P&S Processing-in-Memory

Exploring the Processing-in-Memory Paradigm
for Future Computing Systems

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2020
1 October 2020

P&S: Processing-in-Memory (1)

227-0085-37L Projects & Seminars: Exploring the Processing-in-Memory
Paradigm for Future Computing Systems

Semester

Lecturers

Periodicity

Language of instruction

Comment

Autumn Semester 2020

0. Mutlu

every semester recurring course

English

Only for Electrical Engineering and Information Technology BSc.

The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.

Catalogue data = Performance assessment = Learning materials Courses Groups Restrictions Offeredin P> Overview

Abstract

Objective

The category of "Laboratory Courses, Projects, Seminars” includes courses and laboratories in various formats designed to impart practical
knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the
methodology of project work.

Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck.
From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy
consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in
consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of
modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the
data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-
time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively
low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly
exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate
this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the
compute units, to a more data centric design where processing elements are placed closer to or inside where the data resides. This paradigm of
computing is known as Processing-in Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer
Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important
workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the
software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real world PIM hardware or
explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

http://lwww.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitld=151838&semkez=2020W&ansicht=KATALOGDATEN&lang=en

P&S: Processing-in-Memory (11

Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck.
From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy
consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in
consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of
modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the
data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-
time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively
low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly
exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate
this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the
compute units, to a more data centric design where processing elements are placed closer to or inside where the data resides. This paradigm of
computing is known as Processing-in Memary (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer
Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important
workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the
software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real world PIM hardware or
explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

http://lwww.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lerneinheitld=151838&semkez=2020W&ansicht=KATALOGDATEN&lang=en

Data Movement vs. Computation Energy

Dally, HIPEAC 2015

20mm

26pJ | 256pJ 16nJ I pi

Efficient
D (. hin link
256-bit access
8 kB SRAM

A memory access consumes ~1000X
the energy of a complex addition

Goals of this P&S Course

P&S Processing-in-Memory: Contents

We will introduce the data movement bottleneck, which is a

major threat to high performance and energy efficiency of
current computing systems

You will learn what are key workload characteristics that
make them more prone to the data movement bottleneck

You will review traditional approaches to alleviating data
movement and will get familiar with new research
proposals: processing-in-memory solutions

You will work hands-on: analyzing workloads, programming
PIM architectures, simulating new PIM proposals, etc.

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modaules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

LIPMEM UPMEM LIPRAE M UPMERA LIPMERA LIPMEM UBMEM LUEMEM
PIM P PIM P P PN
chip dhip chip chip chip ;

https://www.anandtech.com/show/T14750/hot-chips-3 T-analySiS-Inmemory-processing-by-upmem 7
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Key Takeaways

This P&S is aimed at improving your

o Knowledge in Computer Architecture and Processing-in-

Memory

o Technical skills in programming parallel (PIM) architectures

and CompArch simulation
o Ciritical thinking and analysis
o Interaction with a nice group of researchers
o Familiarity with key research directions

o Technical presentation of your project

Key Goal

(Learn how to) overcome
the data movement bottleneck
by programming, benchmarking,
exploring different designs of

the PIM computing paradigm

Prerequisites ot the Course

Digital Design and Computer Architecture (or equivalent
course)

Familiarity with C/C++ programming
o FPGA implementation or GPU programming (desirable)

Interest Iin
o future computer architectures and computing paradigms

o discovering why things do or do not work and solving
problems

o making systems efficient and usable

10

Course Info: Who Are We? (I)

Onur Mutlu . Q/)
o Full Professor @ ETH Zurich ITET (INFK), since September 2015

o Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...

o PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
a https://people.inf.ethz.ch/omutlu/

o omutlu@gmail.com (Best way to reach me)

o https://people.inf.ethz.ch/omutlu/projects.htm

Research and Teaching in:

o Computer architecture, computer systems, hardware security, bioinformatics
o Memory and storage systems

o Hardware security, safety, predictability

o Fault tolerance

o Hardware/software cooperation

o Architectures for bioinformatics, health, medicine

11

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm

Course Info: Who Are We? (1I)

= Lead Supervisor:

o Dr. Juan Gomez Luna y ,T
= Supervisors: ’a \

o Dr. Haiyu Mao /

o Geraldo F. de Oliveira

o Konstantinos Kanellopoulos
a Nika Mansouri Ghiasi

= Get to know us and our research
o https://safari.ethz.ch/safari-group/

12

https://safari.ethz.ch/safari-group/

Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory
https://safari.ethz. ch/safarl newsletter-april-2020/

https://safarl ethz.ch

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/

Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics

* Memory and storage (DRAM, flash, emerging), interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

« Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems & system design for bio/medicine

Htegenus Persistent Memory/Storage

Processors and
Accelerators Broad research

= ; : B spanning apps, systems, logic
= i: Wwith architecture at the center

14

Course Info: How About You?

