P&S Heterogeneous Systems

GPU Performance Considerations

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2022
31 October 2022

GPU Memories

Traditional Program Structure

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU

o Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)

DO

KernelA<<< nBlk, nThr >>>(args); 2

Serial Code (host)

D

Parallel Kernel (device)

KernelB<<< nBlk, nThr >>>(args); g S || S

Slide credit: Hwu & Kirk

Memory Hierarchy in CUDA Programs

Block (0, 0) Block (1, 0)

Shared memory

Registers | Registers |

; Thread (0, 0) ; Thread (1, 0)

Shared memory

Registers | Registers |

é Thread (0, 0) ; Thread (1, 0)

Tiled Matrix Multiplication (I1I)

= Tiled implementation operates on submatrices (tiles or
blocks) that fit fast memories (cache, scratchpad, RF)

#define A(i,Jj) matrix A[i * P + Jj]
#define B(i,Jj) matrix B[i * N + j]
#define C(i,J) matrix C[i * N + J]

for (I = 0; I < M; I += tile dim) { E3
for (J = 0; J < N; J += tile dim) {

Set to zero(&C(I, J)); // Set to zero

for (K = 0; K< P; K += tile dim) D

Multiply tiles(&C(I, J), &A(I, K), &B(K, J)); K

o P
e

Multiply small submatrices (tiles or
blocks) of size tile dim x tile dim

tile dim

< > < >

P N

Lam+, "The cache performance and optimizations of blocked algorithms," ASPLOS 1991. https://doi.org/10.1145/106972.106981 5
Bansal+, "Chapter 15 - Fast Matrix Computations on Heterogeneous Streams," in "High Performance Parallelism Pearls", 2015. https://doi.org/10.1016/B978-0-12-803819-2.00011-2
Kirk & Hwu, "Chapter 5 - Performance considerations," in "Programming Massively Parallel Processors (Third Edition)", 2017. https://doi.org/10.1016/B978-0-12-811986-0.00005-4

https://doi.org/10.1145/106972.106981
https://doi.org/10.1016/B978-0-12-803819-2.00011-2
https://doi.org/10.1016/B978-0-12-811986-0.00005-4

Tiled Matrix-Matrix Multiplication (V)

_ shared__ float A_S[TILE_DIM][TILE_DIM]; Ded " chared
__shared__ float B_S[TILE_DIM][TILE_DIM]; €clare arrays In shared memory

unsigned int row
unsigned int col

blockIdx.y*blockDim.y + threadIdx.y;
bTockIdx.x*blockDim.x + threadIdx.x;

float sum = 0.0f;
(unsigned 1nt tile = 0; tile < N/TILE_DIM; ++tile) {
// Load tile to shared memory

A_s[threadIdx.y][threadIdx.x]
B_s[threadIdx.y][threadIdx.x]

A[Lrow*N + tile*TILE_DIM + threadIdx.x];
BL(tile*TILE_DIM + threadIdx.y)*N + col];

__syncthreads();
Y O " Threads wait for each other to finish loading before computing
// Compute with tile
(unsigned int 1 = 0; 1 < TILE_DIM; ++1) {
sum += A_s[threadIdx.y][1]1*B_s[i][threadIdx.x];

}

__syncthreads();
Y T Threads wait for each other to finish computing before loading
}

Clrow*N + col] = sum;

Slide credit: 1zzat El Hajj

Performance Considerations

Performance Considerations

= Main bottlenecks
o CPU-GPU data transfers

a Global memory access

= Memory access
o Latency hiding
= Occupancy
o Memory coalescing

o Data reuse
= Shared memory usage

= SIMD (Warp) Utilization: Divergence
= Other considerations
o Atomic operations: Serialization

o Data transfers between CPU and GPU
= Overlap of communication and computation

Memory Access

Latency Hiding via Warp-Level FGMT

Warp: A set of threads that
execute the same instruction
(on different data elements)

Fine-grained multithreading

o One instruction per thread in
pipeline at a time (No
interlocking)

o Interleave warp execution to
hide latencies

Register values of all threads stay
in register file

FGMT enables long latency
tolerance

o Millions of pixels

Slide credit: Tor Aamodt

v
Thread Warp 3
Thread Warp 8

| ThreadIWarp 7 |

v
| |-Fetch |
v

| Decode |
v

<NV 4 €
<NV« 3o
OV ¢ 3 €

| D-Cache M

All Hit?l W
v

Thread Warp 1
Thread Warp 2

| Writeback |

Warps available
for scheduling

SIMD Pipeline

Warps accessing

memory hierarchy
Miss?

