
DFTL: A Flash Translation Layer Employing Demand-based
Selective Caching of Page-level Address Mappings

Aayush Gupta Youngjae Kim Bhuvan Urgaonkar

Department of Computer Science and Engineering
The Pennsylvania State University, University Park, PA 16802, USA

{axg354, youkim, bhuvan}@cse.psu.edu

Abstract
Recent technological advances in the development of flash-
memory based devices have consolidated their leadership
position as the preferred storage media in the embedded
systems market and opened new vistas for deployment in
enterprise-scale storage systems. Unlike hard disks, flash de-
vices are free from any mechanical moving parts, have no
seek or rotational delays and consume lower power. How-
ever, the internal idiosyncrasies of flash technology make
its performance highly dependent on workload character-
istics. The poor performance of random writes has been
a cause of major concern which needs to be addressed to
better utilize the potential of flash in enterprise-scale envi-
ronments. We examine one of the important causes of this
poor performance: the design of the Flash Translation Layer
(FTL) which performs the virtual-to-physical address trans-
lations and hides the erase-before-write characteristics of
flash. We propose a complete paradigm shift in the design
of the core FTL engine from the existing techniques with
our Demand-based Flash Translation Layer (DFTL) which
selectively caches page-level address mappings. We develop
a flash simulation framework called FlashSim. Our experi-
mental evaluation with realistic enterprise-scale workloads
endorses the utility of DFTL in enterprise-scale storage sys-
tems by demonstrating: (i) improved performance, (ii) re-
duced garbage collection overhead and (iii) better overload
behavior compared to state-of-the-art FTL schemes. For ex-
ample, a predominantly random-write dominant I/O trace
from an OLTP application running at a large financial insti-
tution shows a 78% improvement in average response time
(due to a 3-fold reduction in operations of the garbage col-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’09, March 7–11, 2009, Washington, DC, USA.
Copyright c© 2009 ACM 978-1-60558-406-5/09/03. . . $5.00

lector), compared to a state-of-the-art FTL scheme. Even
for the well-known read-dominant TPC-H benchmark, for
which DFTL introduces additional overheads, we improve
system response time by 56%.

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Secondary Storage

General Terms Performance, Measurement

Keywords Flash Management, Flash Translation Layer,
Storage System

1. Introduction
Hard disk drives have been the preferred media for data stor-
age in enterprise-scale storage systems for several decades.
The disk storage market totals approximately $34 billion an-
nually and is continually on the rise [27]. However, there are
several shortcomings inherent to hard disks that are becom-
ing harder to overcome as we move into faster and denser de-
sign regimes. Hard disks are significantly faster for sequen-
tial accesses than for random accesses and the gap continues
to grow. This can severely limit the performance that hard
disk based systems are able to offer to workloads with sig-
nificant random access component or lack of locality. In an
enterprise-scale system, consolidation can result in the mul-
tiplexing of unrelated workloads imparting randomness to
their aggregate [6].

Alongside improvements in disk technology, significant
advances have also been made in various forms of solid-state
memory such as NAND flash, magnetic RAM (MRAM),
phase-change memory (PRAM), and Ferroelectric RAM
(FRAM). Solid-state memory offers several advantages over
hard disks: lower and more predictable access latencies for
random requests, smaller form factors, lower power con-
sumption, lack of noise, and higher robustness to vibrations
and temperature. In particular, recent improvements in the
design and performance of NAND flash memory (simply
flash henceforth) have resulted in it being employed in many
embedded and consumer devices. Small form-factor hard

229



disks have already been replaced by flash memory in some
consumer devices like music players, PDAs, digital cameras.

Flash devices are significantly cheaper than main mem-
ory technologies that play a crucial role in improving the
performance of disk-based systems via caching and buffer-
ing. Furthermore, as an optimistic trend, their price-per-byte
is falling [21], which leads us to believe that flash devices
would be an integral component of future enterprise-scale
storage systems. This trend is already evident as major stor-
age vendors have started producing flash-based large-scale
storage systems, such as RamSan-500 from Texas Memory
Systems, Symmetrix DMX-4 from EMC, etc. In fact, Inter-
national Data Corporation has estimated that over 3 mil-
lion Solid State Disks (SSDs) will be shipped into enter-
prise applications, creating 1.2 billion dollars in revenue by
2011 [27].

Using Flash Memory in Enterprise-scale Storage. Before
enterprise-scale systems can transition to employing flash-
based devices at a large-scale, certain challenges must be
addressed. It has been reported that manufacturers are see-
ing return rates of 20-30% on SSD-based notebooks due to
failures and lower than expected performance [4]. While not
directly indicative of flash performance in the enterprise, this
is a cause for serious concern. Upon replacing hard disks
with flash, certain managers of enterprise-scale applications
are finding results that point to degraded performance. For
example, recently Lee et al. [18] observed that “database
servers would potentially suffer serious update performance
degradation if they ran on a computing platform equipped
with flash memory instead of hard disks.” There are at least
two important reasons behind this poor performance of flash
for enterprise-scale workloads. First, unlike main memory
devices (SRAMs and DRAMs), flash is not always supe-
rior in performance to a disk - in sequential accesses, disks
might still outperform flash [18]. This points to the need for
employing hybrid storage devices that exploit the comple-
mentary performance properties of these two storage media.
While part of our overall goal, this is out of the scope of this
paper. The second reason, the focus of our current research,
has to do with the performance of flash-based devices for
workloads with random writes. Recent research has focused
on improving random write performance of flash by adding
DRAM-backed buffers [21] or buffering requests to increase
their sequentiality [16]. However, we focus on an intrinsic
component of the flash, namely the Flash Translation Layer
(FTL) to provide a solution for this poor performance.

The Flash Translation Layer. The FTL is one of the core
engines in flash-based SSDs that maintains a mapping ta-
ble of virtual addresses from upper layers (e.g., those com-
ing from file systems) to physical addresses on the flash. It
helps to emulate the functionality of a normal block device
by exposing only read/write operations to the upper soft-
ware layers and by hiding the presence of erase operations,
something unique to flash-based systems. Flash-based sys-

tems possess an asymmetry in how they can read and write.
While a flash device can read any of its pages (a unit of
read/write), it may only write to one that is in a special state
called erased. Flashes are designed to allow erases at a much
coarser spatial granularity than pages since page-level erases
are extremely costly. As a typical example, a 16GB flash
product from Micron [23] has 2KB pages while the erase
blocks are 128KB . This results in an important idiosyn-
crasy of updates in flash. Clearly, in-place updates would re-
quire an erase-per-update, causing performance to degrade.
To get around this, FTLs implement out-of-place updates.
An out-of-place update: (i) chooses an already erased page,
(ii) writes to it, (iii) invalidates the previous version of the
page in question, and (iv) updates its mapping table to re-
flect this change. These out-of-place updates bring about the
need for the FTL to employ a garbage collection (GC) mech-
anism. The role of the GC is to reclaim invalid pages within
blocks by erasing the blocks (and if needed relocating any
valid pages within them to new locations). Evidently, FTL
crucially affects flash performance.

One of the main difficulties the FTL faces in ensuring
high performance is the severely constrained size of the on-
flash SRAM-based cache where it stores its mapping table.
For example, a 16GB flash device requires at least 32MB
SRAM to be able to map all its pages. With growing size of
SSDs, this SRAM size is unlikely to scale proportionally due
to the higher price/byte of SRAM. This prohibits FTLs from
keeping virtual-to-physical address mappings for all pages
on flash (page-level mapping). On the other hand, a block-
level mapping, can lead to increased: (i) space wastage (due
to internal fragmentation) and (ii) performance degradation
(due to GC-induced overheads). To counter these difficul-
ties, state-of-the-art FTLs take the middle approach of using
a hybrid of page-level and block-level mappings and are pri-
marily based on the following main idea (we explain the in-
tricacies of individual FTLs in Section 2): most of the blocks
(called Data Blocks) are mapped at the block level, while a
small number of blocks called “update” blocks are mapped
at the page level and are used for recording updates to pages
in the data blocks.