Let us know your background, interests

Why did you join this P&S?

15

Course Requirements and Expectations

= Attendance required for all meetings
= Study the learning materials

= Each student will carry out a hands-on project

o Build, implement, code, and design with close engagement from
the supervisors

= Participation
o Ask questions, contribute thoughts/ideas
o Read relevant papers

We will help in all projects!
If your work is really good, you may get it published!

16

Course Website

https://safari.ethz.ch/projects _and_seminars/doku.php?id=

processing_in_memory

Useful information about the course
Check your email frequently for announcements

We will also have Piazza for Q&A

17

https://safari.ethz.ch/projects_and_seminars/doku.php?id=processing_in_memory

Meeting 1

= Required materials:
1. Onur Mutlu,
"Processing Data Where It Makes Sense in Modern Computing Systems: Enabling In-Memory Computation
Keynote talk at 37th IEEE International Conference on Computer Design (ICCD), Abu Dhabi, UAE, 19 November 2019.
[Slides (pptx) (pdf)]
[Related Overview Paper I]
[Related Overview Paper II]
[Talk Video (1 hour 18 minutes)]

”

2. Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.

arXiv_version

Slides (pptx)]
Talk Video]

= Recommended materials:
3. Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective”
Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

4. Computation in Memory (Professor Onur Mutlu, lecture, Fall 2019).

(PDF) (PPT)

Video

Video (ETHZ)

5. Computation in Memory II (Professor Onur Mutlu, lecture, Fall 2019).

(PDF) (PPT)

Video

Video (ETHZ)

6. Computation in Memory III (Professor Onur Mutlu, lecture, Fall 2019).

(PDF) (PPT)

Video

Video (ETHZ)

https://people.inf.ethz.ch/omutlu/pub/onur-ICCD-Keynote-EnablingInMemoryComputation-November-19-2019-unrolled.pptx
https://www.iccd-conf.com/Home.html
https://people.inf.ethz.ch/omutlu/pub/onur-ICCD-Keynote-EnablingInMemoryComputation-November-19-2019-unrolled.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-ICCD-Keynote-EnablingInMemoryComputation-November-19-2019-unrolled.pdf
https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://arxiv.org/pdf/1907.12947.pdf
https://www.youtube.com/watch?v=njX_14584Jw
https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-GLSVLSI-KeynoteTalk-EnablingInMemoryComputation-May-10-2019-unrolled.pptx
https://www.youtube.com/watch?v=oHqsNbxgdzM
https://people.inf.ethz.ch/omutlu/pub/processing-in-memory_workload-driven-perspective_IBMjrd19.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture6b-in-memory-computation-i-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture6b-in-memory-computation-i-afterlecture.pptx
http://www.youtube.com/watch?v=IA-_EdNjbA0
https://video.ethz.ch/lectures/d-infk/2019/autumn/263-2210-00L/bacab53b-1d45-4a06-8fc1-a45e0741038a.html?time=77m15s&autoplay=true
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture7-in-memory-computation-ii-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture7-in-memory-computation-ii-afterlecture.pptx
http://www.youtube.com/watch?v=ZZvVkq1ZRxM
https://video.ethz.ch/lectures/d-infk/2019/autumn/263-2210-00L/9c10e8f5-72cd-486c-bad7-3913496ed220.html
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture8-in-memory-computation-iii-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture8-in-memory-computation-iii-afterlecture.pptx
http://www.youtube.com/watch?v=HkOnBPGSe6Q
https://video.ethz.ch/lectures/d-infk/2019/autumn/263-2210-00L/41e39d4c-8427-4a36-9d41-487967f725c2.html

Meeting 2 (October 8

We will announce the projects and will give you some
description about them

We will give you a chance to select a project

Then, we will have 1-1 meetings to match your interests,
skills, and background with a suitable project

It is important that you study the learning materials before
our next meeting!