| Thread Warp 6 |

10

Latency Hiding and Occupancy

= FGMT can hide long latency operations (e.g., memory accesses)

= Occupancy: ratio of active warps to the maximum number of
warps per GPU core

4 active warps 2 active warps

Instruction 3 Instruction 3

Instruction 2 .
Instruction 2

Warp 0 Warp 0

Instruction 1
Instruction 3

Instruction 4
(Long latency)

Instruction 4

Instruction 1 (Long latency)

Instruction 3

Instruction £

Instruction £

W e e 1 T
e e I

11

Occupancy

GPU core, a.k.a. SM, resources (typical values)
a Maximum number of warps per SM (64)

o Maximum number of blocks per SM (32)

o Register usage (256KB)

o Shared memory usage (64KB)

Occupancy calculation

o Number of threads per block (defined by the programmer)
o Registers per thread (known at compile time)

a Shared memory per block (defined by the programmer)

12

CUDA Occupancy Calculator (I)

A B [D E F G H I J K N o B Q R S T u
1 CU DA occupancy calCU|at0r Click Here for detailed instructions on how to use this occupancy calculator.
3
4
s Your chosen resource usage is indicated by the red triangle on the graphs. The other data points
6 1.) Select Compute Capability (click): [86 | (Help) represent the range of possible block sizes, register counts, and shared memory allocation.
7 1.b) Select Shared Memory Size Config (bytes) | 65536 |
8 1.c) Select CUDAversion | (I Impact of Varying Block Size Impact of Varying Shared Memory Usage Per Block
9 My Block Size, 256
10 48 ‘Shared Memory, 2048
11 2.) Enter your resource usage: o N
12 Threads Per Block [256] (Help) g / > 48 T
13 Registers Per Thread | 32| g 4 oL § \ \ \ \
14 User Shared Memory Per Block (bytes) [2048] § \/ \ § 40
15 o o S _ = 8 L
16 (Don't edit anything below this line) g 3 L// £g »
17 2 g
18 3.) GPU Occupancy Data is displayed here and in the graphs: 5 i / = S \
19 Active Threads per Multiprocessor 1536 (Help) H 16 @ 2
20 Active Warps per Multiprocessor 48 ° § r \ \ \
21 Active Thread Blocks per Multiprocessor 6 -] " & ”
22 Occupancy of each Multiprocessor 100% E E \
z 0 8
24 .
25 | Physical Limits for GPU Compute Capability: 8.6 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024 ‘
26 Threads per Warp 32 Threads Per Block 0
27 Max Warps per Multiprocessor 48 g 2 R 2 8 3 8 & & & 2
28 Max Thread Blocks per Multiprocessor 16 - . = = 8 ® 8 e g 8 3 B &
29 Max Threads per Multiprocessor 1536 Impact of Varying Register Count Per Thread
30 Maximum Thread Block Size 1024 My Register Count, 32 Shared Memory Per Block
oY e G (Y Ry =) 48 . A S92 638 ——u7s ——es56 102400
32 Max Registers per Thread Block 65536
33 Max Registers per Thread 255 E i
34 Shared Memory per Multiprocessor (bytes) 65536 g
35 Max Shared Memory per Block 65536 §
36 Register allocation unit size 256 o 32
37 Register allocation granularity warp g7
38 Shared Memory allocation unit size 128 s E 24
39 Warp allocation granularity 4 § =
40 Shared Memory Per Block (bytes) (CUDA runtime use) 1024 g 1
= Allocatable 14
41 Allocated Resources Per Block Limit Per SM__Blocks Per SM Ea 8
42 |Warps (Threads Per Block / Threads Per Warp) [8 | 48] 6| 2
43 Registers (Warp limit per SM due to per-warp reg count) | 8 | 64| 8| L 5 0 B B G S S LTIV SV S S
44 | Shared Memory (Bytes) | 2048 | 65536 32| @ENc@einNc=aRIRRERR2BIE 82308888
45 |Note: S\is an sbbreviation for (Streaming) Multprocesor Registers Per Thread
46