As we will argue in this paper, various variants of hybrid
FTL fail to offer good enough performance for enterprise-
scale workloads. First, these hybrid schemes suffer from
poor garbage collection behavior. Second, they often come
with a number of workload-specific tunable parameters (for
optimizing performance) that may be hard to set. Finally and
most importantly, they do not properly exploit the temporal
locality in accesses that most enterprise-scale workloads are
known to exhibit. Even the small SRAM available on flash
devices can thus effectively store the mappings in use at
a given time while the rest could be stored on the flash
device itself. Our thesis in this paper is that such a page-level
FTL, based purely on exploiting such temporal locality, can

230



outperform hybrid FTL schemes and also provide a easier-
to-implement solution devoid of tunable parameters.

Research Contributions. This paper makes the following
specific contributions:

• We propose and design a novel Flash Translation Layer
called DFTL. Unlike currently predominant hybrid FTLs,
it is purely page-mapped. The idea behind DFTL is sim-
ple: since most enterprise-scale workloads exhibit signif-
icant temporal locality, DFTL uses the on-flash limited
SRAM to store the most popular (specifically, most re-
cently used) mappings while the rest are maintained on
the flash device itself. The core idea of DFTL is easily
seen as inspired by the intuition behind the Translation
Lookaside Buffer (TLB) [9].

• We implement an accurate flash simulator called Flash-
Sim to evaluate the efficacy of DFTL and compare it with
other FTL schemes. FlashSim is built by enhancing the
popular Disksim 3.0 [5] simulator. Flashsim simulates the
flash memory, controller, caches, device drivers and vari-
ous interconnects.

• Using a number of realistic enterprise-scale workloads,
we demonstrate the improved performance resulting from
DFTL. As illustrative examples, we observe 78% im-
provement in average response time for a random write-
dominant I/O trace from an OLTP application running at
a large financial institution and 56% improvement for the
read-dominant TPC-H workload.

The rest of this paper is organized as follows. In Sec-
tion 2, we present the basics of flash memory technology
including a classification of various existing FTL schemes.
The design of DFTL and its comparison with hybrid FTL
schemes is described in Section 3. Section 4 describes the
framework of our simulator FlashSim. Experimental results
are presented in Section 5. The conclusions of this study are
described in Section 6.

2. Background and Related Work
Basics of Flash Memory Technology. Erase operations
are performed at the granularity of a block which is com-
posed of multiple pages. A page is the granularity at which
reads and writes are performed. In addition to its data area, a
page contains a small spare Out-of-Band area (OOB) which
is used for storing a variety of information including: (i) Er-
ror Correction Code (ECC) information used to check data
correctness, (ii) the logical page number corresponding to
the data stored in the data area and (iii) page state. Each page
on flash can be in one of three different states: (i) valid, (ii)
invalid and (iii) free/erased. When no data has been writ-
ten to a page, it is in the erased state. A write can be done
only to an erased page, changing its state to valid. As was
pointed out, out-of-place updates result in certain written
pages whose entries are no longer valid. They are called
invalid pages. Flash comes as a small block or large block

device. Table 1 shows organization and performance char-
acteristics for these two variants of state-of-the-art flash de-
vices [24].

Flash Type
Data Unit Size Access Time

Page (Bytes) Block Page Page Block
Data OOB (Bytes) READ (us)WRITE (us)ERASE (ms)

Small Block 512 16 (16K+512) 41.75 226.75 2
Large Block 2048 64 (128K+4K) 130.9 405.9 2

Table 1: NAND Flash organization and access time comparison
for Small-Block vs. Large-Block schemes [24].

As shown in Table 1, erase operations are significantly
slower than reads/writes. Additionally, write latency can be
higher than read latency by up to a factor of 4-5. The lifetime
of flash memory is limited by the number of erase opera-
tions on its cells. Each memory cell typically has a lifetime
of 10K-1M erase operations [3]. Thus, wear-leveling tech-
niques [12, 15, 22] are used to delay the wear-out of the first
flash block. The granularity at which wear-leveling is carried
out impacts the variance in the lifetime of individual blocks
and also the performance of flash. The finer the granularity,
the smaller the variance in lifetime.

Details of Flash Translation Layer. The mapping tables
and other data structures, manipulated by the FTL are stored
in a small, fast SRAM. We begin by understanding two ex-
tremes of FTL designs with regard to what they store in their
in-SRAM mapping table. These will help us understand the
implications of various FTL design choices on performance.

Page-level and Block-level FTL Schemes. In a page-level
FTL scheme, the logical page number of the request sent to
the device from the upper layers such as file system can be
mapped into any page within the flash. This should remind
the reader of a fully associative cache [9]. Thus, it provides
compact and efficient utilization of blocks within the flash
device. However, on the downside, such translation requires
a large mapping table to be stored in SRAM. For exam-
ple, a 16GB flash memory requires approximately 32MB of
SRAM space for storing a page-level mapping table. Given
the order of magnitude difference in the price/byte of SRAM
and flash; having large SRAMs which scale with increasing
flash size is infeasible.

At the other extreme, in a block-level FTL scheme, the
logical block number is translated into a physical block
number using the mapping table similar to set-associative
cache design [9]. The logical page number offset within the
block is fixed. The size of the mapping table is reduced by a
factor of block size/page size (128KB/2KB=64) as compared
to page-level FTL. However, since a given logical page may
now be placed in only a particular physical page within each
block, the possibility of finding such a page decreases. As
a result the garbage collection overheads grow. Moreover,
the specification for large block based flash devices requires
sequential programming within the block [24] making this
scheme infeasible to implement in such devices.

231



FLASH

Logical Address: 
LPN

Page-level 
FTL

PPN

Physical Address: 
PPN

Page

Logical Address: LPN

Block-level 
FTL

PBN

PBN offset

Page

LBN offset

Log BlocksData Blocks

LPN 'X'

Yes

Latest 
version of 'X' in 

Data Block
?

No

Figure 1: Hybrid FTL Scheme, combining a block-based FTL for
data blocks with a page-based FTL for log blocks. LPN: Logical
Page Number, PPN: Physical Page Number, LBN: Logical Block
Number, PBN: Physical Block Number.

Data Block A

LPN=0, I

LPN=2, I
LPN=1, I

LPN=3, I

(a) Switch Merge

Data    OOB

Log Block B

LPN=0, V

LPN=2, V
LPN=1, V

LPN=3, V

Data    OOB

Data Block A

LPN=0, I

LPN=2, V
LPN=1, I

LPN=3, V

(b) Partial Merge

Data    OOB

Log Block B

LPN=0, V

LPN=∅, F
LPN=1, V

LPN=∅, F

Data    OOB

Data Block A

LPN=0, I

LPN=2, I
LPN=1, V

LPN=3, V

(c) Full Merge

Data    OOB

Erased Block C

LPN=∅, F

LPN=∅, F
LPN=∅, F

LPN=∅, F

Data    OOB

Log Block B

LPN=9, I

LPN=0, V
LPN=71, I

LPN=2, V

Data    OOB

Switch

Figure 2: Various Merge operations (Switch, Partial, and Full)
in log-buffer based FTL schemes. V: Valid, I: Invalid, and F:
Free/Erased and LPN is Logical Page Number.

