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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 2
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM PIM System Organization

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank
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FIMDRAM: Chip Structure

B FIMDRAM based on HBM2

Chip Specification

. i 128DQ / 8CH / 16 banks / BL4
?ﬁgeh;ldzi? . 32 PCU blocks (1 FIM block/2 banks)
. 1.2 TFLOPS (4H)
SIDO. FP16 ADD /
Core-die Multiply (MUL) /
(FIMDRAM) Multiply-Accumulate (MAC) /

Multiply-and- Add (MAD)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM]

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 4
Machine Learning Applications, ISSCC 2021



FIMDRAM: System Organization (I1I)

= PIM units respond to standard DRAM column commands
(RD or WR)
o Compliant with unmodified JEDEC controllers

= They execute one wide-SIMD operation commanded by a
PIM instruction with deterministic latency in a lock-step
manner

= A PIM unit can get 16 16-bit operands from I0SAs, a
register, and/or the result bus
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Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021



AiM: Chip Implementation

= 4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph 1 Process Unit (PU) Area
; Total 0.19mm?

MAC 0.11mm?

Activation Function (AF) 0.02mm?

Reservoir Cap. 0.05mm?2

Etc. 0.01mm?

Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TTFLOPS MAC Operation and Various Activation Functions for 6
Deep-Learning Applications, ISSCC 2022



A1M: System Organization

= GDDR6-based AiM architecture
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Samsung AxDIMM




Samsung AXDIMM (2021)

Samsung

Newsroom PRODUCTS |  INSIGHTS

CORPORATE

Samsung Brings In-Memory Processing Power

to Wider Range of Applications

Korea on August 24, 2021 Audio Share

Integration of HBM-PIM with the Xilinx Alveo Al accelerator system will boost
overall system performance by 2.5X while reducing energy consumption by
more than 60%

PIM architecture will be broadly deployed beyond HBM,
to include mainstream DRAM modules and mobile memory

PRESS RESOURCES

Samsung Electronics, the world leader in ad its latest advancement:
with i y (PIM)
notable microprocessor and IC innovations are unveiled each year. Samsung’s revelations include the first
successful integration of its PIM-enabled High Bandwidth Memory (HBM-PIM) into a commercialized accelerator
system, and broadened PIM applications to embrace DRAM modules and mobile memory, in accelerating the move

toward the convergence of memory and logic.

d memory technology, today

gy at Hot Chips 33-a leading semiconductor conference where the most

Qe

DRAM Modules Powered by PIM

AXDIMM
Buffer

The Acceleration DIMM (AXDIMM) brings processing to the DRAM module itself, minimizing large data movement
between the CPU and DRAM to boost the energy efficiency of Al accelerator systems. With an Al engine built inside
the buffer chip, the AXDIMM can perform parallel processing of multiple memory ranks (sets of DRAM chips) instead
of accessing just one rank at a time, greatly enhancing system performance and efficiency. Since the module can
retain its traditional DIMM form factor, the AXDIMM facilitates drop-in replacement without requiring system
modifications. Currently being tested on customer servers, the AXDIMM can offer approximately twice the
performance in Al-based recommendation applications and a 40% decrease in system-wide energy usage.

https://news.samsung.com/global/samsung-brings-in-memory-processing-power-to-wider-range-of-applications
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Samsung AXDIMM (2021)

m DIMM-based PIM o Baseline Systm
o DLRM recommendation system

CHo! CH1! CH3!
1 1

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHO! CH2!
1 1

OS/FC/Others SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 10



General-Purpose Near-Rank Approach

= Memory Channel Network (MCN) DIMMs

Quad-core 2.45 GHz ARM A57 with 2 MB LLC
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Alian et al., Application-Transparent Near-Memory Processing Architecture with Memory Channel Network, MICRO 2018
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PnM with AxDIMM (IEEE Micro 2021)

Near-Memory Processing in Action: Accelerating
Personalized Recommendation with AxDIMM

Liu Ke*T, Xuan ZhangT, Jinin So*, Jong-Geon Lee*, Shin-Haeng Kangjf', Sukhan Lee?, Songyi Han*, YeonGon Cho*,
JIN Hyun Kim*, Yongsuk Kwon*, KyungSoo Kim*, Jin Jung*, Ilkwon Yun?, Sung Joo Park®, Hyunsun Park®,
Joonho Song?, Jeonghyeon Cho*, Kyomin Sohn*, Nam Sung Kim*, Hsien-Hsin S. Lee*