47 Maximum Thread Blocks Per Multiprocessor Blocks/SM__* Warps/Block = Warps/SM
48 w
49 |Limited by Registers per 8

50 |Limited by Shared Memory per Multiprocessor | 32 |
51 [Note: Occupaney limitr is shown in orange Physical Max Warps/SM = 48

52 Occupancy = 48 / 48 = 100%

53

54 CUDA Occupancy Calculator |

55 Version: | 11.1]

se Copyri =
57

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA Occupancy Calculator.xls

13

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

CUDA Occupancy Calculator (I1I)

< ” DEVELOPER CUDA TOOLKIT DOCUMENTATION

nvinia Z0ONE

CUDA Toolkit v11.6.2 CUDA Occupancy Calculator (PDF) - v11.6.2 (older) - Last updated March 24, 2022 - Send Feedback

CUDA Occupancy Calculator

Overview [Deprecated] CUDA Occupancy Calculator
The CUDA Occupancy Calculator allows you to compute the multiprocessor occupancy of a GPU by a given CUDA kernel.

[Deprecated] Excel based Occupancy Calculator is deprecated. Occupancy calculator is available in Nsight Compute. Please
refer to Nsight Compute Occupancy Calculator documentation for more details on usage.

Overview

The CUDA Occupancy Calculator allows you to compute the multiprocessor occupancy of a GPU by a given CUDA kernel. The
multiprocessor occupancy is the ratio of active warps to the maximum number of warps supported on a multiprocessor of the
GPU. Each multiprocessor on the device has a set of N registers available for use by CUDA program threads. These registers are
a shared resource that are allocated among the thread blocks executing on a multiprocessor.

The CUDA compiler attempts to minimize register usage to maximize the number of thread blocks that can be active in the
machine simultaneously. If a program tries to launch a kernel for which the registers used per thread times the thread block
size is greater than N, the launch will fail.

Click CUDA Occupancy Calculator[XLS] to download the spreadsheet.

14

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA Occupancy Calculator.xls

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

CUDA Occupancy Calculator (111

A DEVELOPER
Z0ONE

nvinia

Nsight Compute v2022.1.1
Nsight Compute
> 1. Introduction
[>2. Quickstart
[>3. Connection Dialog
[>4. Main Menu and Toolbar
[>5. Tool Windows
V 6. Profiler Report
6.1. Header
V 6.2. Report Pages
6.2.1. Session Page
6.2.2. Summary Page
6.2.3. Details Page
6.2.4. Source Page
6.2.5. Comments Page

6.2.6. Call Stack / NVTX
Page

6.2.7. Raw Page
6.3. Metrics and Units

7. Baselines
8. Standalone Source Viewer
V9. Occupancy Calculator
9.1. Tables
9.2. Graphs
9.3. GPU Data

[>10. Options
> 11. Projects

[>12. Visual Profiler Transition
Guide

[>13. Visual Studio Integration
Guide

[>14. Library Support

DEVELOPER TOOLS Documentation

9. Occupancy Calculator

NVIDIA Nsight Compute provides an Occupancy Calculator that allows you to compute the multiprocessor occupancy of a
GPU for a given CUDA kernel. It offers feature parity to the CUDA Occupancy Calculator spreadsheet.

The Occupancy Calculator can be opened directly from a profile report or as a new activity. The occupancy calculator data
can be saved to a file using File > Save. By default, the file uses the .ncu-occ extension. The occupancy calculator file can
be opened using File > Open File

1. Launching from the Connection Dialog

Select the Occupancy Calculator activity from the connection dialog. You can optionally specify an occupancy calculator
data file, which is used to initialize the calculator with the data from the saved file. Click the Launch button to open the
Occupancy Calculator.

@ Connect to process X

Target Platform

Activity

[e]
)

Interactive Profile Open a new Occupancy Calculator. If specified, the calculator will be initialized from the file.

