P&S Modern SSDs

Understanding and Designing Modern NAND Flash-Based Solid-State Drives

Dr. Jisung Park
Prof. Onur Mutlu
ETH Zürich
Spring 2021
5 May 2021
Today’s Agenda

■ Progress Review

■ SSD Performance & Advanced NAND Flash Commands
Progress Review

- Refactoring MQSim
 - Push your modifications into the repository when ready

- Progress update
 - Marc: Host interface layer, Hong Chul: NAND flash model

- Any Questions?
P&S Modern SSDs

Meeting 7: SSD Performance & Advanced NAND Flash Commands

Dr. Jisung Park
Prof. Onur Mutlu

ETH Zürich
Spring 2021
28 April 2021
Recap: SSD & NAND Flash Memory

- SSD organization
 - SSD controller: Multicore CPU + per-channel flash controllers
 - DRAM: Metadata store, 0.1% of SSD capacity
 - NAND flash chips
 - Channel – Die (Chip) – Plane – Block – Page

- NAND flash characteristics
 - Erase-before-write, asymmetry in operation units (read/write: page, erase: block), limited endurance, retention loss...

- Basic NAND flash operations
 - Read/program/erase
SSD Performance

- **Latency**
 - The time delay *until the request is returned*
 - Average read latency (4 KiB): 67 us
 - Average write latency (4 KiB): 47 us

- **Throughput**
 - **The number of requests** that can be serviced per unit time
 - **IOPS**: Input/output Operations Per Second
 - **Random read throughput**: up to **500K IOPS**
 - **Random write throughput**: up to **480K IOPS**
 - **HDD**: > 1K IOPS

- **Bandwidth**
 - **The amount of data** that can be accessed per unit time
 - **Sequential read bandwidth**: up to **3,500 MB/s**
 - **Sequential write bandwidth**: up to **3,000 MB/s**

 HDD: ~100 MB/s

Source: https://www.anandtech.com/show/16504/the-samsung-ssd-980-500gb-1tb-review
NAND Flash Chip Performance

- Chip operation latency
 - tR: Latency of reading data from the cells into the on-chip page buffer
 - tPROG: Latency of programming the cells with data in the page buffer
 - tBERS: Latency of erasing the cells (block)
 - Varies depending on the MLC technology, processing node, and microarchitecture
 - In 3D TLC NAND flash, tR/tPROG/tBERS ≈ 100us/700us/3ms

- I/O rate
 - Number of bits transferred via a single I/O pin per unit time
 - A typical flash chip transfers data in a byte granularity (i.e., via 8 I/O pins)
 - e.g., 1-Gb I/O rate & 16-KiB page size → tDMA = 16 us
NAND Flash Chip Performance (Cont.)

- \(t_R\), \(t_{PROG}\), and \(t_{BERS}\)
 - Latencies for chip-level read/program/erase operations
 - \(t_R\): 50~100 us
 - \(t_{PROG}\): 700us~1000 us
 - \(t_{BERS}\): 3ms~5ms

- Flash-controller level latency
 - 1-Gb I/O rate and 16-KiB page size
 - Read
 - \((t_{CMD}) + t_R + t_{DMA} + (t_{RND}) + t_{ECC_{DEC}}\)
 - e.g., 100 + 16 + 20 = 136 us
NAND Flash Chip Performance (Cont.)

- tR, tPROG, and tBERS
 - Latencies for chip-level read/program/erase operations
 - tR: 50~100 us
 - tPROG: 700us~1000 us
 - tBERS: 3ms~5ms

- Flash-controller level latency
 - 1-Gb I/O rate and 16-KiB page size
 - Read
 - \((t\text{CMD}) + tR + tDMA + (tRND) + tECC_{\text{DEC}}\)
 - e.g., 100 + 16 + 20 = 136 us
 - Program
 - \(tECC_{\text{ENC}} + (tRND) + (t\text{CMD}) + tDMA + t\text{PROG}\)
 - e.g., 20 + 16 + 700 = 736 us
NAND Flash Chip Performance (Cont.)

