
Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2022

22 November 2022

P&S Processing-in-Memory
Real-World Processing-in-Memory Architectures:

Samsung AxDIMM

UPMEM Processing-in-DRAM Engine (2019)

2

n Processing in DRAM Engine
n Includes standard DIMM modules, with a large

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

3

Host
CPU

xN

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

PIM
Chip

xM

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Main Memory

PIM-enabled Memory

PIM Chip

x8

Control/Status Interface DDR4 Interface

UPMEM PIM System Organization
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per

rank

24-KB
IRAM

D
M

A
 E

n
g

in
e

64-KB
WRAM

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e
64-MB
DRAM
Bank

(MRAM)

64 bits

4Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for
Machine Learning Applications, ISSCC 2021

FIMDRAM: Chip Structure

FIMDRAM: System Organization (III)
n PIM units respond to standard DRAM column commands

(RD or WR)
q Compliant with unmodified JEDEC controllers

n They execute one wide-SIMD operation commanded by a
PIM instruction with deterministic latency in a lock-step
manner

n A PIM unit can get 16 16-bit operands from IOSAs, a
register, and/or the result bus

5Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021

AiM: Chip Implementation
n 4 Gb AiM die with 16 processing units (PUs)

6Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for
Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 37 of 42

Chip Implementation

� An 4Gb aim die photograph with 16 processing units

PU

BK 4

PU

BK 7

PU

BK 5

PU

BK 6

PU

BK 12

PU

BK 15

PU

BK 13

PU

BK 14

PU

BK 0

PU

BK 3

PU

BK 1

PU

BK 2

PU

BK 8

PU

BK 11

PU

BK 9

PU

BK 10

AiM Die Photograph

Total 0.19mm2

MAC 0.11mm2

Activation Function (AF) 0.02mm2

Reservoir Cap. 0.05mm2

Etc. 0.01mm2

1 Process Unit (PU) Area

MAC
58%

AF
11%

Reservoir
Cap.
26%

Etc.
5%

AiM: System Organization
n GDDR6-based AiM architecture

7Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for
Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations
near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1
Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI
(Byte1)

DATA PERI
(Byte0)GB GB

Cell

BK 2
Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5
Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6
Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9
Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10
Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13
Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14
Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS
Local IO BUS

BK I/O
256 bits

x x x

16b

16b

+ +

x

+
+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC
RDAF

Supplementary SRAM bufferG B 2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations
near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1
Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI
(Byte1)

DATA PERI
(Byte0)GB GB

Cell

BK 2
Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5
Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6
Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9
Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10
Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13
Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14
Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS
Local IO BUS

BK I/O
256 bits

x x x

16b

16b

+ +

x

+
+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC
RDAF

Supplementary SRAM bufferG B 2KB

256 b

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE
International Solid-State Circuits Conference 8 of 42

AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations
near DRAM cells and a 2KB global buffer (GB) for temporary data storage

 P U

BK 1
Cell

BK I/O

P U

BK 0

BK I/O

P U

DATA PERI
(Byte1)

DATA PERI
(Byte0)GB GB

Cell

BK 2
Cell

BK I/O

P U

BK 3

BK I/O

P U

Cell

BK 5
Cell

BK I/O

P U

BK 4

BK I/O

P U

Cell

BK 6
Cell

BK I/O

P U

BK 7

BK I/O

P U

Cell

BK 9
Cell

BK I/O

P U

BK 8

BK I/O

P U

Cell

BK 10
Cell

BK I/O

P U

BK 11

BK I/O

P U

Cell

BK 13
Cell

BK I/O

P U

BK 12

BK I/O

P U

Cell

BK 14
Cell

BK I/O

P U

BK 15

BK I/O

P U

Cell

PERI

Global IO BUS
Local IO BUS

BK I/O
256 bits

x x x

16b

16b

+ +

x

+
+

ꭍ

16b 16b

Multiplier x 16

Adder Tree

AF

16b

16b 16b 16b

Accumulator
& AF

RDMAC
RDAF

Supplementary SRAM bufferG B 2KB

256 b

Samsung AxDIMM

8

Samsung AxDIMM (2021)