& Profile

[E Occupancy Calculator
Occupancy Calculator File: C:/Users/Public/test.ncu-occ

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator

15

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html

Memory Layout of a Matrix in C

MILETIRCIILER] Mo1 M11 My1 M31 Moo Myo My M3

Slide credit: Hwu & Kirk

16

The DRAM Subsystem
The Top-Down View

DRAM Subsystem Organization

= Channel

= DIMM

= Rank

= Chip

= Bank

= Row/Column

18

The DRAM Subsystem

“Channel” DIMM (Dual in-line memory module)

m

Processor

Memory channel Memory channel

19

Breaking down a DIMM (module)

DIMM (Dual in-line memory module)

Front of DIMM

4.00 ’ ‘
®

Back of DIMM

LTI mm . ©

o YT NG

20

Breaking down a Rank

Data <0:63>

21

Breaking down a Chip

Inside a DRAM Chip

-
-

Subarray -~
(2D Array of DRAM Cells)

~
~
~
~
~
~

Sense Amplifiers -}

-
= = =

Bitline ~

- Wordline

DRAM Cells
/ Wordline
B Access

< | Transistor

<+ -

AY

\ Bitline

Row Buffer

1 - ‘. Storage

DRAM Chips -

’ Capacitor

DRAM Module

DRAM Cell Operation

wordline
e Y Vpp
bitline
storage acce:ss
transistor

capacitor

enable D

sense
amplifier

1. ACTIVATE (ACT)
2. READ/WRITE

3. PRECHARGE (PRE)

DRAM Cell Operation - ACTIVATE

wordline

1. Raise wordline 4 W+ S

dCCesSS

storage _
transistor

capacitor

3. Capacitor sharge is restored
charge with bitline

4. Amplify deviation

in the bitline
3. Enable

bitline

sense amplifier enable

[]

sense

amplifier

1. ACTIVATE (ACT)

2. READ/WRITE

3. PRECHARGE (PRE)

6. Row buffer stores the cell value

10

DRAM Cell Operation — READ/WRITE

wordline
=1L Voo
bitline
storage trz‘;fs"iz:or 1. ACTIVATE (ACT)
capacitor
2. READ/WRITE
3. PRECHARGE (PRE)
enable . = Read/Write the value
sense latched in sense amplifier
amplifier

11

DRAM Cell Operation - PRECHARGE

1. Lower wordline

wordline 1 12 Vpp 2.Precharge bitline for next access
bitline
access
Czt;:;%sr transistor 1. ACTIVATE (ACT)
2. READ/WRITE
3. PRECHARGE (PRE)
3. Disable
sense amplifier €énable .
sense
amplifier

12

DRAM Bank Operation

Access Address:
(Row 0, Column 0)

(Row 0, Column 1)
(Row 0, Column 85)
(Row 1, Column 0)

Row address @ ——»

Row decoder

Columns

—————————————————————————

Column address 85—»\ Column mux/

l

Data

Row Buffer EAONFLICT !

28

DRAM Burst

Accessing data in different bursts (rows)
o Need to access the array again

Timeline: - -

Accessing data in the same burst (row)
o No need to access the array again, just the multiplexer

Timeline: 1]

Accessing data in the same burst is faster than accessing
data in different bursts

Slide credit: Izzat El Hajj

29

Recall: Memory Banking

Memory is divided into banks that can be accessed independently;
banks share address and data buses (to minimize pin cost)

Can start and complete one bank access per cycle
Can sustain N concurrent accesses if all N go to different banks

Bank Bank Bank
0 1 2
MDR| | MAR || MDR| | MAR | | MDR| | MAR

Data bus

...... Bank

15

MDR| | MAR

Picture credit: Derek Chiou

A

Address bus

CPU
30

Multiple Banks (Interleaving) and Channels

Multiple banks

o Enable concurrent DRAM accesses

o Bits in address determine which bank an address resides in
Multiple independent channels serve the same purpose

o But they are even better because they have separate data buses
o Increased bus bandwidth

Enabling more concurrency requires reducing

o Bank conflicts

o Channel conflicts

How to select/randomize bank/channel indices in address?
o Lower order bits have more entropy

o Randomizing hash functions (XOR of different address bits)

31

Latency Hiding with Multiple Banks

= With one bank, time still wasted in between bursts

= Latency can be hidden by having multiple banks

= Need many threads to simultaneously access memory to
keep all banks busy

o Achieved with having high occupancy in GPU cores (SMs)
= Similar idea to hiding pipeline latency in the core

Slide credit: 1zzat El Hajj

Lecture on Memory Organization & Technology

Breaking down a Chip

T
QQ

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Digital Design & Comp. Arch. - Lecture 22: Memory Organization & Technology (ETH Ziirich, Spring '21)

2,906 views ¢ Streamed live on May 21, 2021 I‘ 83 Llj] 1 A) SHARE =4 SAVE

@ ?9":; :’:::'C‘:‘t:‘:tures ANALYTICS | EDIT VIDEO
4T 2

Digital Design and Computer Architecture, ETH Ziirich, Spring 2021 (
https://safari.ethz.ch/digitaltechnik...)