A Generic Description of Hybrid FTL Scheme. To ad-
dress the shortcomings of the above two extreme mapping
schemes, researchers have come up with a variety of alter-
natives. Although many schemes have been proposed [11, 2,
19, 13, 20], they share one fundamental design principle. All
of these schemes are a hybrid between page-level and block-
level schemes. They logically partition their blocks into two
groups - Data Blocks and Log/Update Blocks. Data blocks
form the majority and are mapped using the block-level map-
ping scheme. A second special type of blocks are called log
blocks whose pages are mapped using a page-level mapping
style. Figure 1 illustrates such hybrid FTLs. Any update on
the data blocks are performed by writes to the log blocks.
The log-buffer region is generally kept small in size (for ex-
ample, 3% of total flash size [20]) to accommodate the page-
based mappings in the small SRAM.

Garbage Collection in Hybrid FTLs. The hybrid FTLs in-
voke a garbage collector whenever no free log blocks are
available. Garbage Collection requires merging log blocks
with data blocks. The merge operations can be classified
into: Switch merge, Partial merge, and Full merge. In Fig-
ure 2(a), since log block B contains all valid, sequentially
written pages corresponding to data block A, a simple Switch

Data Block D1

LPN=0, I

LPN=2, I
LPN=1, I

LPN=3, V

Data    OOB

Data Block D2

LPN=4, I

LPN=6, I
LPN=5, I

LPN=7,V

Data    OOB

Log Block L1
(Victim)

LPN=0, V

LPN=9, V
LPN=5, V

LPN=12, I

Data    OOB

Log Block L2

LPN=91, V

LPN=20, V
LPN=1, V

LPN=4, V

Data    OOB

Log Block L4

LPN=82, V

LPN=30, V
LPN=2, V

LPN=45, V

Data    OOB

Free/Erased Block

LPN=∅, F

LPN=∅, F
LPN=∅, F

LPN=∅, F

Data    OOB

...

....

(1)

(2)
(3)

(4)

Figure 3: Expensive Full Merge.

Merge is performed, whereby log block B becomes new data
block and the old data block A is erased. Figure 2(b) illus-
trates Partial Merge between block A and B where only the
valid pages in data block A are copied to log block B and the
original data block A is erased changing the block B’s sta-
tus to a data block. Full Merge involves the largest overhead
among the three types of merges. As shown in Figure 2(c),
Log block B is selected as the victim block by the garbage
collector. The valid pages from the log block B and its cor-
responding data block A are then copied into a new erased
block C and block A and B are erased. However, full merge
can become a long recursive operation in case of a fully-
associative log block scheme where the victim log block
has pages corresponding to multiple data blocks and each of
these data blocks have updated pages in multiple log blocks.

This situation is illustrated in Figure 3. Log block L1 con-
taining randomly written data is selected as a victim block
for garbage collection. It contains valid pages belonging to
data blocks D1, D2 and D3. An erased block is selected
from the free block pool and the valid pages belonging to
D1 are copied to it from different log blocks and D1 it-
self in the order shown. The data block D1 is then erased.
Similar operations are carried out for data blocks D2 & D3
since L1 contains the latest version of some of the pages
for these blocks. Finally, log block L1 is erased. Thus, ran-
dom writes in hybrid FTLs induce costly garbage collection
which in turn affects performance of subsequent operations
irrespective of whether they are sequential or random. Re-
cent log buffer-based FTL schemes [13, 20] have tried to
reduce the number of these full merge operations by segre-
gating log blocks based on access patterns. Hot blocks with
frequently accessed data generally contain large number of
invalid pages whereas cold blocks have least accessed data.
Utilizing hot blocks for garbage collection reduces the valid
page copying overhead, thus lowering the full merge cost.

State-of-The-Art FTLs. State-of-the-art FTLs [2, 19, 13,
20] are based on hybrid log-buffer based approaches. They
try to address the problems of expensive full merges, which
are inherent to any log-buffer based hybrid scheme, in their
own unique way. However, all of these attempts are unable
to provide the desired results.

• Block Associative Sector Translation (BAST) [2] scheme
exclusively associates a log block with a data block. In

232



presence of small random writes, this scheme suffers
from log block thrashing [19] that results in increased
full merge cost due to inefficiently utilized log blocks.

• Fully Associative Sector Translation (FAST) [19] allows
log blocks to be shared by all data blocks. This improves
the utilization of log blocks as compared to BAST. FAST
keeps a single sequential log block dedicated for sequen-
tial updates while other log blocks are used for perform-
ing random writes. Thus, it cannot accommodate multiple
sequential streams and does not provide any special mech-
anism to handle temporal locality in random streams.

• SuperBlock FTL [13] scheme utilizes existence of block
level spatial locality in workloads by combining consec-
utive logical blocks into a superblock. It maintains page-
level mappings within the superblock to exploit tempo-
ral locality in the request streams by separating hot and
cold data within the superblock. However, the three-level
address translation mechanism employed by this scheme
causes multiple OOB area reads and writes for servic-
ing the requests. More importantly, it utilizes a fixed su-
perblock size which needs to be explicitly tuned to adapt
to changing workload requirements.

• The recent Locality-Aware Sector Translation (LAST)
scheme [20] tries to alleviate the shortcomings of FAST
by providing multiple sequential log blocks to exploit
spatial locality in workloads. It further separates ran-
dom log blocks into hot and cold regions to reduce full
merge cost. In order to provide this dynamic separation,
LAST depends on an external locality detection mecha-
nism. However, Lee et al. [20] themselves realize that the
proposed locality detector cannot efficiently identify se-
quential writes when the small-sized write has sequential
locality. Moreover, maintaining sequential log blocks us-
ing a block-based mapping table requires the sequential
streams to be aligned with the starting page offset of the
log block in order to perform switch-merge. Dynamically
changing request streams may impose severe restrictions
on the utility of this scheme to efficiently adapt to the
workload patterns.

3. Design of DFTL: Our Demand-based
Page-mapped FTL

We have seen that any hybrid scheme, however well-designed
or tuned, will suffer performance degradation due to ex-
pensive full merges that are caused by the difference in
mapping granularity of data and update blocks. Our con-
tention is that a high-performance FTL should completely
be re-designed by doing away with log-blocks. Demand-
based Page-mapped FTL (DFTL) is an enhanced form of the
page-level FTL scheme described in Section 2. It does away
completely with the notion of log blocks. In fact, all blocks
in this scheme, can be used for servicing update requests.
Page-level mappings allow requests to be serviced from any
physical page on flash. However, to make the fine-grained

Data BlocksTranslation Blocks

Cached Mapping 
Table

Global Translation
Directory

DLPN DPPN MVPN MPPN

Fetch 
mapping 

entry

Evict mapping 
entry for

Synchronization

SRAM

FLASH

Mapping 
Entries

Directory 
Entries

Consult 
location of 
translation 
pages on 
flash

Data  OOB

Tracks 
translation 
pages on 
flash

Stores active 
address 

mappings

Store real 
data from I/O 

requests

Store logical 
to physical 

address 
translations

Figure 4: Schematic Design of DFTL. DLPN : Logical Data
Page Number, DPPN : Physical Data Page Number, MV PN : Vir-
tual Translation Page Number, MPPN : Physical Translation Page
Number.

mapping scheme feasible with the constrained SRAM size,
a special address translation mechanism has to be devel-
oped. In the next sub-sections, we describe the architecture
and functioning of DFTL and highlight its advantages over
existing state-of-the-art FTL schemes.