9https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications

Samsung AxDIMM (2021)
n DIMM-based PIM

q DLRM recommendation system

10

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)

General-Purpose Near-Rank Approach
n Memory Channel Network (MCN) DIMMs

11Alian et al., Application-Transparent Near-Memory Processing Architecture with Memory Channel Network, MICRO 2018

MCN PROC OS

DRAM

DRAM

DRAM

DRAM

core
0

core
1

core
2

core
3

LLC

MC

DDR
memory
channel

dual-port SRAM

DD
R

in
te

rf
ac

e
(P

HY
 &

 p
ro

to
co

l e
ng

in
e)

MCN PROC

control
TX
RX

IR
Q

MCN node
regular node

host
DDR4 DIM

M

DDR4 DIM
M

M
CN DIM

M

M
CN DIM

M

M
C-0

DDR4 DIM
M

DDR4 DIM
M

M
CN

 DIM
M

M
CN

 DIM
M

M
C-1

(b)

(c)

(d)

MCN PROC OS

MCN-DIMM (local)
memory channels

host (global)
memory channel

DRAM

DRAM

DRAM

DRAM

(a)

local
DRAM

Fig. 3. MCN Overview.

the Snapdragon 835 AP operates at TDP of 5W or less [18]
and it is implemented on a small (∼8mm×8mm) die in 10nm
technology [27]. Lastly, if the power constraint of DIMMs
prevents us from taking more capable processors such as
Tegra R© SoC [28] for MCN DIMMs, then we can bring an
external power cable to DIMMs as NVDIMMs [29] do.

Fig. 3(a) depicts the MCN processor architecture which
implements a DDR interface and a 96KB SRAM buffer
in a typical quad-core mobile processor. A DDR interface
consisting of DDR PHY and a protocol engine repeats DRAM
C/A and DQ signals from/to a host MC as a typical buffer
device does. It also performs two operations that are specific to
the MCN. First, upon receiving a memory-write request from
a host MC, it retrieves a command, a host physical memory
address and 64-byte data from the captured C/A and DQ
signals, translates the address to an SRAM address and writes
the data to the SRAM. Second, when servicing a memory-
read request from a host MC, it performs operations similar
to handling a memory-write request except that it reads data
from the SRAM and generates DQ signals while following a
given DDR protocol. Note that this DDR interface differs from
the DDR interface between the MCN MC and DRAM devices
on the MCN DIMM; we denote the former as the host DDR
interface and the later as the MCN DDR interface. The SRAM
serves as a communication buffer between the host and MCN
processor, and is exposed to both the host and MCN processor
as a part of their respective physical memory space, referred to
as host and MCN physical memory space. The DDR interface
and the SRAM together operate as an MCN interface similar
to a NIC in a conventional node.

Fig. 4 describes three regions of the SRAM buffer. We im-
plement a circular TX buffer using tx-start and tx-end
pointers, pointing to the start of the valid data and end of the
valid data, respectively. Based on the area from McPAT in
22nm technology, we calculate that the size of this buffer is
0.074mm2 in 10nm technology. TX and RX circular buffers
store MCN messages which are sent to or received from the
host processor, respectively. The tx-poll and rx-poll
fields are used for handshaking between the host and MCN
processors. We will describe the detailed usage of these control
bits and the circular buffers in Sec. III-B. When the OS
network layer running on an MCN processor sends a network
packet, the MCN driver, which is perceived as a regular
Ethernet interface (Sec. III-B), sends the network packet to
a specific MCN physical memory address, where the SRAM

buffer is mapped. When the MCN MC receives any memory
request to the MCN physical memory space corresponding
to the SRAM buffer, it re-directs the memory request to the
SRAM buffer, which is connected to the MCN MC through
an on-chip interconnect, instead of sending it to the DRAM
devices on the MCN DIMM.

Lastly, similar to a conventional NIC, we implement a HW
interrupt mechanism in the MCN interface to notify the MCN
processor of any received packet in a SRAM RX buffer (IRQ
in Fig. 3(a)). Upon receiving an interrupt from the MCN
interface, the MCN processor starts a transfer of the packets
from the RX SRAM buffer to the kernel memory space of
the MCN driver using memcpy function. The memory copy
operation can be accelerated using a custom DMA engine
(Sec.IV-B).