33
DDCA - Lecture 22: Memory Organization & Technology (Spring 2021) https://youtu.be/ahPQLempLRM

Memory Coalescing (1)

When threads in the same warp access consecutive

memory locations in the same burst, the accesses can be
combined and served by one burst

2 One DRAM transaction is needed
o Known as memory coalescing

If threads in the same warp access locations not in the
same burst, accesses cannot be combined

o Multiple transactions are needed

o Takes longer to service data to the warp
o Sometimes called memory divergence

Slide credit: Izzat El Hajj

34

Memory Coalescing (1I)

= When accessing global memory, we want to make sure
that concurrent threads access nearby memory locations

= Peak bandwidth utilization occurs when all threads in a

warp access one cache line (or several consecutive cache
lines)

Not coalesced Coalesced

Thread 1

Thread 2 ‘ ‘

Slide credit: Hwu & Kirk 35

Uncoalesced Memory Accesses

Access
direction
in Kernel
code
Time Period 2
T, T, T T,
A A A A
Time Period [L
T, T, T T4

A

Mo,oM1,0M2,0(M3 oM LER LRI ERL W LM PN EPIM 3M 4 3

Slide credit: Hwu & Kirk

Coalesced Memory Accesses

Access
direction
in Kernel
code

Time Period 1|| Time Period 2
T, T, T3 T4|| Ty T, T3 T4

M

!

LN Mo 1 M11 My 1 M3 1 Mg 2 My 2 Mp 2 M3 5 G

Slide credit: Hwu & Kirk

37

AoS vs. SOA

Array of Structures vs. Structure of Arrays

struct foo{
Structure of
Arrays

(SoA) int d[8];
} A;

struct foo{

Array of
Structures
(AOS) int d;
} A[8];
Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012 38

Gdémez-Luna+, “Ch.8: Application Use Cases: Platform Atomics. Heterogeneous System Architecture,” 2016

CPUs Prefer AoS, GPUs Prefer SoA

= Linear and strided accesses

GPU

CPU

12.0 5.0
Ol
11.0 ——GPU | 45 1 ——1CPU ——2CPU —4—4CPU
10.0 \\ 40 »—*
z 9.0 \ s
5 80 > 35
< 0 \ =30 /<> —X
%‘0 5.0 >1 l"é‘:'z'o
S 4.0 o / % . -6 o o
< < 15
= 30 N\ = ¢
2.0 \'[1.0 o//0/
1.0 \EL 0.5
OO
0.0 ' ' ' ' ' ' ' ' ' ' . 0.0 ' ' ' ' ' ' ' .
1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024
Stride (Structure size) Stride (Structure size)
AMD Kaveri A10-7850K
Sung+, “DL: A data layout transformation system for heterogeneous computing,” INPAR 2012 39

Goémez-Luna+, “Ch.8: Application Use Cases: Platform Atomics. Heterogeneous System Architecture,” 2016

Use Shared Memory to Improve Coalescing

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad
memory

Perform
multiplication

values

\ with scratchpad

Slide credit: Hwu & Kirk

40

Data Reuse

= Same memory locations accessed by neighboring threads

O
0

for (int i = 0; i < 3; i++){
for (int j = 0; j < 3; Jj++){
sum += gauss[i][j] * Image[(i+row-1)*width + (j+col-1)];

}

41

Data Reuse: Tiling

= To take advantage of data reuse, we divide the input into tiles
that can be loaded into shared memory

__shared _ int 1_data[(L_SIZE+2)*(L_SIZE+2)];

Load tile into shared memory
__syncthreads();
for (int 1 = 0; i < 3; 1i++){
for (int j = 0; j < 3; j++){
sum += gauss[i][]j] * 1 data[(i+l row-1)*(L_SIZE+2)+j+1 col-1];
}
}