19

Next Meetings

Individual meetings with your mentor/s

Tutorials and short talks
a2 PIM programming
o Recent research works

Presentation of your work

20

An Introduction to
Processing-in-Memory

21

The Main Memory System

Processors
and caches

Main Memory

/

o :-~""~>m' A

Storage (

SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

22

The Main Memory System

Main Memory

/

P s 1 S
4 I s i,
3 e e GEAER

Storage (

SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

23

The Main Memory System

SETaN,

Main Memory Storage (SSD/HDD)

/

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

24

Memory System: A Shared Resource View

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
\
N 0]
= =
<V] <]
- -
o o
(=N
\§ =
\E\ E
(=] (=]
= -
e
Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data

25

Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

26

Example: Capacity, Bandwidth & Latency

4 Capacity #Bandwidth @Llatency 128X
Ej
= 100
5
0 20X
)
>
2
10
E
>
< 1.3X
a) P o——0—0—0—0—0—0
| ®

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant

The Need for More Memory Performance

=
—

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’15]

. N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC’I5; [Kanev+ (Google), ISCA’| 5]
Awan+, BDCloud’15]

DRAM Latency Is Critical for Performance

(0

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark’

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’15]

The Energy Perspective

Communication Dominates Arithmetic

Dally, HIPEAC 2015

—A
256 pJ 16 nJ |- ngf‘xr

256-bit access
8 kB SRAM

Data Movement vs. Computation Energy

Dally, HIPEAC 2015

20mm

26pJ | 256pJ 16nJ I pi

Efficient
D (. hin link
256-bit access
8 kB SRAM

A memory access consumes ~1000X
the energy of a complex addition

The Pertormance Perspective (1996-2005)

« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45
40
35
30
25
20
15
10

S
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring B Bad speculation
[—1 Front-end bound [Back-end bound

Tl N
ads

bigtable S F
disk EH _ F
flight-search
gmail
gmail-fe
indexingl I ——
indexing2 | E______

searchl ::—= 2

search2

search3 !_ ‘= .'
———— —

video

——‘
4‘
e e —a
——q
S

R E—|

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

33

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

34

The Problem

Processing of data
is performed
far away from the data

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E a Communication E a Memory/Storage
Unit Unit Unit

-
-
=
-
-
-
l".
-
-
-
-
-

—“'
-
-
¢¢¢¢
-
a®
-
d-"
-
-
=

Memory System Storage System

36
Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication Memory’”

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Yet ...

« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45
40
35
30
25
20
15
10

S
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils ot Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
39

Data Movement in Computing Systems

= Data movement dominates performance and is a major
system energy bottleneck

o Comprises 41% of mobile system energy during web browsing*

Compute systems should be more data-centric

Processing-In-Memory proposes computing where it

makes sense (where data resides)

*Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
**Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (ISWC’14)

40

We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

41

Why In-Memory Computation Today?

= Pull from systems/applications for data-centric execution
= It can be practical today

o 3D-stacked memories combine logic and memory functionality
(relatively) tightly + industry open to new architectures

42

Challenge and Opportunity for Future

High Performance
and
Energy Efficiency

Goal: Processing Inside Memory

Processor 1 Database

Core

Graphs

I Media

Interconnec’z
Results
Problem
= Many questions... How do we design the:
o compute-capable memory & controllers? Program/Language
processor chip? System Software

software and hardware interfaces? SW/HW Interface
system software and languages?
algorithms?

o 0O 0O O

Processing In-Memory (P1M)

= Near-Data Processing or Processing In-Memory (PIM)
o Move computation closer to where the data resides

Logic layer Memory controller Memory module
3D stacked DRAM (DIMM)
CPU CPU
Through-Silicon Via
7 (TSV)

45

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modaules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules
8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

LIPMEM UPMEM LIPRAE M UPMERA LIPMERA LIPMEM UBMEM LUEMEM
PIM P PIM P P PN
chip dhip chip chip chip ;

https://www.anandtech.com/show/T14750/hot-chips-3 T-analySiS-Inmemory-processing-by-upmem
) O o . . 46
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Possible Designs

Fixed-function units
Reconfigurable architectures

o FPGAs, CGRA

General-purpose programmable cores
o E.g., ARM Cortex R-8, ARM Cortex A-35 (+SIMD units)
o Possibility of running any workload

Ambit: In-DRAM Bulk Bitwise Operations (Seshadri+, MICRO'17)

Fixed-Function

Accelerators

‘@)
[poesesemor 1

PIM-Accelerator N

)

¢

Reconfigurable

Logic

(

Reconfigurable

\\

Accelerator

Low Power
Core

()
[PIM Core 1

\\

7

(GaeT

Ambit

-

_

Analog
Operations
in DRAM

~

J

7

Agenda
Major Trends Affecting Memory

Processing in Memory: Two Directions
o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

48

Approach 1: Minimally Changing DRAM

DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal bandwidth to move data
o Can exploit analog computation capability

Q ...

Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

49

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

RowClone:
In-Memory Copy and Initialization

ETH:zurich

SAFARI Carnegie Mellon

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA'15]

Zero initialization l l

(e.g., security) Checkpointing

Forking

Many more

VM Cloning Page Migration
Deduplication

51

Today’s Systems: Bulk Data Copy

CPU

1_

L2 -

L3

MC

1) High latency
3) Cache pollution \ \ Memory

(

2) High bandwidth utilization
4) Unwanted data movement

1046ns, 3.6ud

>_

(for 4KB page copy via DMA)

22

Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

Memory

ceu Tullizll s Ume | Qﬁ

2) Low bandwidth utilization ’?
4) No unwanted data movement

1046ns, 3.6ud = 90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus

RowClone: Latency and Energy Savings

1.2 M Baseline M Intra-Subarray
¥ Inter-Bank M [nter-Subarray

[EEY
l

A A

11.6x 74X

o
00

Normalized Savings
o o
I o)

o
N

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

ole}

More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Ambit:
In-Memory Bulk Bitwise Operations

ETH:zurich

SAFARI Carnegie Mellon

In-Memory Bulk Bitwise Operations

= We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
= At low cost

= Using analog computation capability of DRAM
o Idea: activating multiple rows performs computation

= 30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

58

In-DRAM AND/OR: Triple Row Activation

%Vpp+06

Final State
AB + BC + AC

| %\,

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 59

In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B > C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

1. RowClone A into D1

2. RowClone B into D2

3. RowClone RO into D3
4. ACTIVATE D1,D2,D3

5. RowClone Result into C

60

More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee?,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

61

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

In-DRAM NOT: Dual Contact Cell

d-wordline

dual-contact | | .
cell (DCC) ”: s .
n-wordline _dl—il—_—|-_,_l‘: Idea .

bitline

I ’ Feed the
amplifier ALV negated value
1 In the sense amplifier
bitline

| iInto a special row
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017

62

In-DRAM NOT Operation

0 I sVoD 1 T 3 5 0 T~ Vobp
source | I 1 source I I 1 source | I 1
T &
DCC | |
0 —— i _______ R
|

U
—_

iVpp o %VDD 9

2

(=]
(=]

Initial State After Charge Sharing Activated d-wordline Activated n-wordline

Figure 5: Bitwise NOT using a dual contact capacitor

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017

63

Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 Ambit Il Ambit-3D

Figure 9: Throughput of bitwise operations on various systems.

)
E 1024_ ..
8 512_ ...
O 2 256_ ..
\: 8 128_ ...
a N 64_ ..

a0 32 4o | R | R R | R
EDB 16 44 | IR-{ | | | | | PR

8_

5 *TTH -2 R R~ W
-
o

|
not

|
and/or

1
nand/nor

|
XOr/Xnor

|
mean

Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy Ambit 1.6 3.2 4.0 5.5
(nJ/KB) () 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017

65

Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60

Performance: Bitmap Index on Ambit

Execution Time
of the Query (ms)

Baseline I Ambit

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks

8 million users

16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017

67

More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee?® Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu*® Phillip B. Gibbons® Todd C. Mowry®

!Microsoft Research India 2NVIDIA Research “Intel “ETH Ziirich °Carnegie Mellon University

68

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Agenda
Major Trends Affecting Memory

Processing in Memory: Two Directions
o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

69

Approach 2: 3D-Stacked Logic+Memory

vbrid Memory Cube

O N S O R T I

70

Graph Processing

= Large graphs are everywhere (circa 2015)

v &

-,

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages Facebook Users Twitter Users Instagram Photos

= Scalable large-scale graph processing is challenging

128 Cores _+420/0 —

0 1 2 3 4
Speedup

Only +42% for 4x more cores!!!

