Data <0:63>

21

Breaking down a Chip

Ch
ip

 0
<0

:7
>

8 ban
ks

Bank 0

<0:7>

<0:7>

<0:7>

...

<0
:7

>

22

Inside a DRAM Chip

Access	
Transistor

Storage	
Capacitor

Bitline

Wordline

Wordline

Bi
tli
ne

Subarray
(2D	Array of	DRAM	Cells)

Sense	Amplifiers

DRAM	Module

DRAM	Chips

DRAM	Bank

DRAM	Cells

8

Row	Buffer

DRAM Cell Operation

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

½	VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

9

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - ACTIVATE

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

½	VDD1.	Raise	wordline

2.	Capacitor	shares	
charge	with	bitline

4.	Amplify	deviation	
in	the	bitline

+	δ

3.	Enable	
sense	amplifier

VDD

5.	Capacitor	charge	is	restored

10

6.	Row	buffer	stores	the	cell	value

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation – READ/WRITE

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

Read/Write	the	value	
latched	in	sense	amplifier

11

VDD

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - PRECHARGE

wordline

bitline

sense	
amplifier

enable

storage
capacitor

access	
transistor

VDD½	VDD 2.	Precharge bitline	for	next	access
1.	Lower	
wordline

3.	Disable
sense	amplifier

12

DRAM Bank Operation

28

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0Empty

(Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HITHIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

Access Address:

DRAM Burst
n Accessing data in different bursts (rows)

q Need to access the array again

n Accessing data in the same burst (row)
q No need to access the array again, just the multiplexer

n Accessing data in the same burst is faster than accessing
data in different bursts

Timeline:

Timeline:

Slide credit: Izzat El Hajj
29

Recall: Memory Banking
n Memory is divided into banks that can be accessed independently;

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks

30

Bank
0

Bank
1

MDR MAR

Bank
2

Bank
15

MDR MAR MDR MAR MDR MAR

Data bus

Address bus

CPU
Picture credit: Derek Chiou

Multiple Banks (Interleaving) and Channels
n Multiple banks

q Enable concurrent DRAM accesses
q Bits in address determine which bank an address resides in

n Multiple independent channels serve the same purpose
q But they are even better because they have separate data buses
q Increased bus bandwidth

n Enabling more concurrency requires reducing
q Bank conflicts
q Channel conflicts

n How to select/randomize bank/channel indices in address?
q Lower order bits have more entropy
q Randomizing hash functions (XOR of different address bits)

31

Latency Hiding with Multiple Banks
n With one bank, time still wasted in between bursts

n Latency can be hidden by having multiple banks

n Need many threads to simultaneously access memory to
keep all banks busy
q Achieved with having high occupancy in GPU cores (SMs)

n Similar idea to hiding pipeline latency in the core

Slide credit: Izzat El Hajj
32

Lecture on Memory Organization & Technology

33
DDCA - Lecture 22: Memory Organization & Technology (Spring 2021) https://youtu.be/ahPQLempLRM

Memory Coalescing (I)
n When threads in the same warp access consecutive

memory locations in the same burst, the accesses can be
combined and served by one burst
q One DRAM transaction is needed
q Known as memory coalescing

n If threads in the same warp access locations not in the
same burst, accesses cannot be combined
q Multiple transactions are needed
q Takes longer to service data to the warp
q Sometimes called memory divergence

Slide credit: Izzat El Hajj
34

n When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

n Peak bandwidth utilization occurs when all threads in a
warp access one cache line (or several consecutive cache
lines)

Md Nd

W
ID
TH

WIDTH

Thread 1
Thread 2

Not coalesced Coalesced

Memory Coalescing (II)

35Slide credit: Hwu & Kirk

Uncoalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1M3,1 M1,2M0,2 M2,2M3,2

M1,2M0,2 M2,2M3,2

M1,3M0,3 M2,3M3,3

M1,3M0,3 M2,3M3,3

M

T1 T2 T3 T4
Time Period 1

T1 T2 T3 T4
Time Period 2

Access
direction
in Kernel
code

…

36Slide credit: Hwu & Kirk

Coalesced Memory Accesses

M2,0

M1,1

M1,0M0,0

M0,1

M3,0

M2,1 M3,1

M2,0M1,0M0,0 M3,0 M1,1M0,1 M2,1 M3,1 M1,2M0,2 M2,2 M3,2

M1,2M0,2 M2,2 M3,2

M1,3M0,3 M2,3 M3,3

M1,3M0,3 M2,3 M3,3

M

T1 T2 T3 T4
Time Period 1

T1 T2 T3 T4
Time Period 2

Access
direction
in Kernel
code

…

37Slide credit: Hwu & Kirk

AoS vs. SoA
n Array of Structures vs. Structure of ArraysTenemos 2 data layouts principales (AoS y SoA) y uno nuevo propuesto (ASTA).