42

Shared Memory

Shared memory is an interleaved (banked) memory
o Each bank can service one address per cycle

Typically, 32 banks in NVIDIA GPUs

o Successive 32-bit words are assigned to successive banks
Bank = Address % 32

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

43

Shared Memory Bank Conflicts (I)

= Bank conflict free

y 7 y 7
Thread 0 " Bank0 | Thread 0 " Bank0 |,
T 7 " Bank 1 |] Thread 1 " Bank1 |,
T " Bank2 | IR ez
e " Bank 3 | RITEE DEanks)
—— “Bank4 | I Thread 4 SET
S E— " Bank5 | IS e
Thieae 6 " Bank 6| IRIEIEEEIG DBanke)
p— " Bank 7 | IR ek)

Linear addressing: stride = 1 Random addressing 1:1

4 Bank 15

Thread 15 Bank 15

Slide credit: Hwu & Kirk 4‘4

Shared Memory Bank Conflicts (II)

= N-way bank conflicts

Thread O
Thread 1

rezc2 Ny,
o,

Thread 4

N
N

Thread 8 >
Thread 9
Thread 10

>

Thread 11

Bank 15

2-way bank conflict: stride = 2

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6
Thread 7

Thread 15

T

s HEENSCH

Bank 15

8-way bank conflict: stride = 8

Slide credit: Hwu & Kirk

Use Shared Memory to Improve Coalescing

Original
Access
Pattern

Tiled
Access
Pattern

Copy into
scratchpad
memory

Perform
multiplication

values

\ with scratchpad

Slide credit: Hwu & Kirk

46

Reducing Shared Memory Bank Conflicts

Bank conflicts are only possible within a warp
o No bank conflicts between different warps

If strided accesses are needed, some optimization
techniques can help
o Padding

o Randomized mapping
Rau, “"Pseudo-randomly interleaved memory,” ISCA 1991

o Hash functions

V.d.Braak+, “Configurable XOR Hash Functions for Banked
Scratchpad Memories in GPUs,” IEEE TC, 2016

47

SIMD Utilization

Threads Can Take Different Paths in Warp-based SIMD

Each thread can have conditional control flow instructions
Threads can execute different control flow paths

Thread Warp Common PC

Thread| Thread | Thread | Thread
1 2 3 4

49
Slide credit: Tor Aamodt

Control Flow Problem in GPUs/SIMT

A GPU uses a SIMD
pipeline to save area

on control logic 1 1 1 1 1 1

o Groups scalar threads

into warps Brangh 1 1 1 1 1 1 vy

Patnal| | | | |
Branch divergence
occurs when threads Path\Bj |
inside warps branch to
different execution 1 1 1 1 1 1 1 1
paths

This is the same as conditional/predicated/masked execution.
Recall the Vector Mask and Masked Vector Operations?

50
Slide credit: Tor Aamodt

SIMD Utlization

= Intra-warp divergence

Compute
Compute(threadIdx.x);
if (threadIdx.x % 2 == 0){

Do this(threadIdx.x);
}

else/{ If
Do that(threadIdx.x);
}
v v v 4 4 v | 4 v

Else

v 14 v 14 14 | 4 | 4 v

51

Increasing SIMD Utlization

= Divergence-free execution

Compute

Compute(threadIdx.x);
if (threadIdx.x < 32){

Do this(threadIdx.x * 2);
}

else/{
Do that((threadIdx.x%32)*2+1);
}

AAAAAAA

Else

YyvvyvvyVvyy

52

Vector Reduction: Naive Mapping (I)

Thread 0 Thread 2 Thread 4 Thread 6 Thread 8 Thread 10

8+9

iterations

53

Vector Reduction: Naive Mapping (1I)

= Program with low SIMD utilization

__shared float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = 1; stride < blockDim.x; stride *= 2) {
__syncthreads();

if (t % (2*stride) == 0)
partialSum[t] += partialSum[t + stride];

54

Divergence-Free Mapping (1)

= All active threads belong to the same warp

Thread 0 Thread 1 Thread 2 - Thread 14 Thread 15

iterations

Slide credit: Hwu & Kirk 55

Divergence-Free Mapping (11)