*Facebook, "Washington University in St. Louis, *Samsung

https://doi.org/10.1109/MM.2021.3097700 12
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Recommendation Systems
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Recommendation Systems

= Candidate recommendations are retrieved and then ranked

Item Embedding O(10°)

(a) |
| user history and context | N i ;
Filtering Filtering User Ne?g::asor = Cﬁ?:r'::te

\l\ Features Model Embedding Search 0(100)

(b) | \
Eg;\..g Ranking ___ Ranking User-item Top K - thanked
candidate |hundreds . % Features Model Score Selection OT?E)S)

generation = i
= : (c)
/ C::;i&‘:g:s _| Dense Feature
M~ DNN Stack

video (Depse) % .§ User
A © x| |[Embedding

other candidate sources l— features a 8| [Eies| ([Embede
| — Embedding = g g .g (% (Filtering)
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Covington et al., Deep Neural Networks for YouTube C:teStJO”Ca' . a 22 E (RSC:(e !
. eatures : 9 O @ anking,
Recommendations, RecSys 2016 e g 89
Embedding | | § [
2 Table Lookup -

Li et al., iIMARS: An In-Memory-Computing Architecture for
Recommendation Systems, arXiv:2202.09433, 2022

Interactions

-y
s

Embedding Lookup

dense features sparse features

Naumov et al., Deep Learning Recommendation
Model for Personalization and Recommendation
Systems, arXiv:1906.00091, 2019




Overview of Recommendation Models

Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Deep Learning-Based Personalized Click Tlnrough Rate(s)

Recommendation Model |
/ \ _______________ Computation
o Dominated
I

i i : Communication
i | Feature Interaction - :
i : I I Dominated
i | Embedding Table [ Number of _| Embedding Table | _Memory Capacity
i Bottom-FC  \ Lookup Emb. Tables Lookup and Bandwidth
i | Dominated
i : Emb. Indices
i @@ i Sparse Feature Sparse Feature
i_ _________ lzl ::.---------.E NI Requests Query N —+~ Batch size
Dense features: continuous inputs in vectors and matrices
are processed by typical DNN layers (e.g., fully connected layers)

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020 15



Overview of Recommendation Models

Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Deep Learning-Based Personalized Click anough Rate(s)

Recommendation Model -
/ \ _______________ Computation
Top-FC Dominated
|

: __ Communication
Feature Interaction r .
_______ Foo————————————————————J——————- Dominated
1 | .
'| Embedding Table | Number of _| Embedding Table _:___Memory Capacity
Bottom-FC \ | Lookup Emb. Tables Lookup y  and Bandwidth
! ; Dominated
; Emb. Indices ;
e U |
NIT= NI Requests Query N ~1~ Batch size
Sparse features: for categorical inputs;
processed by indexing large embedding tables

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020 16



Overview of Recommendation Models

Personalized recommendation: recommend content to
users, e.g., Facebook’s DLRM recommendation system

Deep Learning-Based Personalized Click anough Rate(s)

Recommendation Model .
/ \ _______________ Computation
Jop:5C Dominated
|

) Communication
Feature Interaction . g i
I I Dominated
Embedding Table |_ Number of _| Embedding Table | _Memory Capacity
Bottom-FC Lookup Emb. Tables Lookup and Ba.ndwndth
Dominated

Emb. Indices

@a— F_@ Sparse Feature Sparse Feature
(

Embedding tables are organized as a set of potentially millions of vectors:
lookup and pooling operations represent sparse features learned during training
and generally exhibit Gather-Reduce pattern,
via Caffe2’s SparseLengths (SLS) operators