3.1 DFTL Architecture

DFTL makes use of the presence of temporal locality in
workloads to judiciously utilize the small on-flash SRAM.
Instead of the traditional approach of storing all the address
translation entries in the SRAM, it dynamically loads and
unloads the page-level mappings depending on the work-
load access patterns. Furthermore, it maintains the complete
image of the page-based mapping table on the flash device
itself. There are two options for storing the image: (i) The
OOB area or (ii) the data area of the physical pages. We
choose to store the mappings in the data area instead of
OOB area because it enables us to group a larger number
of mappings into a single page as compared to storing in the
OOB area. For example, if 4 Bytes are needed to represent
the physical page address in flash, then we can group 512
logically consecutive mappings in the data area of a single
page whereas only 16 such mappings would fit an OOB area.
Moreover, the additional space overhead incurred is negligi-
ble as compared to the total flash size. A 1GB flash device re-
quires only about 2MB (approximately 0.2% of 1GB) space
for storing all the mappings.

Data Pages and Translation Pages. In order to store the
address translation mappings on flash data area, we segre-
gate Data-Pages and Translation-Pages. Data pages contain
the real data which is accessed or updated during read/write
operations whereas pages which only store information
about logical-to-physical address mappings are called as
translation pages. Blocks containing translation pages are
referred to as Translation-Blocks and Data-Blocks store only
data pages. As shown in Figure 4, translation blocks are to-

233



tally different from log blocks and are only used to store
the address mappings. They require about 0.2% of the entire
flash space and do not require any merges with data blocks.

3.2 Logical to Physical Address Translation

A request is serviced by reading from or writing to pages
in the data blocks while the corresponding mapping updates
are performed in translation blocks. In this sub-section, we
describe various data structures and mechanisms required
for performing address translation.

Input: Request’s Logical Page Number (requestlpn), Request’s Size
(requestsize )

Output: NULL
while requestsize �= 0 do

if requestlpn miss in Cached Mapping Table then
if Cached Mapping Table is full then

/* Select entry for eviction using segmented LRU replacement
algorithm */
victimlpn← select victim entry()
if victimlast mod time �= victimload time then

/*victimtype : Translation or Data Block
Translation Pagevictim : Physical
Translation-Page Number containing victim entry */
Translation Pagevictim ← consult GTD
(victimlpn)
victimtype← Translation Block
DFTL Service Request(victim)

end
erase entry(victimlpn)

end
Translation Pagerequest ←
consult GTD(requestlpn)
/* Load map entry of the request from flash into Cached Mapping
Table */
load entry(Translation Pagerequest)

end
requesttype ← Data Block
requestppn ←CMT lookup(requestlpn)
DFTL Service Request(request)
requestsize- -

end

Algorithm 1: DFTL Address Translation

Global Mapping Table and Global Translation Directory.
The entire logical-to-physical address translation set is al-
ways maintained on some logically fixed portion of flash and
is referred to as the Global Mapping Table. However, only a
small number of these mappings can be present in SRAM.
These active mappings present in SRAM form the Cached
Mapping Table (CMT). Since out-of-place updates are per-
formed on flash, translation pages get physically scattered
over the entire flash memory. DFTL keeps track of all these
translation pages on flash by using a Global Translation Di-
rectory (GTD). Although GTD is permanently maintained
in the SRAM, it does not pose any significant space over-
head. For example, for a 1GB flash, 1024 translation pages
are needed (each capable of storing 512 mappings), requir-
ing a GTD of about 4KB. Furthermore, storing GTD on non-
volatile storage aids recovery from power-failure [7].

DFTL Address Translation Process. Algorithm 1 de-
scribes the process of address translation for servicing a
request. If the required mapping information for the given
read/write request exists in SRAM (in CMT), it is serviced

1024

Cached Mapping 
Table

Global Translation
Directory

3
10
11
1

150
170

260
220

DLPN DPPN

0
1
2
3

21
17

22
15

MVPN MPPN

DLPN =1280

DLPN=1280, 
F->V

DPPN=660

Data

OOB

DPPN=661

......

MvPN=2, 
F->V

DLPN

-
1280

-
1535

570

-
660

-
420

MPPN=15

DPPN

0

MvPN=0, 
V->I

DLPN

1

2

-
511

110
130

440

-
560

MPPN=21

DPPN

0

MvPN=0, 
F->V

DLPN

1

2

-
511

110
130

440

-
560

MPPN=23

DPPN

260

(2)

(3)

(4)

23

(5)

(6)

(8)

1280 660 (9)

(10)

......

(11)

Data Block

......

Victim
entry

......

(1)

Translation Block

(7)

Translation PageData Page

Figure 5: (1) Request to DLPN 1280 incurs a miss in Cached
Mapping Table (CMT), (2) Victim entry DLPN 1 is selected, its
corresponding translation page MPPN 21 is located using Global
Translation Directory (GTD), (3)-(4) MPPN 21 is read, updated
(DPPN 130 → DPPN 260) and written to a free translation page
(MPPN 23), (5)-(6) GTD is updated (MPPN 21 → MPPN 23)
and DLPN 1 entry is erased from CMT. (7)-(11) The original
request’s (DLPN 1280) translation page is located on flash (MPPN

15). The mapping entry is loaded into CMT and the request is
serviced. Note that each GTD entry maps 512 logically consecutive
mappings.

directly by reading/writing the data page on flash using this
mapping information. If the information is not present in
SRAM then it needs to be fetched into the CMT from flash.
However, depending on the state of CMT and the replace-
ment algorithm being used, it may entail evicting entries
from SRAM. We use the segmented LRU array cache algo-
rithm [14] for replacement in our implementation. However,
other algorithms such as evicting Least Frequently Used
mappings can also be used.

If the victim chosen by the replacement algorithm has not
been updated since the time it was loaded into SRAM, then
the mapping is simply erased without requiring any extra
operations. This reduces traffic to translation pages by a sig-
nificant amount in read-dominant workloads. In our experi-
ments, approximately 97% of the evictions in read-dominant
TPC-H benchmark did not incur any eviction overheads.
Otherwise, the Global Translation Directory is consulted to
locate the victim’s corresponding translation page on flash.
The page is then read, updated, and re-written to a new phys-
ical location. The corresponding GTD entry is updated to re-
flect the change. Now the incoming request’s translation en-
try is located using the same procedure, read into the CMT
and the requested operation is performed. The example in
Figure 5 illustrates the process of address translation when a
request incurs a CMT miss.

Overhead in DFTL Address Translation. The worst-case
overhead includes two translation page reads (one for the
victim chosen by the replacement algorithm and the other
for the original request) and one translation page write (for
the victim) when a CMT miss occurs. However, our design
choice is rooted deeply in the existence of temporal locality
in workloads which helps in reducing the number of evic-

234



tions. Furthermore, the presence of multiple mappings in a
single translation page allows batch updates for the entries
in the CMT, physically co-located with the victim entry. We
later show through detailed experiments that the extra over-
head involved with address translation is much less as com-
pared to the benefits accrued by using a fine-grained FTL.

3.3 Read/Write Operation and Garbage Collection

Read requests are directly serviced through flash page read
operations once the address translation is completed. DFTL
maintains two blocks, namely Current Data Block and Cur-
rent Translation Block, where the data pages and translation
pages are written, respectively. Page-based mappings allow
sequential writes within these blocks, thus conforming to the
large-block sequential write specification [24]. For write re-
quests, DFTL allocates the next available free page in the
Current Data Block, writes to it and then updates the map
entry in the CMT.