= Program with high SIMD utilization

__shared float partialSum[]

unsigned int t = threadIdx.x;

for (int stride = blockDim.x; stride > 0; stride >> 1){
__syncthreads();

if (t < stride)
partialSum[t] += partialSum[t + stride];

56

Atomic Operations

Atomic Operations (I)

CUDA provides atomic instructions on shared memory and
global memory

a They perform read-modify-write operations atomically

Arithmetic functions
o Add, sub, max, min, exch, inc, dec, CAS
int atomicAdd(int*, int);

" NN

Pointer to shared mem
Return value (old value) o?lglolgalomer?wrordy ory Value to add

Bitwise functions
o And, or, xor

Datatypes: int, uint, ull, float (half, single, double)*

* Datatypes for different atomic operations in https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html#atomic-functions 58

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Atomic Operations (1I)

= Atomic operations serialize the execution if there are

atomic conflicts

1 No atomic conflict = |
| concurrent updates |

tho

N N

th1

N N

th1 =

% u tconf//ct

—
tho

% - tbase

Atomic conflict =

serialized updates |

59

Uses of Atomic Operations

Computation
o Atomics on an array that will be the output of the kernel

o Example
Histogram, reduction

Synchronization

o Atomics on memory locations that are used for synchronization or
coordination

o Example
Counters, locks, flags...

Use them to prevent data races when more than one thread
need to update the same memory location

60

Image Histogram

= Histograms are widely used in image processing

o Some computation before voting in the histogram may be needed

For (each pixel i in image I){

Pixel = I[i] // Read pixel
Pixel’ = Computation(Pixel) // Optional computation
Histogram[Pixel' |++ // Vote in histogram bin
}
o Parallel threads frequently incur atomic conflicts in image histogram
computation
Input data
dat:a[n] dataEn+1] dataEn+2] data[:2n-1]
data[0] data[1] data[2] data[n-1]

% Thread 1 % Thread 2 - %Thread n-1

0 1 2 ... | B-1

% Thread 0

Histogram

61

Optimized Parallel Reduction

/ versions in CUDA samples: Tree-based reduction in
shared memory

Q

Q

Q

Version 0:
Version 1:
Version 2:

Version 3:
memory

Version 4:
Version 5:
Version 6:

No whole warps active

Contiguous threads, but many bank conflicts

No bank conflicts

First level of reduction when reading from global

Warp shuffle or unrolling of final warp
Warp shuffle or complete unrolling
Multiple elements per thread sequentially

https://docs.nvidia.com/cuda/cuda-samples/index.html#cuda-parallel-reduction

Harris, “Optimizing Parallel Reduction in CUDA,"” https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

62

https://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

Reduction with Atomic Operations

= 3 new versions of reduction based on 3 previous versions
o Version 0: No whole warps active

a Version 3: First level of reduction when reading from global
memory

o Version 6: Multiple elements per thread sequentially

= New versions 7, 8, and 9

o Replace the for loop (tree-based reduction) with one shared
memory atomic operation per thread

63

Asynchronous Data Transters

between CPU and GPU

CUDA Streams

= CUDA streams (command queues in OpenCL)
= Sequence of operations that are performed in order

Q

Q

1

. Data transfer CPU-GPU

2. Kernel execution

3

D input data instances, B blocks
#Streams: (D / #Streams) data instances, (B / #Streams) blocks

. Data transfer GPU-CPU
- ir >
Copydata [;
- £ >
Execute]

copyata [N NN N
Execute I NN I

65

Asynchronous Transfers between CPU & GPU

= Computation divided into #Streams
o D input data instances, B blocks

o #Streams
= D/#Streams data instances
= B/#Streams blocks

- >
copydate t
Default stream - E >
Execute I
coyiara [N NN
Several streams
Execute I I I
] tr lr
o Estimates tg + tr +
#Streams #Streams

tr >= tr (dominant kernel) tr > tr (dominant transfers)

66

Overlap of Data Transfers and Kernel Execution

Code for devices that do not support concurrent data transfers

int number of streams = ;
cudaStream t stream[number of streams];
(int 1 = 0; 1 < number of streams; ++i)

cudaStreamCreate(&stream[i]);

(int i = 0; i < number of streams; ++i)
cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size, size,
, stream[i]);

(int i = 0; i < number of streams; ++i)
MyKernel<<<num blocks / number of streams, num threads, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);