& _/

17

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020



DIRM Performance Characterization
Identifying key performance bottlenecks for the DLRM system

s, ® @ . |Comp. Perf. (0.98 TFlopsls) 80 {__________ 768 GBJs [100%)
m ® o ] 0 62.1 GBIs (79.6%)
> o @ 60
5 o2 % ® 15 51.8 GB/g (67.4%)
107 s| 2 Py
g =) FC _0© el v ® : 5 40 - -- Peak DDR BW
o O o  35% = Roofline Bound 2 —— MLC Random BW
= O 0000® c © h
— ) ®© @ SLS Ops < 20 —e— Batch=256
8 é ® Fcops 3 i
£ L ¥ RwMCH 0 Batch=8
5 10 & A RMC2 0 10 20 30
C Y AEEEESS—— Num of parallel SLS threads
< 10° 10! 102
~ . Operational Intensity (Flops/Byte)
10 10!
Analytical Flops (log)
4 N

SparseLengths (SLS) operators:
* Low FP intensity
« Larger batch size:
« Higher memory footprint
« Higher memory intensity

The memory bandwidth can easily be
saturated by embedding operations
especially as both the batch size and the
number of threads increase

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020
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RecNMP Architecture

DIMM-based NMP architecture for recommendation systems
o Multiply the bandwidth by exploiting rank-level parallelism

I,||||||||||||||||||||||“||||||||||||||||||||
I,/ NMP-Inst{ | Result
Host ¢ NMP Processing Unit
MC } Rhnk-0.3/A Rahk-0.D0)
| 4 (o
DIMM 2 =R =
| | \\ ~ > > >
DIMM |, =
Y Rank-0

Embedding entries are fetched from the concurrently activated ranks

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020
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RecNMP Architecture

DIMM-based NMP architecture for recommendation systems
o Multiply the bandwidth by exploiting rank-level parallelism

I N N N N T U v v
A

NMP-Inst} | Result
Host ¢ NMP Processing Unit
MC I Rhnk-0.8/A Rabk-000  [Rhnk-1.d/A Rik-1.0
| 4 A 4
DIMM
DIMM |~

Rank-0 Rank-1

The NMP PU performs the local embedding lookup and pooling functions
at the memory side, producing the general Gather-Reduce execution pattern

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020 20



RecNMP Architecture

DIMM-based NMP architecture for recommendation systems
o Multiply the bandwidth by exploiting rank-level parallelism

N N N X N 7 N O v v

I,/ NMP-Inst{ |} Result
Host ¢ NMP Processing Unit
MC I Rhnk-0.8/A Rabk-000  [Rhnk-1.d/A Rik-1.0
| 4 A 4
DIMM
DIMM |~

Rank-0 Rank-1

Element-wise summation of the embedding entries is performed inside the
NMP PU, and the final pooling result is transferred back to host

Ke et al. "RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020 21



AxDIMM Design: Overview

Accelerator DIMM (AxDIMM)

o DDR4-compatible FPGA-based platform with standard memory
interfaces

AxDIMM can potentially

o support both in-order general-purpose processor and
specialized accelerator modules

o be an interesting prototyping platform for near-memory
processing

Personalized recommendation case study, including:
o hardware implementation
o software-stack support

22



AxDIMM System

Baseline System AxDIMM System

_ AxDIMM

RDIMM

CHo; CHZE CHO; CH1; CH3! CHZE
1 1 1 1 1 1

OS/FC/Others SLS Offload OS/FC/Others OS/FC/Others SLS Offload OS/FC/Others
N FPGA: Xilinx XCZU19EG FPGA

: AxDIMM -~

System was slowed down (1/3 of normal DDR4 memory channel speedup; CPU went from 3.2 GHz to 1.2 GHz) to keep up with the FPGA IO speed

23



AxDIMM Hardware &
Architecture




AxDIMM Design: Hardware Architecture

Standard DIMM Interface

FPGA board with standard DIMM interface:
It serves as a real-system
near-memory processing implementation

25



AxDIMM Design: Hardware Architecture

Standard DIMM Interface

Rank-level parallelism:
Two DRAM ranks are activated in parallel
to load embedding entries from memory

Element-wise summation
is performed inside the FPGA module

26



AxXDIMM Design: Hardware Architecture

- —
57 3TEE

Standard DIMM Interface

e Rank-0.NMP
= [P m e s Se e s S e >
n g Non-Acceleration Mode w —
- L = HelE
|2 5 = 4CONF REG| Acceleration Mode | g o
8l > 2 Sl
pd =
o < 0
Z O -é
E e = (_D > ©
= 2 Rank-1.NMP d Sl o