However, as writes/updates propagate through the flash,
over a period of time the available physical blocks (in erased
state) decreases. DFTL maintains a high watermark called
GCthreshold, which represents the limit till which writes are
allowed to be performed without incurring any overhead of
garbage collection for recycling the invalidated pages. Once
GCthreshold is crossed, DFTL invokes the garbage collector.
Victim blocks are selected based on a simple cost-benefit
analysis that we adapt from [15].

Different steps are followed depending on whether the
victim is a translation block or a data block before return-
ing it to the free block pool after erasing it. If it is a trans-
lation block, then we copy the valid pages to the Current
Translation Block and update the GTD. However, if the vic-
tim is a data block, we copy the valid pages to the Current
Data Block and update all the translation pages and CMT
entries associated with these pages. In order to reduce the
operational overhead, we utilize a combination of lazy copy-
ing and batch updates. Instead of updating the translation
pages on flash, we only update the CMT for those data pages
whose mappings are present in it. This technique of lazy
copying helps in delaying the proliferation of updates to flash
till the corresponding mappings are evicted from SRAM.
Moreover, multiple valid data pages in the victim may have
their virtual-to-physical address translations present in the
same translation-page. By combining all these modifications
into a single batch update, we reduce a number of redun-
dant updates. The associated GTD entries are also updated
to reflect the changes. Owing to space constraints here, we
present algorithms and specific examples for GC and overall
read/write operations in [7].

3.4 Comparison of Existing State-of-the-art FTLs with
DFTL

Table 2 shows some of the salient features of different FTL
schemes. The DFTL architecture rovides some intrinsic ad-
vantages over existing state-of-the-art FTLs as follows:

• Full Merge - Existing hybrid FTL schemes try to re-
duce the number of full merge operations to improve their
performance. DFTL, on the other hand, completely does
away with full merges. This is made possible by page-
level mappings which enable relocation of any logical
page to any physical page on flash while other hybrid
FTLs have to merge page-mapped log blocks with block-
mapped data blocks.

• Partial Merge - DFTL utilizes page-level temporal local-
ity to store pages which are accessed together within same
physical blocks. This implicitly separates hot and cold
blocks as compared to LAST and Superblock schemes
[13, 20] which require special external mechanisms to
achieve the segregation. Thus, DFTL adapts more effi-
ciently to changing workload environment as compared
with existing hybrid FTL schemes.

• Random Write Performance - As is clearly evident, it is
not necessarily the random writes which cause poor flash
device performance but the intrinsic shortcomings in the
design of hybrid FTLs which cause costly merges (full) on
log blocks during garbage collection. Since DFTL does
not require these expensive full-merges, it is able to im-
prove random write performance.

• Block Utilization - In hybrid FTLs, only log blocks are
available for servicing update requests. This can lead to
low block utilization for workloads whose working-set
size is smaller than the flash size. Many data blocks will
remain un-utilized (hybrid FTLs have block-based map-
pings for data blocks) and unnecessary garbage collection
will be performed. DFTL solves this problem since up-
dates can be performed on any of the data blocks.

4. The FlashSim Simulator
In order to study the performance implications of various
FTL schemes, we develop a simulation framework for flash
based storage systems called FlashSim. FlashSim is built by
enhancing Disksim [5], a well-regarded disk drive simulator.
Disksim is an event-driven simulator which has been exten-
sively used in different studies [8, 17] and validated with
several disk models. FlashSim is designed with a modular
architecture with the capability to model a holistic flash-
based storage environment. It is able to simulate different
storage sub-system components including device drivers,
controllers, caches, flash devices, and various interconnects.
In our integrated simulator, we add the basic infrastruc-
ture required for implementing the internal operations (page
read, page write, block erase etc.) of a flash-based device.
The core FTL engine is implemented to provide virtual-to-
physical address translations along with a garbage collection
mechanism. Furthermore, we implement a multitude of FTL
schemes: (i) a block-based FTL scheme (replacement-block
FTL [1]), (ii) a state-of-the-art hybrid FTL (FAST [19]) , (iii)
our page-based DFTL scheme and (iv) an idealized page-
based FTL. This setup is used to study the impact of various

235



Replacement
BAST [2] FAST [19] SuperBlock [13] LAST [20] DFTL Ideal Page FTL

Block FTL[1]

FTL type Block Hybrid Hybrid Hybrid Hybrid Page Page
Mapping

Block
DB-Block DB-Block SB-Block LB/Blocks DB/Sequential LB - Block

Page Page
Granularity LB - Page LB-Page within SB-Page Random LB - Page

Division of Update
- -

1 Sequential
-

(m) Sequential-(M-m)
- -

Blocks (M) + (M-1) Random (Hot and Cold)
Associativity of

(1:K) (1:M)
Random LB-(N:M-1)

(S:M)
Random LB-(N:M-m)

(N:N) (N:N)
Blocks (Data:Update) Sequential LB-1:1 Sequential LB-(1:1)

Blocks available Replacement Log Log Log Log All Data All
for updates Blocks Blocks Blocks Blocks Blocks Blocks Blocks
Full Merge Yes Yes Yes Yes Yes No No

Table 2: FTL Schemes Classification. N: Number of Data Blocks, M: Number of Log Blocks, S: Number of Blocks in a Super Block, K:
Number of Replacement Blocks. DB: Data Block, LB: Log Block, SB: Super Block. In FAST and LAST FTLs, random log blocks can be
associated with multiple data blocks.

FTLs on flash device performance and more importantly on
the components in the upper storage hierarchy.

5. Experimental Results
5.1 Evaluation Setup

We simulate a large block 32GB NAND flash memory with
specifications shown in Table 1. To conduct a fair compar-
ison of different FTL schemes, we consider only a portion
of flash as the active region which stores our test workloads.
The remaining flash is assumed to contain cold data or free
blocks which are not under consideration. We assume the
SRAM to be just sufficient to hold the address translations
for FAST FTL. Since the actual SRAM size is not disclosed
by device manufacturers, our estimate represents the mini-
mum SRAM required for the functioning of a typical hybrid
FTL. We allocate extra space (approximately 3% of the total
active region [13]) for use as log-buffers by the hybrid FTL.

Workloads
Avg. Req. Read Seq. Avg. Req. Inter-arrival
Size (KB) (%) (%) Time (ms)

Financial [25] 4.38 9.0 2.0 133.50
Cello99 [10] 5.03 35.0 1.0 41.01
TPC-H [28] 12.82 95.0 18.0 155.56

Web Search [26] 14.86 99.0 14.0 9.97

Table 3: Enterprise-Scale Workload Characteristics.

Workloads. We use a mixture of real-world and synthetic
traces to study the impact of different FTLs on a wide spec-
trum of enterprise-scale workloads. Table 3 presents salient
features of our workloads. We employ a write-dominant I/O
trace from an OLTP application running at a financial in-
stitution [25] made available by the Storage Performance
Council (SPC), henceforth referred to as the Financial trace.
We also experiment using Cello99 [10], which is a disk ac-
cess trace collected from a time-sharing server exhibiting
significant writes; this server was running the HP-UX oper-
ating system at Hewlett-Packard Laboratories. We consider
two read-dominant workloads to help us assess the perfor-
mance degradation, if any, suffered by DFTL in comparison
with other state-of-the-art FTL schemes due to its address
translation overhead. For this purpose, we use TPC-H [28],

which is an ad-hoc, decision-support benchmark (OLAP
workload) examining large volumes of data to execute com-
plex database queries. Also, we use a read-dominant Web
Search engine trace [26] made available by SPC. Finally, we
also use a number of synthetic traces to study the behavior of
different FTL schemes for a wider range of workload char-
acteristics than those exhibited by the above real traces.

