P&S Modern SSDs

Basics of NAND Flash-Based SSDs

Dr. Mohammad Sadrosadati
Prof. Onur Mutlu

ETH Zürich
Fall 2022
12 October 2022
Today’s Agenda

- SSD Organization & Request Handling
- NAND Flash Organization
A modern SSD is a complicated system that consists of multiple cores, HW controllers, DRAM, and NAND flash memory packages.

- SSD Controller
- Core
- Core
- Core
- HW Flash Ctrl.
- Request Handler
- ECC/Randomizer
- Encryption Engine
- LPDDR DRAM
- NAND Packages

\[
0.001 \times 1,024 = 1 \text{ GB} \\
8 \times 128 \text{ GB} = 1 \text{ TB}
\]

Another Overview

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/

Flash Controller
- ECC
- Randomizer

CTRL

NAND Flash Package

CTRL

NAND Flash Package

NAND Flash Package

DRAM

- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)
Request Handling: Write

- Communication with the host operating system (receives & returns requests)
 - Via a certain interface (SATA or NVMe)
- A host I/O request includes
 - Request direction (read or write)
 - Offset (start sector address)
 - Size (number of sectors)
 - Typically aligned by 4 KiB
Request Handling: Write

- **Host Interface Layer (HIL)**
- **Flash Translation Layer (FTL)**
 - Data Cache Management
 - Address Translation
 - GC/WL/Refresh/...

- **Flash Controller**
 - ECC
 - Randomizer
 - NAND Flash Package
 - NAND Flash Package
 - NAND Flash Package
 - CTRL
 - CTRL

- **DRAM**
 - Host Request Queue
 - Write Buffer
 - Logical-to-Physical Mappings
 - Metadata (e.g., P/E Cycles)

- **Buffering data to write (read from NAND flash memory)**
 - Essential to reducing write latency
 - Enables flexible I/O scheduling
 - Helpful for improving lifetime (not so likely)

- **Limited size (e.g., tens of MBs)**
 - Needs to ensure data integrity even under sudden power-off
 - Most DRAM capacity is used for L2P mappings
Request Handling: Write

- **Host Interface Layer (HIL)**

- **Flash Translation Layer (FTL)**
 - Data Cache Management
 - Address Translation
 - GC/WL/Refresh/...

- **DRAM**
 - Host Request Queue
 - Write Buffer
 - Logical-to-Physical Mappings
 - Metadata (e.g., P/E Cycles)

Flash Controller
- ECC
- Randomizer

NAND Flash Packages

- Core functionality for out-of-place writes
 - To hide the erase-before-write property

- Needs to maintain L2P mappings
 - Logical Page Address (LPA) → Physical Page Address (PPA)

- Mapping granularity: 4 KiB
 - 4 Bytes for 4 KiB → 0.1% of SSD capacity
Request Handling: Write

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/...

Flash Controller
- ECC
- Randomizer
- ... CTRL

NAND Flash Package
- NAND Flash Package
- NAND Flash Package
- ...

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

- Garbage collection (GC)
 - Reclaims free pages
 - Selects a victim block → copies all valid pages → erase the victim block

- Wear-leveling (WL)
 - Evenly distributes P/E cycles across NAND flash blocks
 - Hot/cold swapping

- Data refresh
 - Refresh pages with long retention ages
Request Handling: Write

- **Randomizer**
 - Scrambling data to write
 - To avoid worst-case data patterns that can lead to significant errors

- **Error-correcting codes (ECC)**
 - Can detect/correct errors: e.g., 72 bits/1 KiB error-correction capability
 - Stores additional parity information together with raw data

- **Issues NAND flash commands**

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/...

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

Flash Controller
- ECC
- Randomizer

NAND Flash Package
- ...
Request Handling: Read

- **Host Interface Layer (HIL)**
 - Request Handling: Read
 - Flash Controller
 - ECC
 - Randomizer
 - NAND Flash Package
 - NAND Flash Package
 - NAND Flash Package

- **Flash Translation Layer (FTL)**
 - Data Cache Management
 - Address Translation
 - GC/WL/Refresh/…

- **DRAM**
 - Host Request Queue
 - Write Buffer
 - Logical-to-Physical Mappings
 - Metadata (e.g., P/E Cycles)

- First checks if the request data exists in the write buffer
 - If so, returns the corresponding request immediately with the data

- A host read request can be involved with several pages
 - Such a request can be returned only after all the requested data is ready
Request Handling: Read

Host Interface Layer (HIL)

Flash Translation Layer (FTL)
- Data Cache Management
- Address Translation
- GC/WL/Refresh/…

Flash Controller
- ECC
- Randomizer

CTRL

DRAM
- Host Request Queue
- Write Buffer
- Logical-to-Physical Mappings
- Metadata (e.g., P/E Cycles)

- Finds the PPA where the request data is stored from the L2P mapping table
Request Handling: Read

- First reads the raw data from the flash chip
- Performs ECC decoding
- Derandomizes the raw data
- ECC decoding can fail
 - Retries reading of the page w/ adjusted V_{REF}
Today’s Agenda

- SSD Organization & Request Handling
- NAND Flash Organization
A Flash Cell

- Basically, it is a transistor

![Diagram of a Flash Cell with labels for Source (S), Substrate, Drain (D), Control Gate (G), Threshold Voltage (V_{TH}), and Current (I_D). The graph shows the relationship between I_D and V_{GS} with $V_{GS} < V_{TH}$ and $V_{GS} > V_{TH}$.]
A Flash Cell

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
A Flash Cell

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner

Diagram:

- $V_{PGM} = 20\, V$
- Control Gate (G)
- Floating Gate (FG)
- Source (S)
- Drain (D)
- Substrate (GND)
- Tunneling

Graph:

- I_D vs V_{GS}
- V_{TH}
A Flash Cell

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner
 - Changes the cell’s threshold voltage (V_{TH})

![Diagram of a Flash Cell]

- V_{TH} < V_{REF}
- V_{TH} > V_{REF}
Flash Cell Characteristics

- Multi-leveling: A flash cell can store multiple bits

 ![Flash Cell Diagram]

 Program: Inject electrons
 Erase: Eject electrons

- Retention loss: A cell leaks electrons over time

 ![Retention Loss Diagram]

 1 year

- Limited lifetime: A cell wears out after P/E cycling

 ![Limited Lifetime Diagram]

 1 year @ 1K P/E cycles
 1 year @ 10K P/E cycles
 Retention error!
A NAND String

- Multiple (e.g., 128) flash cells are serially connected
Pages and Blocks

- A large number (> 100,000) of cells operate concurrently

Page = 16 + α KiB

Block = \{(# of WL) \times (# of bits per cell)\} pages
Program and erase: Unidirectional
- Programming a cell → Increasing the cell’s V_{TH}
- Erasing a cell → Decreasing the cell’s V_{TH}

Programming a page cannot change ‘0’ cells to ‘1’ cells → Erase-before-write property

Erase unit: Block
- Increase erase bandwidth
- Makes in-place write on a page very inefficient → Out-of-place write & GC
Planes

- A large number (> 1,000) of blocks share bitlines in a plane.
Planes

- A large number (> 1,000) of blocks share bitlines in a plane.
Planes and Dies

- A die contains multiple (e.g., 2 – 4) planes

- Planes share decoders: limits internal parallelism (only operations @ the same WL offset)

A 21-nm 2D NAND Flash Die
P&S Modern SSDs
Basics of NAND Flash-Based SSDs

Dr. Mohammad Sadrosadati
Prof. Onur Mutlu
ETH Zürich
Fall 2022
12 October 2022