ASTA permite transformar uno en otro más rápidamente y facilita hacerlo in-place, para
ahorrar memoria. En la siguiente figura se ven los tres:

La granularidad en ASTA, es decir, el ancho del tile, estará relacionado con la
granularidad de acceso a la memoria (warp_size = 32, por ejemplo).

Convertir entre los distintos layouts, en realidad es transponer. Por ejemplo, AoS a
ASTA:

Y transponer es permutar (los números representan posiciones en la memoria y los
colores, tipo de dato):

Data Layout Alternatives

Array of
Structures

(AoS)

Array of
Structure of
Tiled Array

(ASTA)

struct foo{
 float a;
 float b;
 float c;
 int d;
} A[8];

struct foo{
 float a[4];
 float b[4];
 float c[4];
 int d[4];
} A[2];

Structure of
Arrays
(SoA)

struct foo{
 float a[8];
 float b[8];
 float c[8];
 int d[8];
} A;

19

Layout Conversion and Transposition

` Converting AoS to ASTA is not too different from
transposing a bunch of small tiles
` The first attempt, barrier-sync, would more likely to work

same as same as

transpose

AoS ASTA

divide into tiles

transpose

26

Layout Conversion and Transposition

` Transposition is a permutation
` A permutation can be decomposed to independent cycles of

shifting

0 1 2 3 4

5 6 7 8 9

0 1

2 3

4 5

6 7

8 9

transpose

28

38Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012
Gómez-Luna+, “Ch.8: Application Use Cases: Platform Atomics. Heterogeneous System Architecture,” 2016

CPUs Prefer AoS, GPUs Prefer SoA
n Linear and strided accesses

0.0#
1.0#
2.0#
3.0#
4.0#
5.0#
6.0#
7.0#
8.0#
9.0#
10.0#
11.0#
12.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#

Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

GPU#

0.0#

0.5#

1.0#

1.5#

2.0#

2.5#

3.0#

3.5#

4.0#

4.5#

5.0#

1# 2# 4# 8# 16# 32# 64# 128# 256# 512# 1024#
Th
ro
ug
hp

ut
#(G

B/
s)
#

Stride#(Structure#size)#

1CPU# 2CPU# 4CPU#

AMD Kaveri A10-7850K

GPU CPU

39Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012
Gómez-Luna+, “Ch.8: Application Use Cases: Platform Atomics. Heterogeneous System Architecture,” 2016

Use Shared Memory to Improve Coalescing

Md Nd

W
ID
TH

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

Slide credit: Hwu & Kirk 40

Data Reuse
n Same memory locations accessed by neighboring threads

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){

sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];
}

}

41

Data Reuse: Tiling
n To take advantage of data reuse, we divide the input into tiles

that can be loaded into shared memory

__shared__ int l_data[(L_SIZE+2)*(L_SIZE+2)];
…
Load tile into shared memory
__syncthreads();
for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][j] * l_data[(i+l_row-1)*(L_SIZE+2)+j+l_col-1];

}
}

42

Shared Memory
n Shared memory is an interleaved (banked) memory

q Each bank can service one address per cycle

n Typically, 32 banks in NVIDIA GPUs
q Successive 32-bit words are assigned to successive banks

n Bank = Address % 32

n Bank conflicts are only possible within a warp
q No bank conflicts between different warps

43

Shared Memory Bank Conflicts (I)
n Bank conflict free

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Linear addressing: stride = 1 Random addressing 1:1

44Slide credit: Hwu & Kirk

Shared Memory Bank Conflicts (II)
n N-way bank conflicts

2-way bank conflict: stride = 2 8-way bank conflict: stride = 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