Performance Metrics. The device service time is a good
metric for estimating FTL performance since it captures
the overheads due to both garbage collection and address
translation. However, it does not include the queuing delays
for requests pending in I/O driver queues. In this study, we
utilize both (i) indicators of the garbage collector’s efficacy
and (ii) response time as seen at the I/O driver (this is the
sum of the device service time and time spent waiting in the
driver’s queue, we will call it the system response time) to
characterize the behavior/performance of the FTLs. We use
a pure page-based FTL as our Baseline scheme.

5.2 Analysis of Garbage Collection and Address
Translation Overheads

The garbage collector may have to perform merge opera-
tions of various kinds (switch, partial, and full) while ser-
vicing update requests. Recall that merge operations pose
overheads in the form of block erases. Additionally, merge
operations might induce copying of valid pages from victim
blocks—a second kind of overhead. We report both these
overheads as well as the different kinds of merge opera-
tions in Figure 6 for our workloads. As expected from Sec-
tion 3 and corroborated by the experiments shown in Fig-
ure 6, read-dominant workloads (TPC-H and Web Search)—
with their small percentage of write requests—exhibit much
smaller garbage collection overheads than Cello99 or Finan-
cial trace. The number of merge operations and block erases
are so small for the highly read-dominant Web Search trace
that we do not show these in Figure 6.

Switch Merges. Hybrid FTLs can perform switch merges
only when the victim update block (selected by garbage col-
lector) contains valid data belonging to logically consecutive
pages. DFTL, on the other hand, with its page-based address

236



Full Merge
Partial Merge
Switch Merge

  0

  2

  4

  6

  8

  10

  12

  14

  16

  18

D
FT

L

B
as

el
in

e

FA
ST

D
FT

L

B
as

el
in

e

FA
ST

D
FT

L

B
as

el
in

e

FA
ST

 N
um

be
r 

of
 M

er
ge

s 
(x

 1
,0

00
)

Financial Cello TPC−H

Translation Block
Data Block

  0

  1,000

  2,000

  3,000

  4,000

  5,000

  6,000

D
FT

L

B
as

el
in

e

FA
ST

D
FT

L

B
as

el
in

e

FA
ST

D
FT

L

B
as

el
in

e

FA
ST

 N
um

be
r 

of
 E

ra
se

s 
(x

 1
,0

00
)

Financial Cello TPC−H

Address Translation (Write) 
Address Translation (Read)
Valid Page Copy

  0

  20

  40

  60

  80

  100

D
FT

L

B
as

el
in

e

FA
ST

D
FT

L

B
as

el
in

e

FA
ST

D
FT

L

B
as

el
in

e

FA
ST

 N
or

m
al

iz
ed

 E
xt

ra
 R

ea
d/

W
ri

te
 O

ve
rh

ea
d

Financial Cello TPC−H

(a) Merge Operations (b) Block Erases (c) Extra Read/Write Operations

Figure 6: Overheads with different FTL schemes. We compare DFTL with FAST and Baseline for three workloads: Financial, Cello99, and
TPC-H. The overheads for the highly read-oriented Web Search workload are significantly smaller than others and we do not show them
here. In (c), Address Translation (Read) and Address Translation (Write) denote the extra read and write operations for address translations
required in DFTL, respectively. All extra read/write operations have been normalized with respect to FAST FTL scheme.

translation, does not have any such restriction. Hence, DFTL
shows a higher number of switch merges for even random-
write dominant Financial trace as seen in Figure 6(a).

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

 Number of Blocks involved in Full Merges

 C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
 o

f 
F

u
ll 

M
er

g
es

 

 

 Financial
 TPC−H

Figure 7: Expensive full merge in FAST FTL. About 20% of full
merges involve 20 data blocks or more for the Financial trace.

Full Merges. As shown in Figure 7, with FAST, about
20% of the full merges in the Financial trace involve 20
data blocks or more. This is because state-of-the-art hybrid
FTLs allow high associativity of log blocks with data blocks
while maintaining block-based mappings for data blocks,
thus requiring a costly operation of merging data pages in the
victim log block with their corresponding data blocks (recall
Figure 3 in Section 2). For TPC-H, although DFTL shows
a higher number of total merges, its fine-grained addressing
enables it to replace full merges with less expensive partial
merges. With FAST as many as 60% of the full merges
involve more than 20 data blocks. As we will observe later,
this directly impacts FAST’s overall performance.

Figure 6(b) shows the higher number of block erases with
FAST as compared with DFTL for all our workloads. This
can be directly attributed to the large number of data blocks
that need to be erased to complete the full merge operation
in hybrid FTLs. Moreover, in hybrid FTLs only a small
fraction of blocks (log blocks) are available as update blocks,
whereas DFTL allows all blocks to be used for servicing
update requests. This not only improves the block utilization

in our scheme as compared with FAST but also contributes
in reducing the invocation of the garbage collector.

Translation and Valid Page Copying Overheads. DFTL
introduces some extra overheads due to its address transla-
tion mechanism (due to missed mappings that need to be
brought into the SRAM from flash). Figure 6(c) shows the
normalized overhead (with respect to FAST FTL) from these
extra read and write operations along with the extra valid
pages required to be copied during garbage collection. Even
though the address translation accounts for approximately
90% of the extra overhead in DFTL for most workloads,
overall it still performs less extra operations than FAST. For
example, DFTL yields a 3-fold reduction in extra read/write
operations over FAST for the Financial trace. Our evalua-
tion supports the key insight behind DFTL, namely that the
temporal locality present in workloads helps keep this ad-
dress translation overhead small, i.e., most requests are ser-
viced from the mappings in SRAM. DFTL is able to utilize
page-level temporal locality in workloads to reduce the valid
page copying overhead since most hot blocks (data blocks
and translation blocks) contain invalid pages and are selected
as victims by our garbage collector. In our experiments, we
observe about 63% hits for address translations in SRAM
for the financial trace even with our conservatively chosen
SRAM size. In a later sub-section, we investigate how this
overhead reduces further upon increasing the SRAM size.

5.3 Performance Analysis

Having seen the comparison of the overheads of garbage col-
lection and address translation for different FTLs, we are
now in a position to appreciate their impact on the perfor-
mance offered by the flash device. The Cumulative Distribu-
tion Function of the average system response time for differ-
ent workloads is shown in Figure 8. DFTL is able to closely
match the performance of Baseline scheme for the Financial
and Cello99 traces. In case of the Financial trace, DFTL re-
duces the total number of block erases as well as the extra
page read/write operations by about 3 times. This results in

237



0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 8 16 32 64 96 128 128+

C
u
m
u
l
a
t
i
v
e
 
P
r
o
b
a
b
i
l
i
t
y

Response Time (ms)

FAST
DFTL

Baseline

0.90

0.92

0.94

0.96

0.98

1.00

2 4 8 16 32 64 96 128128+

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 8 16 32 64 96 128 128+

C
u
m
u
l
a
t
i
v
e
 
P
r
o
b
a
b
i
l
i
t
y

Response Time (ms)

FAST
DFTL

Baseline

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 8 16 32 64 96 128128+

(a) Financial Trace (OLTP) (b) Cello99

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 8 16 32 64 96 128 128+

C
u
m
u
l
a
t
i
v
e
 
P
r
o
b
a
b
i
l
i
t
y

Response Time (ms)

FAST
DFTL

Baseline

0.90

0.92

0.94

0.96

0.98

1.00

2 4 8 16 32 64 96 128128+

0.00

0.20

0.40

0.60

0.80

1.00

0 1 2 4 8 16 32 64 96 128 128+

C
u
m
u
l
a
t
i
v
e
 
P
r
o
b
a
b
i
l
i
t
y

Response Time (ms)

FAST
DFTL

Baseline

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 4 8 16 32 64 96 128128+

(c) TPC-H (d) Web-Search

Figure 8: Graphs show the Cumulative Distribution Function of
the average system response time for different FTL schemes.

improved device service times and shorter queuing delays
which in turn improve the overall I/O system response time
by about 78% as compared to FAST.