(int i = 0; i < number of streams; ++i)
cudaMemcpyAsync (hostPtr + i * size, outputDevPtr + i * size, size,
, stream[i]);

cudaDeviceSynchronize();

(int i = 0; i < number of streams; ++i) Check CUDA programming guide

cudaStreamDestroy (Stream[1]) 7 https://docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html#streams

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,” 67
JPDC, 2012

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Use Case: Video Processing

Applications with independent computation on different data
instances can benefit from asynchronous transfers

For instance, video processing

Non- A sequence of 6 frames is transferred to device

streamed
execution
u((((((((e

6 x b blocks compute on the seguence of frames
OO e (L

(((L

DRI

A
E[S(a{a(a[s(s([s| [a({s

Eiiania] Rk EhhEp] EEs

5 [i 1 o i | o 1 1 1 o o S i e i Oooj0doddodod

Streamed A chunk of 2 frames is
execution transferred to device

(L Ly (L Ly

ooododoodo

2 x b blocks compute
on the chunk, while the
second chunk is being

Execution time saved

Ll Lefeeegy
ENRENNNNE] ESREEEES

thanks to streams

\/

Rl

Oododddoo|ddddoodog

Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,”

JPDC, 2012

68

Video Processing: Performance Results (I)

= 256-bin histogram calculation

N
o

Execution time (ms)
= o

30 12
‘ GeForce GTX 280
25 - =0=Non-streamed 10
=Streamed
—Our performance model 4408
— 8
6
4
5 /. = 2
__.,./%
PL el e 0

~

AN/ 0|©O N T AN| |0 © N AN/ OO N T
—| M| © ™M © ™| ©

~

| ==Non-streamed o

GeForce GTX 480

- Streamed 2
— Our performance model

~

AN/ OO N T AN| |0 © N AN OO N T
—| ™M © ~— ™M © ™| ©

176 x 144 352 x 288 704 x 576 176 x 144 352 x 288 704 x 576
Number of streams
Size of the frames
Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,” 69

JPDC, 2012

Video Processing: Performance Results (I1)

= RGB-to-grayscale conversion

50

40 - ~¥-Streamed

I GeForce GTX 280

=0=Non-streamed

GeForce GTX 480

=0=Non-streamed

25‘

20 - “#-Streamed

— Our performance model 63% — Our performance model 189/
) &°
E
o 30 - 15
£
C
i)
3 20 10
(O]
x
L
Qo e e D>
10 .\-_r(n 5 o s
_ _ | |
A g = 4 F.:!)A
0 0
NH m‘m‘m‘ N‘ v‘w‘m‘m‘ NH w‘@‘w NH w‘m‘ N‘ N‘ q‘m‘ @M N‘v‘w‘@‘m
—| ™M - ™M —| ™M —| ™M - ™M —| ™M
176 x 144 352 x 288 704 x 576 176 x 144 352 x 288 704 x 576
Number of streams
Size of the frames
Gomez-Luna+, “Performance Models for Asynchronous Data Transfers on Consumer Graphics Processing Units,” 70

JPDC, 2012

Performance Considerations

Main bottlenecks
o CPU-GPU data transfers

a Global memory access

Memory access
o Latency hiding
= Occupancy
o Memory coalescing

o Data reuse
= Shared memory usage

SIMD (Warp) Utilization: Divergence
Other considerations
o Atomic operations: Serialization

o Data transfers between CPU and GPU
= Overlap of communication and computation

71

Recommended Readings (I)

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
o Chapter 5: Performance considerations
o Chapter 18 - Programming 7
a heterogeneous computing cluster,
Section 18.5

/j THlR” EDITION / . 5
Programmlng Ma351vely

Parallel Processors -
AHands on Aﬁpfﬁ ‘/ 4
ML & ‘\ N\ S

,/ ‘ A
e N f

72

Recommended Readings (II)

= Hwu and Kirk and El Hajj, “Programming Massively Parallel
Processors,” Fourth Edition, 2022

o Chapter 6 - Performance considerations
o Chapter 20 - Programming a
heterogeneous computing cluster,

Section 20.5

AT TR OM k "
Programming Massively °
Parallel Processors §

M<

73

P&S Heterogeneous Systems

GPU Performance Considerations

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2022
31 October 2022