B. MCN Drivers

The MCN drivers run on both the host and the MCN DIMMs
to create an illusion of the existence of an Ethernet interface
between the host and MCN processors. An MCN driver
exposes itself as a regular Ethernet interface to the upper OS
network layers, therefore, MCN does not require any changes
in the OS network stack. This is a key advantage for MCN
as there is a resistance towards the changes in the TCP/IP
stack [30], [31].
Network organization. As shown in Fig. 3(b), we can pop-
ulate a host memory channel with multiple MCN DIMMs
(also referred to as MCN nodes). The host-side driver (i.e.
the driver running on the host processor), creates a virtual
Ethernet interface for each MCN node installed on the host
memory channels. That is, a virtual point-to-point connection
is provided between the host and each MCN node, as shown
in Fig. 3(c). We refer to each of the virtual Ethernet interfaces
created on the host as a host-side interface. We then assign
a MAC address, which is a unique 48-bit ID assigned to a
network device, to each virtual Ethernet interface. Note that an
MCN-side driver (i.e. a driver running on an MCN processor)
creates one virtual Ethernet interface, as an MCN node only
has one point-to-point connection to the host. We refer to a
single virtual Ethernet interface created on an MCN node as
an MCN-side interface.

To facilitate the MCN communication, we assign an IPv4
address [32] to each of the host-side and MCN-side interfaces.
From the host point of view, all of the MCN nodes are locally
connected. We assign a unique IP addresses to each host-

���

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on May 05,2022 at 06:49:46 UTC from IEEE Xplore. Restrictions apply.

MCM DIMM

Quad-core 2.45 GHz ARM A57 with 2 MB LLC

96 KB SRAM Buffer

PnM with AxDIMM (IEEE Micro 2021)

12https://doi.org/10.1109/MM.2021.3097700

https://doi.org/10.1109/MM.2021.3097700

Recommendation Systems

13

n Candidate recommendations are retrieved and then ranked

14

Recommendation Systems

Naumov et al., Deep Learning Recommendation
Model for Personalization and Recommendation
Systems, arXiv:1906.00091, 2019

Covington et al., Deep Neural Networks for YouTube
Recommendations, RecSys 2016

Li et al., iMARS: An In-Memory-Computing Architecture for
Recommendation Systems, arXiv:2202.09433, 2022

n Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Dense features: continuous inputs in vectors and matrices
are processed by typical DNN layers (e.g., fully connected layers)

15

Overview of Recommendation Models

Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020

Overview of Recommendation Models
n Personalized recommendation: recommend content to

users, e.g., Facebook’s DLRM recommendation system

Sparse features: for categorical inputs;
processed by indexing large embedding tables

16Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020

Overview of Recommendation Models
n Personalized recommendation: recommend content to

users, e.g., Facebook’s DLRM recommendation system

Embedding tables are organized as a set of potentially millions of vectors:
lookup and pooling operations represent sparse features learned during training

and generally exhibit Gather-Reduce pattern,
via Caffe2’s SparseLengths (SLS) operators

17Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020

DLRM Performance Characterization
n Identifying key performance bottlenecks for the DLRM system

SparseLengths (SLS) operators:
• Low FP intensity
• Larger batch size:

• Higher memory footprint
• Higher memory intensity

The memory bandwidth can easily be
saturated by embedding operations

especially as both the batch size and the
number of threads increase

18Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020

RecNMP Architecture
n DIMM-based NMP architecture for recommendation systems

q Multiply the bandwidth by exploiting rank-level parallelism

Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020

Embedding entries are fetched from the concurrently activated ranks

19

RecNMP Architecture
n DIMM-based NMP architecture for recommendation systems

q Multiply the bandwidth by exploiting rank-level parallelism

The NMP PU performs the local embedding lookup and pooling functions
at the memory side, producing the general Gather-Reduce execution pattern

Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020 20

RecNMP Architecture
n DIMM-based NMP architecture for recommendation systems

q Multiply the bandwidth by exploiting rank-level parallelism

Element-wise summation of the embedding entries is performed inside the
NMP PU, and the final pooling result is transferred back to host

Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020 21

AxDIMM Design: Overview
n Accelerator DIMM (AxDIMM)

q DDR4-compatible FPGA-based platform with standard memory
interfaces

n AxDIMM can potentially
q support both in-order general-purpose processor and

specialized accelerator modules
q be an interesting prototyping platform for near-memory

processing

n Personalized recommendation case study, including:
q hardware implementation
q software-stack support

22

AxDIMM System
Baseline System AxDIMM System

FPGA: Xilinx XCZU19EG FPGA

System was slowed down (1/3 of normal DDR4 memory channel speedup; CPU went from 3.2 GHz to 1.2 GHz) to keep up with the FPGA IO speed

23

AxDIMM Hardware &
Architecture

24

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

FPGA board with standard DIMM interface:
It serves as a real-system

near-memory processing implementation

25

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

Rank-level parallelism:
Two DRAM ranks are activated in parallel
to load embedding entries from memory

Element-wise summation
is performed inside the FPGA module

26

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

DDR4 slave PHY receives DRAM commands and NMP instructions
(via DQ pins) from the host side

27

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

The memory interface generator (MIG) supports the internal rank accesses
between Rank-NMP and the DRAM device

28

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

Two execution modes:
(1) non-acceleration mode

(2) acceleration mode (blocking)

29

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP offloading is done
via 64-bit read/write operations

from the host processor

30

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

256-KB NMP instruction buffer

31

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

256-KB partial sum buffer:
It stores intermediate values for embedding pooling operations

32

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

Instruction decoder loads and decodes
NMP instructions from the instruction buffer

33

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

Command generator issues
read commands to DRAM ranks and Psum buffer

(64 bytes from each in 1 cycle)

34

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP
In

pu
t I

/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

16 FP32 adders perform
vector element-wise summation
of the loaded embedding entry

and the PSUM vector

35

AxDIMM Design: Address Map

36

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

n Memory map of AxDIMM

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

NMP-Inst
(64 bits)

D
D

R
.D

Q
D

D
R

.C
/A

D
D

R
4

Sl
av

e
PH

Y

H
os

t

Rank-0.NMP

In
pu

t I
/F

O
ut

pu
t I

/FNon-Acceleration Mode
CONF REG

INST BUF

PSUM BUF

DEC CMD GEN

ADDER ARRAY

Rank-1.NMP M
IG

R
an
k-
1

R
an
k-
0

M
IG

 (P
H

Y)

Acceleration Mode

N
M

P-
In

st

 S
um

W
R

 /
R

D

(a)

(b)

(c)

FPGA

Standard DIMM Interface

Rank-0 Rank-1

Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions

R
ank-0

D
D

R
4

Sl
av

e
PH

Y

In
pu

t I
/F

O
ut

pu
t I

/F

M
IG

 (P
H

Y)
M

IG

Rank-0.NMP

Rank-1.NMP

WR
Emb Table

Mode
Change

WR
Inst

SLS
Execute

RD
Status Reg

RD
PsumHost

Rank-
NMP

1 Emb Table
Data

CONF REG

INST BUF

Acc Mode
Enable

Write Inst
2

Set SLS
ExeReg

DEC
Decode Inst

CMDGEN

RD Emb
RD Psumt

Accumulate Psumt+1

DRAM CMD
ADDERPSUM BUF

3

Read Psum

(b)

DDR WR

DDR WR

DDR RDAxDIMM
Rank-0

AxDIMM
Rank-1

Embedding
Table

INST BUF

CONF REG

PSUM BUF
Reserved

Reserved

Reserved

(a)

1

2

3

(c)