For Cello99, the improvement is much more dramatic be-
cause of the high I/O intensity which increases the pending
requests in the I/O driver queue, resulting in higher laten-
cies. We would like to point out that Cello99 represents only
a point within a much larger enterprise-scale workload spec-
trum for which the gains offered by DFTL are significantly
large. More generally, DFTL is found to improve the average
response times of workloads with random writes with the de-
gree of improvement varying with the workload’s properties.

For read-oriented workloads, DFTL incurs a larger addi-
tional address translation overhead and its performance de-
viates from the Baseline (Figure 8(c) & (d)). Since FAST is
able to avoid any merge operations in the Web search trace, it
provides performance comparable to Baseline. However, for
TPC-H, it exhibits a long tail primarily because of the expen-
sive full merges and the consequent high latencies seen by
requests in the I/O driver queue. Hence, even though FAST
services about 95% of the requests faster, it suffers from long
latencies in the remaining requests, resulting in a higher av-
erage system response time than DFTL.

5.4 Exploring a Wider Range of Workload
Characteristics

We have seen the improvement in performance for different
realistic workloads with DFTL as compared to state-of-the-
art FTLs. Here, we widen the spectrum of our investigation
by varying one workload property, namely I/O request ar-
rival intensity. An enterprise-scale FTL scheme should be

4 8 16 24 32 40 48 72 96
0

5

10

15

20

25

30

35

 Request Arrival Rate (IOPS)

 A
ve

ra
g

e 
R

es
p

o
n

se
 T

im
e 

(m
s)

 

 

 Baseline
 DFTL
 FAST

4 8 16 24 32 40 48 72 96
0

2

4

6

8

10

12

14

16

18

20

 Request Arrival Rate (IOPS)

 A
ve

ra
g

e 
R

es
p

o
n

se
 T

im
e 

(m
s)

 

 

 Baseline
 DFTL
 FAST

(a) Workload A (b) Workload B

Figure 9: Performance comparison of various FTLs with chang-
ing I/O intensity for synthetic workloads. DFTL is able provide
improved performance as well as sustain overloaded behavior in
workloads much better than FAST. The 99% confidence intervals
are very small and hence not shown.

robust enough to sustain periods of increased I/O intensity,
especially for write dominant workloads. In order to simu-
late such changing environment we use two synthetic work-
loads with varying characteristics: Workload A is predom-
inantly random write-dominant whereas Workload B has a
large number of sequential writes. With increasing request
arrival rate, the flash device transitions from a normal oper-
ational region to an overloaded region.

As shown in Figure 9, for Workload A the transition into
overloaded region is marked by very high gradient in re-
sponse times pointing to the un-sustainability of such an en-
vironment using FAST. On the other hand, DFTL is not only
able to provide improved performance in the operational re-
gion but is also able to sustain higher intensity of request
arrivals. It provides graceful degradation in performance to
sustained increase in I/O intensity, a behavior especially de-
sirable in enterprise-scale systems. For sequential workload
B, the merge overhead is reduced because of higher number
of switch merges as compared to full-merges. Thus, FAST is
able to endure the increase in request arrival rate, much bet-
ter than its own performance with random-write dominant
workload A. However, we still observe better performance
from DFTL, which is able to approximate the performance
of Baseline scheme because of the availability of all blocks
to service the update requests.

5.5 Microscopic Analysis

In this sub-section, we perform a microscopic analysis of the
impact of GC on instantaneous response times. Figure 10
represents a same set of 100 consecutive requests being ser-
viced by FAST and DFTL for the Financial trace. This re-
gion illustrates transition from a sustainable I/O intensity
(operational region) to a period of very intense I/Os (over-
loaded region) in the Financial trace. As is clearly visible,
FAST suffers from higher garbage collection overhead and
requests undergo higher latencies as compared to DFTL.
Full merges cause a large number valid pages to be copied
and the corresponding blocks to be erased. This results in

238



0

30

60

90

120

150

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

0

50

100

150

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

0

2 0 0

4 0 0

6 0 0

8 0 0

1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 1

0

2 0

4 0

6 0

8 0

1 0 0

1 1 0 0 1 2 0 0 1 3 0 0 1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 1

S
ys

te
m

 R
es

po
ns

e 
T

im
e 

(m
s)

G
C

 O
ve

rh
ea

d 
(m

s)
Q

ue
ui

ng
 T

im
e 

(m
s)

D
ev

ic
e 

S
er

vi
ce

 
T

im
e 

(m
s)

0     1000   2000   3000    4000   5000   6000   7000    8000   9000    10000

0

50

100

150

200

4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020

c

0

20

40

60

80

4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020

0

5

10

15

20

4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020

0

2

4

6

8

10

4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020
0

60

120

180

4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020

0     1000   2000   3000     4000    5000   6000   7000    8000 9000    10000
Request Progression Request Progression

0

20

40

60

80

4920 4930 4940 4950 4960 4970 4980 4990 5000 5010 5020

A

B
C

D

4920       4930      4940      4950      4960      4970       4980       4990      5000      5010      5020 4920       4930      4940      4950      4960      4970       4980       4990      5000      5010      5020

(b) DFTL(a) FAST

S
ys

te
m

 R
es

po
ns

e 
T

im
e 

(m
s)

Figure 10: Microscopic analysis of DFTL and FAST FTL schemes with Financial trace. The selected region (requests 4920 to 5020)
represents transition from normal operational region to overloaded region. Requests A & C undergo full-merges in FAST. However, their
impact is also seen on requests B & D through long queuing latencies. Meanwhile, DFTL is able to provide much better performance in the
same region.

higher device service time for the request undergoing these
operations. This in turn causes the pending requests in the
I/O driver queue to incur longer latencies. Thus, even though
the device service time for these requests is small; the over-
all system response time increases. For example, in the top
highlighted region in Figure 10, request A undergoes full
merge resulting in very high device service time. While A
is being serviced, the pending request B incurs high latency
in the I/O driver queue (spike in queueing time for B) which
increases its overall system response time. The same phe-
nomenon is visible for requests C and D. Thus, full merges
not only impact the current requests but also increase the
overall service times for subsequent requests by increasing
queuing delays. In sharp contrast, during the same period,
DFTL is able to keep garbage collection overhead low and
provide sustained improved performance to the requests as
it does not incur any such costly full merge operations.

5.6 Impact of SRAM size

All the experiments in the preceding subsections were done
by utilizing the bare minimum amount of SRAM necessary
for implementing any state-of-the-art hybrid FTL scheme.
Even with this constrained SRAM size, we have shown that
DFTL outperforms the existing FTL schemes for most work-
loads. The presence of temporal locality in real workloads
reduces the address-translation overhead considerably. Fig-
ure 11 shows the impact of increased available SRAM size
on DFTL. As seen, greater SRAM size improves the hit ra-

32K 64K 128K 256K 512K 1M 2M
0.6

0.7

0.8

0.9

1

S
R

A
M

 H
it 

R
at

io

SRAM Size (Bytes)

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Average Response Time

Hit Ratio

32K 64K 128K 256K 512K 1M 2M 4M
0

0.2

0.4

0.6

0.8

1

S
R

A
M

 H
it 

R
at

io

SRAM Size (Bytes)

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Average Response Time

Hit Ratio

(a) Financial Trace (b) TPC-H Benchmark

Figure 11: Impact of SRAM size on DFTL. Response times have
been normalized with respect to the Baseline FTL scheme. For both
the Financial trace and TPC-H, there is performance improvement
with increased SRAM hit-ratio. However, beyond the working-
set size of workloads there is no benefit of additional SRAM for
address translation. The 99% confidence intervals are very small
and hence not shown.

tio, reducing the address translation overhead in DFTL, and
thus improving flash device performance. As expected, with
the SRAM size approaching the working set size (SRAM hit
ratio reaches 100%), DFTL’s performance becomes compa-
rable to Baseline. Increasing SRAM size for holding address
translations beyond the workload working-set size does not
provide any tangible performance benefits. It would be more
beneficial to utilize this extra SRAM for caching popular
read requests, buffering writes, etc. than for storing unused
address translations.

