P&S Modern SSDs

Understanding and Designing
Modern NAND Flash-Based Solid-State Drives

Dr. Jisung Park

Prof. Onur Mutlu

ETH Zürich

Spring 2021

31 March 2021

Today's Agenda

Progress Review

NAND Flash Organization

Progress Review

- Refactoring the simulation engine
 - Push your modifications into the repository when ready
- How does the simulation engine work?
- How did you improved?
- How did you validated your modifications?
- Any Questions?

Basically, it is a transistor

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner

- Basically, it is a transistor
 - w/ a special material: Floating gate (2D) or Charge trap (3D)
 - Can hold electrons in a non-volatile manner
 - Changes the cell's threshold voltage (V_{TH})

Flash Cell Characteristics

Multi-leveling: A cell can store multiple bits

Retention loss: A cell leaks electrons over time

Limited lifetime: A cell wears out after P/E cycling

A NAND String

Multiple (e.g., 128) flash cells are serially connected

Pages and Blocks

A large number (> 100,000) of cells operate concurrently

Pages and Blocks (Continued)

- Program and erase: Unidirectional
 - □ Programming a cell → Increasing the cell's VTH
 - □ Eraseing a cell → Decreasing the cell's VTH
- Programming a page cannot change '0' cells to '1' cells
 → Erase-before-write property
- Erase unit: Block
 - Increase erase bandwidth
 - □ Makes in-place write on a page very inefficient
 → Out-of-place write & GC

Planes

A large number (> 1,000) of blocks share bitlines in a plane

Planes

A large number (> 1,000) of blocks share bitlines in a plane

Planes and Dies

■ A die (or chip) contains multiple (e.g., 2 – 4) planes

A 21-nm 2D NAND Flash Die

 Planes share decoders: limit internal parallelism (only operations @ the same WL offset)

Dies

- A package contains multiple (e.g., 4 8) dies
 - Dies share a channel (or a bus)
 - To communicate with the flash controller
- Dies can operate independently of each other
 - w/ channel interleaving

Next Meetings

- We will provide more background on NAND flash memory
- We will discuss your progress in last week
 - Please contact us whenever you have any questions

P&S Modern SSDs

Understanding and Designing
Modern NAND Flash-Based Solid-State Drives

Dr. Jisung Park

Prof. Onur Mutlu

ETH Zürich

Spring 2021

24 March 2021