DDR4 slave PHY receives DRAM commands and NMP instructions
(via DQ pins) from the host side

27



AxXDIMM Design: Hardware Architecture

o e o o e e e e e e e e

'l 2.0 =
s e 38 0 8 b pE B8 CsER

Standard DIMM Interface

c Rank-0.NMP
S J == >
Dle] Pl ) Non-Acceleration Mode w —
x| ||« = HlZS
|2 &l of | |5 [ICONEREG| Acceleration Mode | & | [ | &
|+ ol ZLLlI 2 S A
S|z E 0
Ir|= (0p) — E
= [z
o <|o D
* ofa oLl <
c 5| [ Rank-1.NMP s 8
; a N ank-1. - = le '

The memory interface generator (MIG) supports the internal rank accesses
between Rank-NMP and the DRAM device

28



AxXDIMM Design: Hardware Architecture

T

Standard DIMM Interface

c Rank-0.NMP
o . T T T -
Dle] Pl ) Non-Acceleration Mode w —
SIEA RN = H E B2
12 5| o += PCONF REG| Acceleration Mode| 2] | | &
n|lT ol 2 2 = g
ola—> © > = — O
Ir|= (0p) — 5
c Iz
o <|o D
* Jla oLl <
c 5| [ Rank-1.NMP =
< A > . | — ¥

Two execution modes:
(1) non-acceleration mode
(2) acceleration mode (blocking)




AxXDIMM Design: Hardware Architecture

B5 B § BB 858 1511
TrowrTm GREEL !!qﬂ. B A &85
m

Standard DIMM Interface

e Rank-0.NMP
o i >
2 S Z T Non-Acceleration Mode | | S
| a = +
|2 5 o = @ Acceleration Mode | 2 o
nl|s O 5 g
Ole—| B & 4=
Il |o = —
z < { . .
52| & NMP offloading is done
o 2 a) via 64-bit read/write operations
e |
sql B Rank-1.NMP from the host processor
NMP-Inst | opcode | Locaiity PSUM Tag TE':? Reserved AR::: BG | BA :d‘:llr

(64 bItS) 2 bit 1 bit 12 bit 1 bit 17 bit 17 bit 2 bit 2 bit 10 bit




AxXDIMM Design: Hardware Architecture

Standard DIMM Interface

1. 11 Rank-0.NMP
—————————————————————————— -.
256-KB NMP instruction buffer on-Acceleration Mode = | [o
. = T
~[Z2 oo = ' REG| Acceleration Mode | & o
ola—> © > = — O
I|= n = =
Z < =
| O ~
< .
2 5[5 £
x % < > O ®
< ol [3 Rank-1.NMP Sl @
NMP-!nst OpCode | Locality | PSUM Tag Téf‘ff Reserved ARC‘I’G"I"r BG | BA :d‘:r
(64 bits) 2 bit 1 bit 12 bit 1 bit 17 bit 17bit  2bit 2bit 10 bit
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AxXDIMM Design: Hardware Architecture

T

Standard DIMM Interface

256-KB partial sum buffer:

It stores intermediate values for embedding pooling operations =l =
T = [ re——
|2 &[ ol | |5 [ICONEREG| Acceleration Mode o
§ P (%U > S — O
= |2 =
| O ~
< 1
2 5|8 =1 | &
= 0 < =4 > (U
= N Rank-1.NMP d Sl o
NMP-Inst | opcode | Locality | Psum Tag Tg“;e Reserved ARC‘I’G"I"r BG | BA ‘&‘:"r

(64 b|tS) 2 bit 1 bit 12 bit 1 bit 17 bit 17 bit 2 bit 2 bit 10 bit




AxXDIMM Design: Hardware Architecture

T

Standard DIMM Interface

Instruction decoder loads and decodes
NMP instructions from the instruction buffer e e |l |~
= = = > o
o O = -—
|2 5| o = [ICONF REG| Acceleration Mode | & i
§ a =1 (%U > S S e o
= |2 =
| O ~
? 58 o
35 [ Rank-1.NMP J Sl o
NMP-!nst OpCode | Locality | PSUM Tag Téf‘ff Reserved ARC‘I’G"I"r BG | BA :d‘:r
(64 bits) 2 bit 1 bit 12 bit 1 bit 17 bit 17bit  2bit 2bit 10 bit
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AxXDIMM Design: Hardware Architecture

