P&S Mobile Genomics Project Proposals

Dr. Mohammed Alser Prof. Onur Mutlu

ETH Zürich
Spring 2021
9 March 2021

The Role of This Course

Projects & Seminars: Mobile Genomics

- We will cover the basics of genome analysis to understand the speed-accuracy tradeoff in using computationally-lightweight heuristics versus accurate computationally-expensive algorithms.
- Students will experimentally evaluate different heuristic algorithms and observe their effect on the end results.
- This evaluation will give the students the chance to carry out a hands-on project to implement one or more of these heuristic algorithms in their smartphones and help the society by enabling on-site analysis of genomic data.

Key Objectives

- Multiple components that are aimed at improving students'
 - Basic knowledge in genome analysis (dry lab)
 - Technical skills in genome analysis and computer architecture
 - Critical thinking and analysis
 - Familiarity with key research directions
 - Technical presentation of your project

(Learn how to)

efficiently implement

one of the key steps in genome analysis on portable devices

Prerequisites of the Course

- No prior knowledge in bioinformatics or genome analysis is required.
- A good knowledge in C programming language and programming is required.
- Interest in making things efficient and solving problems

Course Info: Who Are We?

Onur Mutlu

- Full Professor @ ETH Zurich ITET (INFK), since September 2015
- □ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
- PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
- https://people.inf.ethz.ch/omutlu/
- omutlu@gmail.com (Best way to reach me)
- https://people.inf.ethz.ch/omutlu/projects.htm

Research and Teaching in:

- Computer architecture, computer systems, hardware security, bioinformatics
- Memory and storage systems
- Hardware security, safety, predictability
- Fault tolerance
- Hardware/software cooperation
- Architectures for bioinformatics, health, medicine
- **...**

Course Info: Who Are We?

- Senior Researcher and Lecturer, SAFARI Research Group, ETH Zürich, since Sept. 2018.
- PhD from Bilkent University (Turkey) 2018, worked at UCLA, TU Dresden, and PETRONAS.
- PhD these in accelerating genome analysis, advisors: <u>Can Alkan</u> and <u>Onur Mutlu</u>, awarded:
 - IEEE Turkey Doctoral Dissertation Award
 - <u>TÜBITAK</u> fellowship
 - The Best Palestinian PhD Student in Turkey
 - HiPEAC Collaboration Grant
- ALSERM@ethz.ch, https://twitter.com/mealser
- My main research is in bioinformatics, computational genomics, metagenomics, and computer architecture.
- I am especially excited about **building** new data structures, algorithms, and architectures that **make intelligent genome analysis a reality.**

Course Info: Who Are We?

Juan Gómez Luna
Senior Researcher and
Lecturer

Processing-In-Memory |
Heterogeneous computing |
Memory Systems | Bioinformatics
Medical imaging

Damla Senol Cali
PhD Student (at CMU)

Hardware acceleration for bioinformatics tools |
Genome sequence analysis tools |
Hardware/Software
Cooperation | Processing-in-Memory | Memory systems

Jeremie Kim

PhD Student

DRAM

power/reliability/performa

nce | Genome Sequence

Analysis & Alignment |

Hardware/Software

Cooperation | Processingin-Memory | Core

Microarchitecture

Can Firtina

PhD Student

Genome Assembly |
Sequence Analysis &
Alignment | BiologicallyInspired Computing
Paradigms | BrainComputer Interfaces |
Phase-change memory

Get to know them and their research: https://safari.ethz.ch/safari-group/

Course Requirements and Expectations

- Attendance required for all meetings
- Study the learning materials
- Each student will carry out a hands-on project
 - Build, implement, code, and design with close engagement from the supervisors
- Participation
 - Ask questions, contribute thoughts/ideas
 - Read relevant papers
- Presentation & GitHub repository

We will help the projects with good progress to get published in good venues!

Course Website

- https://safari.ethz.ch/projects_and_seminars/spring2021/do ku.php?id=genome_seq_mobile
- Useful information for the course
- Check your email and Moodle frequently for announcements
- We will also have Moodle for Q&A, announcements, ...

Next Meetings

- We will give you a chance to select a project,
- Then, we will have 1-1 meetings to match your interests, skills, and background with a suitable project.
- It is important that you study the learning materials before our next meeting!
- We will start the projects next week.

WHAT IS GENOME ANALYSIS?

What is Genome Analysis?

Genomic analysis

Genomic analysis is the identification, measurement or comparison of genomic features such as DNA sequence, structural variation, gene expression, or regulatory and functional element annotation at a genomic scale. Methods for genomic analysis typically require high-throughput sequencing or microarray hybridization and bioinformatics.

Genome Analysis

Mo machine can read the *entire* content of a genome

Genome Sequencer is a Chopper

Regardless the sequencing machine,

reads still lack information about their order and location

(which part of genome they are originated from)

Reference Genome

.FASTA file:

Genomic Reads

.FASTQ file:

Solving the Puzzle

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/

Bottlenecked in Read Mapping!!

48 Human whole genomes

at 30 × coverage

in about 2 days

Illumina NovaSeq 6000

1 Human genome

32 CPU hours

on a 48-core processor

■ Read Mapping ■ Others

What is Intelligent Genome Analysis?

- Fast genome analysis
 - □ Real-time analysis

Bandwidth

- Using intelligent architectures
 - □ Specialized HW with less data movement

Energy-efficiency & Latency

- DNA is a valuable asset
 - □ Controlled-access analysis

Privacy

- Population-scale genome analysis
 - □ Sequence anywhere at large scale!

Scalability

- Avoiding erroneous analysis
 - □ *E.g., your father is not your father*

Accuracy

Pushing Towards New Architectures

Processing Genomic Data Where it Makes Sense

Achieving Intelligent Genome Analysis?

How and where to enable

fast, accurate, cheap,

privacy-preserving, and exabyte scale analysis of genomic data?

Most speedup comes from parallelism enabled by novel architectures and algorithms

More on This Topic!

https://www.youtube.com/watch?v=ygmQpdDTL7o

Prior Research on Genome Analysis (1/2)

- Alser + "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs.", Bioinformatics, 2020.
- Senol Cali+, "GenASM: A High-Performance, Low-Power Approximate
 String Matching Acceleration Framework for Genome Sequence Analysis",
 MICRO 2020.
- Alser+, "<u>Technology dictates algorithms: Recent developments in read alignment</u>", arXiv, 2020.
- Kim+, "AirLift: A Fast and Comprehensive Technique for Translating Alignments between Reference Genomes", arXiv, 2020
- Alser+, "<u>Accelerating Genome Analysis: A Primer on an Ongoing Journey</u>", IEEE Micro, 2020.

Prior Research on Genome Analysis (2/2)

- Firtina+, "Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm", Bioinformatics, 2019.
- Alser+, "Shouji: a fast and efficient pre-alignment filter for sequence alignment", Bioinformatics 2019.
- Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies", BMC Genomics, 2018.
- Alser+, "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA Short Read Mapping", Bioinformatics, 2017.
- Alser+, "MAGNET: understanding and improving the accuracy of genome pre-alignment filtering", IPSI Transaction, 2017.

Openings @ SAFARI

- We are hiring enthusiastic and motivated students and researchers at all levels.
- Join us now: <u>safari.ethz.ch/apply</u>

P&S Mobile Genomics Project Proposals

Dr. Mohammed Alser Prof. Onur Mutlu

ETH Zürich
Spring 2021
9 March 2021