45Slide credit: Hwu & Kirk

Use Shared Memory to Improve Coalescing

Md Nd

W
ID
TH

WIDTH

Md Nd

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad

memory

Perform
multiplication

with scratchpad
values

Slide credit: Hwu & Kirk 46

Reducing Shared Memory Bank Conflicts
n Bank conflicts are only possible within a warp

q No bank conflicts between different warps

n If strided accesses are needed, some optimization
techniques can help
q Padding
q Randomized mapping

n Rau, “Pseudo-randomly interleaved memory,” ISCA 1991
q Hash functions

n V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

47

SIMD Utilization

Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths

49

Thread Warp Common PC

Thread
2

Thread
3

Thread
4

Thread
1

B

C D

E

F

A

G

Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD

pipeline to save area
on control logic
q Groups scalar threads

into warps

n Branch divergence
occurs when threads
inside warps branch to
different execution
paths

50

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

SIMD Utilization
n Intra-warp divergence

Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){

Do_this(threadIdx.x);
}
else{

Do_that(threadIdx.x);
}

Compute

If

Else

51

Increasing SIMD Utilization
n Divergence-free execution

Compute(threadIdx.x);
if (threadIdx.x < 32){

Do_this(threadIdx.x * 2);
}
else{

Do_that((threadIdx.x%32)*2+1);
}

Compute

If

Else

52

Vector Reduction: Naïve Mapping (I)

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3ite
ra

tio
ns

Thread 0 Thread 8Thread 2 Thread 4 Thread 6 Thread 10

53Slide credit: Hwu & Kirk

…

Vector Reduction: Naïve Mapping (II)
n Program with low SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {

__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

}

54

Divergence-Free Mapping (I)
n All active threads belong to the same warp

Thread 0

0 1 2 3 … 13 1514 181716 19

0+16 15+311

2

3

Thread 1 Thread 2 Thread 14 Thread 15

ite
ra

tio
ns

55Slide credit: Hwu & Kirk

…

Divergence-Free Mapping (II)
n Program with high SIMD utilization

__shared__ float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 0; stride >> 1){

__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

}

56

Atomic Operations

Atomic Operations (I)
n CUDA provides atomic instructions on shared memory and

global memory
q They perform read-modify-write operations atomically

n Arithmetic functions
q Add, sub, max, min, exch, inc, dec, CAS

int atomicAdd(int*, int);

n Bitwise functions
q And, or, xor

n Datatypes: int, uint, ull, float (half, single, double)*

58

Pointer to shared memory
or global memory Value to addReturn value (old value)

* Datatypes for different atomic operations in https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#atomic-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

n Atomic operations serialize the execution if there are
atomic conflicts

Atomic Operations (II)

th0

th1

tbase

tconflict
th0 th1

2 2

0 1 2 3 ...

Shared memory

0 1 2 3 ...

Shared memory

th0 th1

0 2

th0 th1

tbase

No atomic conflict =
concurrent updates

Atomic conflict =
serialized updates

59

Uses of Atomic Operations
n Computation

q Atomics on an array that will be the output of the kernel
q Example

n Histogram, reduction

n Synchronization
q Atomics on memory locations that are used for synchronization or

coordination
q Example

n Counters, locks, flags…

n Use them to prevent data races when more than one thread
need to update the same memory location

60

n Histograms are widely used in image processing
q Some computation before voting in the histogram may be needed

q Parallel threads frequently incur atomic conflicts in image histogram
computation

For (each pixel i in image I){
Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel’]++ // Vote in histogram bin

}

Thread 0 Thread 1 Thread 2 Thread n-1

Input data

Histogram

0 1 2

data[1]data[0] data[2] data[n-1]...

... B-1

data[n+1]data[n] data[n+2] data[2n-1]...

...

..
.

..
.

..
.

..
.

Image Histogram

61

n 7 versions in CUDA samples: Tree-based reduction in
shared memory
q Version 0: No whole warps active
q Version 1: Contiguous threads, but many bank conflicts
q Version 2: No bank conflicts
q Version 3: First level of reduction when reading from global

memory
q Version 4: Warp shuffle or unrolling of final warp
q Version 5: Warp shuffle or complete unrolling
q Version 6: Multiple elements per thread sequentially

Optimized Parallel Reduction

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-parallel-reduction
Harris, “Optimizing Parallel Reduction in CUDA,” https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