Command generator issues

£ — read commands to DRAM ranks and Psum buffer

@ z % Tl N (64 bytes from each in 1 cycle)
|25 ef||= H{CoNF REG Accaleration Mode [ 2 [ &
|+ ol ZLLlI 2 5 ~
(S |o| |5 2

Z < =

»| ¥ ~

n < 1

z 5|8 51| &

c 5| [ Rank-1.NMP S S8

; a [ an =1. < < m

NMP-Inst | opcode | Locality | Psum Tag Téf‘ff Reserved ARC‘I’G"I"r BG | BA :d‘:r

(64 b|tS) 2 bit 1 bit 12 bit 1 bit 17 bit 17 bit 2 bit 2 bit 10 bit




AxXDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)

16 FP32 adders perform

c Rank vector element-wise summation
*cf?—g > . T NOn-Accel of the loaded embedding entry
5 o % = :CONF REG| A and the PSUM vector
| < o = L1 = = ~
2[E (o[ [|S 2
zZ < E
»| X -~
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Z o|la ol =
« & |4 Rank-1.NMP =S8
= A L ank-1. e = |e (e
o . Trace Row Col
pCode Locality PSUM Tag End Reserved Addr BG | BA Addr
2 bit 1 bit 12 bit 1 bit 17 bit 17 bit 2 bit 2 bit 10 bit
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AxDIMM Design: Address Map

= Memory map of AxXDIMM

Reserved

PSUM BUF
Reserved
CONF REG

Reserved
INST BUF

e ol e ] o e o o e o o e e e e ]

Cua e 1 iy o e i

PR
,,,,,,
-

Standard DIMM Interface

Host

. Rank-0.NMP

? g = " "~ Non-Acceleration Mode L

| B = : =

e += PCONF REG| Acceleration Mode | &

< alz 3 =]

S a1 [ insTBUF

= |3

E 25 PSUM BUF z
o

E 14 = a | © [ %

gl [ Rank-1.NMP S &

DDR RD

DDR RD
DDR WR
DDR WR

DDR WR

DDR WR o

36



AxDIMM Execution Flow




AxDIMM Design: Execution Flow

Emb Table Rank-0.NMP R
Data _ N
> > w >
Acc Mode e | CONF REG| = T T
e Enable o = Decode Inst 5 a c
Write Inst S 12rnsT BUF || DEC HCMDGENI—%\M B[ &
Set SLS o = RD Psum I
- 2 PSUM BUF ADDER | 3
ExeReg < A late P R!) -r1|b
e Read _ C,E ccumulate Psum,,
StatusReg a -
(D 1
Read Psum< Rank-1.NMP = éé
@
(14
(b)
Host WR Mode WR SLS RD RD
Emb Table || Change Inst Execute Status Reg Psum
Decode |Decode |Decode |Decode | _ _ _ | Decode
Decoder Inst Inst Inst Inst Inst
RD RD RD RD | _ oo RD
Data Fetch Psum | Psum | Psum | Psum Psum
Ranks RD RD RD
RD RD |
NMP Data Fetch Emb | Emb | Emb | Emb Emb
Adder ADD | ADD | ADD | ADD | o i o o o o ADD
WR WR WR WR WR
Accumulate Psum | Psum | Psum | Psum [T~ """ 7777777 Psum




AxDIMM Design: Execution Flow

Emb Table Rank-0.NMP .
Data P
> —t> L >
Acc Mode T L] cCONF REG| = o= <
9 Enable o = Decdde Inst 5 o [
Write Inst 2 T2 LINST BUF |}{ DEC HCMDGENI—%\M TN ©
€ RD Psum
- 2 PSUM BUF ADDER | 3
ExeReg < A late P R!) -r1|b
e Read _ C,E ccumulate Psum,,
StatusReg a -
(D 1
Read Psum+ Rank-1.NMP = =
©
(14
(b)
Host WR Mode WR SLS RD RD
Emb Table || Change Inst Execute Status Reg Psum
Decode |Decode |Decode |Decode | _ _ _ | Decode
Decoder Inst Inst Inst Inst Inst
RD RD RD RD | _ oo RD
Data Fetch Psum | Psum | Psum | Psum Psum
Ranks RD RD RD
RD RD |
NMP Data Fetch Emb | Emb | Emb | Emb Emb
Adder ADD | ADD | ADD | ADD | = o o o i o o o ADD
WR WR WR WR WR
Accumulate Psum | Psum | Psum | Psum [~~~ """ 777777 Psum