Read
StatusReg

DDR WR
DDR WR
DDR RD

R
an

k-
0

R
an

k-
1

Decoder

Data Fetch

Data Fetch

Adder

Accumulate

Decode Decode Decode Decode
Inst Inst Inst Inst

RD
Psum

RD
Psum

RD
Psum

RD
Psum

RD
Emb

RD
Emb

RD
Emb

RD
Emb

ADD ADD ADD ADD

WR
Psum

WR
Psum

WR
Psum

WR
Psum

WR
Psum

ADD

RD
Emb

RD
Psum

Decode
Inst

Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

CONF REG

R
an
k-
0

INST BUF

PSUM BUF

AxDIMM Execution Flow

37

AxDIMM Design: Execution Flow

38

AxDIMM Design: Execution Flow

39

AxDIMM Design: Execution Flow

40

AxDIMM Design: Execution Flow

41

PnM with AxDIMM (IEEE Micro 2021)

42https://doi.org/10.1109/MM.2021.3097700

https://doi.org/10.1109/MM.2021.3097700

More Real-World PIM to Come

43https://blocksandfiles.com/2021/10/06/neurobladers-build-a-processing-in-memory-analytics-chip-and-server/

https://blocksandfiles.com/2021/10/06/neurobladers-build-a-processing-in-memory-analytics-chip-and-server/

NeuroBlade Patent (I)

44Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2

45Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2

NeuroBlade Patent (II)

n PIM XRAM chip

q IMPU (Intensive Memory Processing Unit)

n x86 CPU, 32 NVMe SSDs

n PCIe fabric: “Everything is connected on top of PCIe fabric.”

n Wide I/O bus: multiple x16 PCIe buses

46https://www.neuroblade.com

NeuroBlade: Xiphos

https://www.neuroblade.com/

n Xiphos SW suite: Insights API

q APIs for 3rd party applications and web client

n Data I/O

q ETL process populates and updates local storage

n Query Compiler

q Generates query execution plans

n Tools

q E.g., visual profiler

n TPC benchmarks and queries

47https://www.neuroblade.com

NeuroBlade: Sofware Suite

https://www.neuroblade.com/

Hybrid Bonding with PnM Engine (ISSCC 2022)

48https://doi.org/10.1109/ISSCC42614.2022.9731694

https://doi.org/10.1109/ISSCC42614.2022.9731694

HB-PNM: Overall Architecture (I)
n 3D-stacked logic die and DRAM die vertically bonded by hybrid

bonding (HB)

49

463

ISSCC 2022 / February 24, 2022 / 8:30 AM

DIGEST OF TECHNICAL PAPERS •

Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath,
interface modules, micro architecture of VPU and GEMM, FSM of control modules
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior
near-memory processing designs, and end-to-end performance evaluation of our HB
chip and CPU-DRAM system on recommendation application.

29

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 31,2022 at 11:08:08 UTC from IEEE Xplore. Restrictions apply.

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

n Match engine and neural engine for matching and ranking in a
recommendation system

50
29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE

International Solid-State Circuits Conference 14 of 27

Overall Architecture

• Memory
• 4 x 1Gb blocks with 4096 bits I/O

• 38.4GB/s on-chip bandwidth per block

• Compute
• Match Engine: Coarse-grained Matching

• Neural Engine: Fine-grained Ranking

• Dual-mode Interface

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022
29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE

International Solid-State Circuits Conference 12 of 27

Typical Recommendation System

• A two-step Recommendation System
• Feature Generation

• Classification, object detection and feature extraction
• Computation-bound
• Typically executed on GPU

• Matching & Ranking
• Coarse-grained matching and fine-grained ranking
• Memory-bound
• Typically executed on CPU and commercial DRAM as

external memory
• Consumes most latency (89.87%) and energy (82.97%)
• Requires high-bandwidth, large-capacity and energy-

efficient memory

HB-PNM: Overall Architecture (II)

n More real-world PIM architectures

n PUM architectures and prototypes

n Enabling the adoption of PIM

51

Upcoming Lectures

Dr. Juan Gómez Luna
Prof. Onur Mutlu

ETH Zürich
Fall 2022

22 November 2022

P&S Processing-in-Memory
Real-World Processing-in-Memory Architectures:

Samsung AxDIMM

Another Lecture on AxDIMM

53https://youtu.be/2FMQg786GKs

https://youtu.be/2FMQg786GKs