71

Key Bottlenecks in Graph Processing

PageRank algorithm (Page et al. 1999)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}

J 1. Frequent random memory accesses
/\
— — = T ——
I T
Vv 1 &w
—~
w.rank . _:_ - y,
w.next_rank | : £ == - -
; 7 weight * \
w.edges W I k ’/// \V\Lel-gl'_]t_ _/_r_arlk,
L):,
2. Little amount of computation

72

Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly

o while achieving significant benefits

73

Tesseract: An In-Memory
Accelerator tor Graph Processing

ETHzurich

SAFARI Carnegie Mellon

Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface !
(Noncacheable, Physically Addressed)

/ |

3

/ (1)

(1]

(1)

(1

Crossbar Network

+t

+t

+

L1 |

O |

In-Order Core

LP PF Buffer

MTP

Message Queue

J3]]0J3U0D VYA

g

=

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract System for Graph Processing

= Evaluation on
o DDR3 DRAM, computation on Out-of-Order (Oo0O) core

a Hybrid Memory Cube (HMC) DRAM, computation on Out-of-
Order (O00) core

o HMC DRAM, computation on the Memory Controller (MC)

o Tesseract
= With or without List Prefetching (LP)

= With or without Message Triggered Prefetching (MTP), specified
by the programmer

76

Tesseract Graph Processing Performance

>13X Performance Improvement
16

On five graph processing algorithms 13.8x
14

17 11.6x

10 9.0x

Speedup

~ O 0

2 +56% 1+25%

., == BN e

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing System Energy

B Memory Layers [Logic Layers [Cores
1.2

0.8
0.6
0.4

> 8X Energy Reduction

HMC-0Oo0 Tesseract with Prefetching

0.2

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University

79

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits

80

PIM-Enabled Instructions for
Graph Processing

ETHzurich

SAFARI Carnegie Mellon

Simple PIM Operations as ISA Extenstons (I)

for (v: graph.vertices) { PageRank algorithm (Page et al. 1999)

value = weight * v.rank;
for (w: v.successors) {
w.next_rank += value;

Host Processor Main Memory

w.next_rank

64 bytes in S
64 bytes out |

Conventional Architecture

82

Simple PIM Operations as ISA Extensions (1)

for (v: graph.vertices) { PageRank algorithm (Page et al. 1999)

— 1 %k .
value = weight * v.rank; oim.add rl, (r2)

for (w: v.successors) {
__pim_add(&w.next_rank, value);

Host Processor Main Memory

w.next_rank

8 bytes in
0 bytes out

In-Memory Addition

83

PEI: Benchmarks

Graph processing

o Average Teenage Follower (AT)

o Breadth-First Search (BFS)

o PageRank (PR)

o Single-Source Shortest Path (SP)

o Weakly Connected Components (WCC)

Other benchmarks that can benefit from PEI

o Data analytics
Hash Join (HJ)
Histogram (HG)
Radix Partitioning (RP)
o Machine learning and data mining
Streamcluster (SC)
Support Vector Machine (SVM)

84

PEIL: PIM-Enabled Instructions: Examples

Table 1: Summary of Supported PIM Operations

Operation R W Input Output Applications
8-byte integer increment O O Obytes Obytes AT

8-byte integer min O O 8bytes Obytes BES, SP, WCC
Floating-point add O O 8bytes Obytes PR

Hash table probing O X 8bytes 9bytes HJ

Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC

Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

85

Example PEI Microarchitecture

Host Processor 3D-stacked Memory

|
|
|
|
|
Out-Of-Order © o T>’ | I
e o o = % : PCU Controller
- N o :
L oN —
PCU (PEl — — & =8 ! I
. . o R,
Computation Unit) =i : B BE B
S || 3 -
—t =
PMU (PEI[— = ==
. S
Mgmt Umt) Directory ==
|
Locality : DRAM
Monitor ! PCU Controller
|

Example PEI uArchitecture

PEI Performance Delta: Large Data Sets

Percentage of Performance Improvement

wrt Baseline (CPU-only)

70%

60%

50%

40%

30%

20%

10%

0%

ATF

(Large Inputs, Baseline: CPU-Only)

BFS

PR

SP WCC
B PIM-Only

HJ HG RP

] Localitv-Aware

Locality-Aware = PIM or
CPU depending on data

SC

sym GeoMean

location

87

PEI Energy Consumption

1.5 Host-Only (CPU)
>IM-Only
S _ocality-Aware
a
5 1
:
@)
S
S
L
5 0.5
2
0
Small Medium Large
M Cache B HMC Link [E DRAM | Breakdown of Energy
) . Consumption on Different
[0 Host-side PCU [0 Memory-side PCU [CPMU | system Components

88

More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@ gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Agenda
Major Trends Affecting Memory

Processing in Memory: Two Directions
o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

90

P&S Processing-in-Memory

Exploring the Processing-in-Memory Paradigm
for Future Computing Systems

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Fall 2020
1 October 2020