AxDIMM Design: Execution Flow

Emb Table Rank-0.NMP .
Data Py i
> < w >
Acc Mode T | CONF REG = o <7
e Enable e ecode Inst S o =
3|0 o = ©
Write Inst 2] INST BUF |+[ DEC HCMDGENI—%—AM g, Al &
Set SLS - RD Psum
- PSUM BUF | ADDER |« -
ExeReg R!) Emb
Accumulate Psum,,
o Read e 4
StatusReg =) =
o 1
Read Psum- Rank-1.NMP | = e
©
(14
(b)
Host WR Mode WR SLS RD RD
Emb Table || Change Inst Execute Status Reg Psum
Decode |Decode |Decode |Decode | _ _ _ . ___ ___ | Decode
Decoder Inst Inst Inst Inst Inst
RD RD RD RD RD
Data Fetch Psum | Psum | Psum | Psum [~ 7 Psum
Ranic: RD RD RD RD
RD |
NMP Data Fetch Emb | Emb | Emb | Emb Emb
Adder ADD | ADD | ADD | ADD | e o i i ADD
WR WR WR WR
Accumulate Psum | Psum | Psum [~~~ "~ 77777779 Psum




AxDIMM Design: Execution Flow
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PnM with AxDIMM (IEEE Micro 2021)

Near-Memory Processing in Action: Accelerating
Personalized Recommendation with AxDIMM

Liu Ke*T, Xuan ZhangT, Jinin So*, Jong-Geon Lee*, Shin-Haeng Kangjf', Sukhan Lee?, Songyi Han*, YeonGon Cho*,
JIN Hyun Kim*, Yongsuk Kwon*, KyungSoo Kim*, Jin Jung*, Ilkwon Yun?, Sung Joo Park®, Hyunsun Park®,
Joonho Song?, Jeonghyeon Cho*, Kyomin Sohn*, Nam Sung Kim*, Hsien-Hsin S. Lee*

*Facebook, "Washington University in St. Louis, *Samsung

https://doi.org/10.1109/MM.2021.3097700 42
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More Real-World PIM to Come
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NeuroBladers build a processing-in-
memory analytics chip and server

By Chris Mellor - October 6, 2021

An Israeli startup called NeuroBlade has exited stealth mode, built a processing-in-
memorf (PIM) analytics chip combining DRAM and thousands of cores, jput four of

them in an analytics accelerating server appliance box, and taken in $83 million in B-
round funding.

The idea is to takel a GPU approach to big data-style analytics and Al softwarelby
employing a massively parallel core design, but take it further by layering the cores
on DRAM with a wide I/0 bus architecture design linking the cores and memory to

speed processing even more. This design vastly reduces data movement between
storage and memory and also accelerates data transfer between memory and
processing cores.

https://blocksandfiles.com/2021/10/06/neurobladers-build-a-processing-in-memory-analytics-chip-and-server/
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NeuroBlade Patent (I)

a2 United States Patent

Sity et al.

ao) Patent No.: US 10,762,034 B2
45) Date of Patent: Sep. 1, 2020

(54)

(71
(72)

(73)

*)

(21
(22)

MEMORY-BASED DISTRIBUTED
PROCESSOR ARCHITECTURE

Applicant: NeuroBlade, Ltd., Hod-Hashron (IL)

Inventors: Elad Sity, Kfar Saba (IL); Eliad Hillel,
Kfar Saba (IL)

Assignee: NeuroBlade, Ltd., Hod-Hashron (IL)

Notice:  Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 16/512,590

Filed: Jul. 16, 2019
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Ahn et al., “A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing,” ISCA 15 (Jun. 13-17, 2015), pp.
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(57) ABSTRACT

Distributed processors and methods for compiling code for
execution by distributed processors are disclosed. In one
implementation, a distributed processor may include a sub-
strate; a. memory array disposed on the substrate; and a
processing array disposed on the substrate. The memory
array may include a plurality of discrete memory banks, and
the processing array may include a plurality of processor
subunits, each one of the processor subunits being associ-
ated with a corresponding, dedicated one of the plurality of
discrete memory banks. The distributed processor may fur-
ther include a first plurality of buses, each connecting one of
the plurality of processor subunits to its corresponding,
dedicated memory bank, and a second plurality of buses,
each connecting one of the plurality of processor subunits to
another of the plurality of processor subunits.