239



6. Concluding Remarks
We argued that existing hybrid FTL schemes exhibit poor
performance for enterprise-scale workloads with significant
random write patterns. We proposed a complete paradigm
shift in the design of the FTL with our Demand-based Flash
Translation Layer (DFTL) that selectively caches page-
level address mappings. Our experimental evaluation using
FlashSim with realistic enterprise-scale workloads endorsed
DFTL’s efficacy for enterprise systems by demonstrating
that DFTL offered (i) improved performance, (ii) reduced
garbage collection overhead, (iii) improved overload behav-
ior and (iv) most importantly unlike existing hybrid FTLs is
free from any tunable parameters. As a representative exam-
ple, a predominantly random write-dominant I/O trace from
an OLTP application running at a large financial institution
showed a 78% improvement in average response time due to
a 3-fold reduction in garbage collection induced operations
as compared to a state-of-the-art FTL scheme.

Acknowledgments
We would like to thank the anonymous reviewers for their
detailed comments which helped us improve the quality of
this paper. This research was funded in part by NSF grants
CCF-0811670, CNS-0720456, and a gift from Cisco, Inc.

References
[1] Amir Ban. Flash File System. In United States Patent, No

5,404,485, 1993.
[2] T. Chung, D. Park, S. Park, D. Lee, S. Lee, and H. Song. Sys-

tem Software for Flash Memory: A Survey. In Proceedings
of the International Conference on Embedded and Ubiquitous
Computing, pages 394–404, August 2006.

[3] E. Gal and S. Toledo. Algorithms and Data Structures for
Flash Memories. ACM Computing Survey, 37(2):138–163,
2005. ISSN 0360-0300.

[4] Flash Drives Hit by High Failure Rates. Flash Drives Hit
by High Failure Rates. http://www.techworld.com/
storage/news/index.cfm?newsid=11747.

[5] G.R. Ganger, B.L. Worthington, and Y.N. Patt. The DiskSim
Simulation Environment Version 3.0 Reference Manual.

[6] A. Gulati, A. Merchant, and P. J. Varman. pClock: An Arrival
Curve based Approach for QoS Guarantees in Shared Stor-
age Systems. In Proceedings of the ACM SIGMETRICS Con-
ference on Measurement and Modeling of Computer Systems,
pages 13–24, June 2007.

[7] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash Trans-
lation Layer Employing Demand-based Selective Caching of
Page-level Address Mappings. In Technical Report CSE 08-
012, Penn State University, August 2008.

[8] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and
H. Franke. DRPM: Dynamic Speed Control for Power Man-
agement in Server Class Disks. In Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA), pages
169–179, June 2003.

[9] J. Hennessy and D. Patterson. Computer Architecture - A
Quantitative Approach. Morgan Kaufmann, 2003.

[10] HP Labs. Tools and Traces. HP Labs. Tools and Traces.
http://tesla.hpl.hp.com/public_software/.

[11] J. Kim, J.M. Kim, S.H. Noh, S. Min, and Y. Cho. A Space-
Efficient Flash Translation Layer for Compactflash Systems.

IEEE Transactions on Consumer Electronics, 48(2):366–375,
2002.

[12] D. Jung, Y. Chae, H. Jo, J. Kim, and J. Lee. A Group-based
Wear-Leveling Algorithm for Large-Capacity Flash Memory
Storage Systems. In Proceedings of the International Confer-
ence on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES), pages 160–164, September 2007. ISBN
978-1-59593-826-8.

[13] J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based Flash
Translation Layer for NAND Flash Memory. In Proceedings
of the International Conference on Embedded Software (EM-
SOFT), pages 161–170, October 2006. ISBN 1-59593-542-8.

[14] R. Karedla, J. Spencer Love, and Bradley G. Wherry. Caching
Strategies to Improve Disk System Performance. IEEE Trans-
actions on Computer, 27(3):38–46, 1994. ISSN 0018-9162.

[15] A. Kawaguchi, S. Nishioka, and H. Motoda. A Flash-Memory
based File System. In Proceedings of the Winter 1995
USENIX Technical Conference, pages 155–164, 1995.

[16] H. Kim and S. Ahn. BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage. In Proceed-
ings of the USENIX Conference on File and Storage Technolo-
gies (FAST), pages 1–14, Feburary 2008.

[17] Y. Kim, S. Gurumurthi, and A. Sivasubramaniam. Under-
standing the Performance-Temperature Interactions in Disk
I/O of Server Workloads. In Proceedings of the Interna-
tional Symposium on High-Performance Computer Architec-
ture (HPCA), Febuary 2006.

[18] S. Lee and B. Moon. Design of Flash-based DBMS: An In-
Page Logging Approach. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 55–
66, August 2007. ISBN 978-1-59593-686-8.

[19] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song. A
Log Buffer based Flash Translation Layer Using Fully Asso-
ciative Sector Translation. IEEE Transactions on Embedded
Computing Systems, 6(3):18, 2007. ISSN 1539–9087.

[20] S. Lee, D. Shin, Y. Kim, and J. Kim. LAST: Locality-Aware
Sector Translation for NAND Flash Memory-Based Storage
Systems. In Proceedings of the International Workshop on
Storage and I/O Virtualization, Performance, Energy, Evalua-
tion and Dependability (SPEED2008), Feburary 2008.

[21] A. Leventhal. Flash Storage Memory. Communications of the
ACM, 51(7):47–51, 2008. ISSN 0001-0782.

[22] K. M. J. Lofgren, R. D. Norman, G B. Thelin, and A. Gupta.
Wear Leveling Techniques for Flash EEPROM. In United
States Patent, No 6,850,443, 2005.

[23] Micron 16GB Mass Storage. Micron 16GB Mass
Storage. http://www.micron.com/products/
partdetail?part=MT29F16G08DAAWP.

[24] Micron Technical Report (TN-29-07): Small-Block vs. Large-
Block NAND Flash Devices. Technical Report (TN-29-07):
Small-Block vs. Large-Block NAND Flash Devices. http:
//www.micron.com/products/nand/technotes.

[25] OLTP Trace from UMass Trace Repository. OLTP Trace from
UMass Trace Repository. http://traces.cs.umass.
edu/index.php/Storage/Storage.

[26] Websearch Trace from UMass Trace Repository. Websearch
Trace from UMass Trace Repository. http://traces.
cs.umass.edu/index.php/Storage/Storage.

[27] White Paper: Datacenter SSDs: Solid Footing for
Growth. White Paper: Datacenter SSDs: Solid Footing
for Growth. http://www.samsung.com/global/
business/semiconductor/products/flash/
FlashApplicationNote.html.

[28] J. Zhang, A. Sivasubramaniam, H. Franke, N. Gautam,
Y. Zhang, and S. Nagar. Synthesizing Representative I/O
Workloads for TPC-H. In Proceedings of the Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), 2004.

240



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