- How about bandwidth?
 - **Read**
 - 16 KiB / 136 us \approx 120 MB/s
 - **Write**
 - 16 KiB / 736 us \approx 22 MB/s

WAIT!

SSD read latency: 67 us
SSD read bandwidth: 3.5 GB/s
SSD write latency: 47 us
SSD write bandwidth: 3 GB/s

Optimizations w/ advanced commands

Diagram:

- NAND Flash Chip
- Flash Controller
- ECC
- RAND
- Internal parallelism
- DRAM/SLC Write Buffer
Advanced Commands for Small Reads

- Minimum I/O units in modern file systems: 4 KiB
 - Latency & bandwidth waste due to I/O-unit mismatch
 - e.g., A page read unnecessarily reads/transfers 12-KiB data

- Optimization 1: Sub-page sensing
 - e.g., Micron SNAP READ operation
 - Microarchitecture-level optimization – directly reduces tR

- Optimization 2: Random Data Out (RDO)
 - Data transfer with an arbitrary offset and size
 - Reduce tDMA and tECC_{DEC}

CACHE READ Command

- Performs consecutive reads in a pipelined manner

Regular PAGE READ:
Overlaps only tECC with tR

CACHE READ:
Overlaps tDMA & tECC with tR
Enabling the CACHE READ Command

- Needs additional on-chip page buffer

1. **PAGE READ (A)**

2. **Page senging**

3. **CACHE READ (A)**

4. **Page senging**

5. **DATA OUT (A)** (Toggle RE signal)

NAND Flash Plane

- Page A
- Page B
- ...
CACHE READ Command: Benefit

- Removes tDMA from the critical path
 - Increases throughput/bandwidth
 - Reduces effective latency
 - By reducing the time delay for a request being blocked by the previous request
Multi-Plane Operations

- Concurrent operations on different planes
 - Recall: Planes share WLs and row/column decoders
 - Opportunity: Planes can concurrently operate
 - Constraints: Only for the same operations on the same page offset

![Diagram showing multi-plane operations with planes labeled Plane₀, Plane₁, Plane₂, Plane₃, and corresponding row/column decoders and WLs.]
Multi-Plane Operations: Benefit

- Increase the throughput/bandwidth linearly with # of planes that concurrently operate
 - Bandwidth with regular page programs:
 16 KiB / 736 us ≈ 22 MB/s
 - Bandwidth with multi-plane page programs (2 plane):
 32 KiB / 736 us ≈ 44 MB/s

- Per-operation latency increases
 - Regular page program: tECC\textsubscript{ENC} + tDMA + tPROG
 - Multi-plane page program: 2 × (tECC\textsubscript{ENC} + tDMA) + tPROG

- The benefits highly depend on the access pattern and FTL’s data placement
 - Random-read-dominant vs. Random-write-dominant
Read performance is often more important
- Writes can be done in an asynchronous manner using buffers
 - e.g., return a write request immediately after receiving the data (and storing it to the write buffer)
- A read request can be returned only when the requested data is ready (after reading the data from the chip)

Significant latency asymmetry
- tR: 100 us, tPROG: 700 us, tBERS: 5 ms (TLC NAND flash)
 - If the chip is designed to program all the pages in the same WL at once, the actual program latency is 2,100 us
- The worst-case chip-level read latency can be 50x longer than the best-case latency
Program & Erase Suspensions (Cont.)

- Suspends an on-going program (erase) operation once a read arrives

Pros: Significantly decreases the read latency

Cons
- Additional page buffers (for data to program)
- Complicated I/O scheduling (Until when can we suspend on-going program requests?)
- Negative impact on the endurance

![Diagram showing the suspension of program and erase operations with read arrival and latency changes.](image-url)
Recommend Materials

- **Cache read & Read-retry**

- **Program & Erase Suspension**
 - Guanying Wu et al., “Reducing SSD Read Latency via NAND Flash Program and Erase Suspension,” In USENIX FAST 2012.
 - Shine Kim et al., “Practical Erase Suspension for Modern Low-latency SSDs,” In USENIX ATC 2019.
Next Meetings

- We will provide more background on host request handling
- We will discuss your progress in last week
 - Please contact us whenever you have any questions