Sity et al., “Memory-based Distributed Processor Architecture,” US 10,762,034 B2
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NeuroBlade Patent (II)
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NeuroBlade: Xiphos

PIM XRAM chip

o IMPU (Intensive Memory Processing Unit)
x86 CPU, 32 NVMe SSDs
PCIe fabric: “Everything is connected on top of PCle fabric.”

Wide I/0O bus: multiple x16 PCIe buses

Xiphos appliance.

https://www.neuroblade.com
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NeuroBlade: Sofware Suite

Xiphos SW suite: Insights API

o APIs for 3 party applications and web client

Data I/0

o ETL process populates and updates local storage

Query Compiler
o Generates query execution plans 9=
Tools = o
o E.g., visual profiler Sr
TPC benchmarks and queries ==
‘ g :o:::gerv' N "’deew”
4l =

https://www.neuroblade.com
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Hybrid Bonding with PnM Engine (ISSCC 2022)

ISSCC 2022 / SESSION 29 / ML CHIPS FOR EMERGING A

29.1 184QPS/W 64Mb/mm? 3D Logic-to-DRAM Hybrid Bonding
with Process-Near-Memory Engine for Recommendation
System

Dimin Niu', Shuangchen Li', Yuhao Wang', Wei Han', Zhe Zhang?, Yijin Guan?,
Tianchan Guan?®, Fei Sun’, Fei Xue', Lide Duan', Yuanwei Fang’,

Hongzhong Zheng', Xiping Jiang‘, Song Wang*, Fengguo Zuo*, Yubing Wang?*,
Bing Yu“, Qiwei Ren*, Yuan Xie'

'Alibaba DAMO Academy, Sunnyvale, CA; ?Alibaba DAMO Academy, Beijing, China
sAlibaba DAMO Academy, Shanghai, China; *‘UnilC, Xian, China

https://doi.org/10.1109/1SSCC42614.2022.9731694 48
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HB-PNM: Overall Architecture (I)

= 3D-stacked logic die and DRAM die vertically bonded by hybrid
bonding (HB)

3D-stacked illustration of H 1Gb DRAM Core
the DRAM die and logic die 2 : = =
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1] w
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; 128Mb | & & | 128Mb
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E x4
: *On-die ECC

DRAM array layout illustration and its imposed
design constraints on logic die
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Cross-section illustration of the logic die and DRAM die Logic die physical constraints due to hybrid
vertically bonded by HB in a chip package bonding PHY and MC

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022
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HB-PNM: Overall Architecture (IT)

= Match engine and neural engine for matching and ranking in a
recommendation system

DRAM Die
Image / Item Query”* |
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2D : o
o s $ | e Control Dataflow Control Activation
O I o
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Matching Top-K GEMM Transpose
Top-K Results
Logic Die

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022



Upcoming Lectures

More real-world PIM architectures
PUM architectures and prototypes

Enabling the adoption of PIM
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P&S Processing-in-Memory

Real-World Processing-in-Memory Architectures:

Samsung AxDIMM

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2022

22 November 2022




Another Lecture on AxXDIMM

AxDIMM Design: Hardware Architecture

NMP-Inst
(64 bits)
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Livestream - P&S Exploring the Processing-in-Memory Paradigm for Future Computing Systems (Fall 2021)

Processing in Memory Course: Meeting 5: Real-world PIM architectures 1V - Fall'21

- Onur Mutlu Lectures
Q

3 Subscribed
I 29.4K subscribers

661 views Streamed live on Nov 2, 2021
Project & Seminar, ETH Ziirich, Fall 2021

iy 18 GJ »~> Share & clip =+ Save

Exploring the Processing-in-Memory Paradigm for Future Computing Systems (https://safari.ethz.ch/projects_and_s...)
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