62

https://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

n 3 new versions of reduction based on 3 previous versions
q Version 0: No whole warps active
q Version 3: First level of reduction when reading from global

memory
q Version 6: Multiple elements per thread sequentially

n New versions 7, 8, and 9
q Replace the for loop (tree-based reduction) with one shared

memory atomic operation per thread

Reduction with Atomic Operations

63

Asynchronous Data Transfers
between CPU and GPU

CUDA Streams
n CUDA streams (command queues in OpenCL)
n Sequence of operations that are performed in order

q 1. Data transfer CPU-GPU
q 2. Kernel execution

n D input data instances, B blocks
n #Streams: (D / #Streams) data instances, (B / #Streams) blocks

q 3. Data transfer GPU-CPU

Copy data

Execute

Copy data

Execute

tT

tE

65

Asynchronous Transfers between CPU & GPU
n Computation divided into #Streams

q D input data instances, B blocks
q #Streams

n D/#Streams data instances
n B/#Streams blocks

q Estimates

Copy data

Execute

Copy data

Execute

tT

tE

tE >= tT (dominant kernel) tT > tE (dominant transfers)
66

Default stream

Several streams

𝑡! +
𝑡"

#𝑆𝑡𝑟𝑒𝑎𝑚𝑠 𝑡" +
𝑡!

#𝑆𝑡𝑟𝑒𝑎𝑚𝑠

Overlap of Data Transfers and Kernel Execution

67

// Create streams
int number_of_streams = 32;
cudaStream_t stream[number_of_streams]; // Stream declaration
for(int i = 0; i < number_of_streams; ++i)

cudaStreamCreate(&stream[i]); // Stream creation

// CPU-GPU data transfers
for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size, size,
cudaMemcpyHostToDevice, stream[i]);

// Kernel launches
for (int i = 0; i < number_of_streams; ++i)

MyKernel<<<num_blocks / number_of_streams, num_threads, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);

// GPU-CPU data transfers
for (int i = 0; i < number_of_streams; ++i)

cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size, size,
cudaMemcpyDeviceToHost, stream[i]);

cudaDeviceSynchronize(); // Explicit synchronization

// Destroy streams
for (int i = 0; i < number_of_streams; ++i)

cudaStreamDestroy(stream[i]); // Stream destruction

Code for devices that do not support concurrent data transfers

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

Check CUDA programming guide
https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

n Applications with independent computation on different data
instances can benefit from asynchronous transfers

n For instance, video processing

6 x b blocks compute on the sequence of frames

A sequence of 6 frames is transferred to device

A chunk of 2 frames is

transferred to device

2 x b blocks compute

on the chunk, while the

second chunk is being

transferred

Non-

streamed

execution

Streamed

execution

Execution time saved

thanks to streams

Use Case: Video Processing

68Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

n 256-bin histogram calculation

Video Processing: Performance Results (I)

69Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

0

5

10

15

20

25

30

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

0

2

4

6

8

10

12

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

2

4

8

1
6

3
2

6
4

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

GeForce GTX 480 GeForce GTX 280

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of streams

Size of the frames

44%
21%

n RGB-to-grayscale conversion

Video Processing: Performance Results (II)

70Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”
JPDC, 2012

0

10

20

30

40

50

2

4

8

1
6

3
2

2

4

8

1
6

3
2

2

4

8

1
6

3
2

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

0

5

10

15

20

25

2

4

8

1
6

3
2

2

4

8

1
6

3
2

2

4

8

1
6

3
2

176 x 144 352 x 288 704 x 576

Non-streamed

Streamed

Our performance model

GeForce GTX 480 GeForce GTX 280

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

Number of streams

Size of the frames

63% 18%

Performance Considerations
n Main bottlenecks

q CPU-GPU data transfers
q Global memory access

n Memory access
q Latency hiding

n Occupancy
q Memory coalescing
q Data reuse

n Shared memory usage
n SIMD (Warp) Utilization: Divergence
n Other considerations

q Atomic operations: Serialization
q Data transfers between CPU and GPU

n Overlap of communication and computation

71

Recommended Readings (I)

n Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
q Chapter 5: Performance considerations
q Chapter 18 - Programming
a heterogeneous computing cluster,
Section 18.5

72

Recommended Readings (II)

n Hwu and Kirk and El Hajj, “Programming Massively Parallel
Processors,” Fourth Edition, 2022
q Chapter 6 - Performance considerations
q Chapter 20 - Programming a
heterogeneous computing cluster,
Section 20.5

73

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2022

31 October 2022

P&S Heterogeneous Systems

GPU Performance Considerations

