P&S Heterogeneous Systems

Hands-on Acceleration
on Heterogeneous Computing Systems

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Spring 2022

11 March 2022

P&S: Heterogeneous Systems (1)

227-0085-51L Projects & Seminars: Hands-on Acceleration on Heterogeneous
Computing Systems

Semester

Lecturers

Periodicity

Language of instruction

Comment

Courses @ Catalogue data

Abstract

Objective

Spring Semester 2022

0. Mutlu, J. Gémez Luna

every semester recurring course

English

Only for Electrical Engineering and Information Technology BSc.

Course can only be registered for once. A repeatedly registration in a later semester is not chargeable.

Performance assessment = Learning materials = Groups = Restrictions @ Offeredin =) Overview

The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical
knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the
methodology of project work.

The increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into
heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them.
More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make

their outstanding processing capabilities available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Atrtificial Intelligence, which took

unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example computing device that can deliver
impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators (e.g.,
Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside
memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine
learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.

- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory
scheduling, etc.

- Workload characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

If you are enthusiastic about working hands-on with different software, hardware, and architecture projects for heterogeneous systems, this is your
P&S. You will have the opportunity to program

heterogeneous systems with different types of devices (CPUs, GPUs, FPGAs, TPUs), propose algorithmic changes to important applications to
better leverage the compute power of heterogeneous systems, understand different workloads and identify the most suitable device for their
execution, design optimized scheduling techniques, etc. In general, the goal will be to reach the highest performance reported for a given important
application.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021W&ansicht=KATALOGDATEN&lerneinheitld=154599&lang=en

P&S: Heterogeneous Systems (11)

The increasing difficulty of scaling the performance and efficiency of CPUs every year has created the need for turning computers into
heterogeneous systems, i.e., systems composed of multiple types of processors that can suit better different types of workloads or parts of them.
More than a decade ago, Graphics Processing Units (GPUs) became general-purpose parallel processors, in order to make

their outstanding processing capabilities available to many workloads beyond graphics. GPUs have been critical key to the recent rise of Machine
Learning and Atrtificial Intelligence, which took

unrealistic training times before the use of GPUs. Field-Programmable Gate Arrays (FPGAs) are another example computing device that can
deliver impressive benefits in terms of performance and energy efficiency. More specific examples are (1) a plethora of specialized accelerators
(e.g., Tensor Processing Units for neural networks), and (2) near-data processing architectures (i.e., placing compute capabilities near or inside
memory/storage).

Despite the great advances in the adoption of heterogeneous systems in recent years, there are still many challenges to tackle, for example:

- Heterogeneous implementations (using GPUs, FPGAs, TPUs) of modern applications from important fields such as bioinformatics, machine
learning, graph processing, medical imaging, personalized medicine, robotics, virtual reality, etc.

- Scheduling techniques for heterogeneous systems with different general-purpose processors and accelerators, e.g., kernel offloading, memory
scheduling, etc.

- Workload characterization and programming tools that enable easier and more efficient use of heterogeneous systems.

http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?semkez=2021W&ansicht=KATALOGDATEN&lerneinheitld=154599&lang=en 3

Flynn’s Taxonomy ot Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements
o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

SIMD ISA Extensions

Single Instruction Multiple Data (SIMD) extension

Instructions

o Single instruction acts on multiple pieces of data at once

o Common application: graphics

a Perform short arithmetic operations (also called packed

arithmetic)

For example: add four 8-bit numbers

Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $sl

32

24 23

16 15

87

0 Bit position

$s0

$s1

$s2

Intel Penttum MMX Operations

Idea: One instruction operates on multiple data elements

simultaneously

o A /a array processing (yet much more limited)
o Designed with multimedia (graphics) operations in mind

63 8 7

0

(@)

63 16 15

(b)

63 32 31

(¢)
63

(d)

Figure 1. MMX technology data types: packed byte (a),

packed word (b), packed doubleword (c), and quadword (d).

No VLEN register

Opcode determines data type:
8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.
Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

MMX Example: Image Overlaying (1)

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x{i] == Blue) new_imageli] =ylil;

else new_imageli] = x[i;

MM1

Image x[| MM3

Bit mask Mm1

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

MMX Example: Image Overlaying (1I)

PAND MM4, MM1 _ Y = Blossom image PANDN MM1, MM3 X =Woman'’s image
M4 (B Y, #[@Y, df@ Y. Vel YEP Y EP Y @F V.4 Mm1[0x0000]0x0000]0xFFFF [0xFFFF [0x0000]0~0000]0xFFFF J0xFFFF|
MM 1 loxoooo}0><0000|0><FFFF|0xFFﬂ0x0000|oxooooloxFFFF10xFFFﬂ MM X, | X | Xs | X | X [X | X X |
MM4 [0x0000]0x0000]® Y5 ¥ Y, #0x0000[0x0000[% Y, & Yo& Mm1[X, | X; Jox0000]0x0000] X5 [X [0x0000|0x0006|

g

POR MM4, MM1

MM X, | X [PYs TR Y] Xs | X [P Y 9P Yo

for (i=0; i<image_size; i++) {
if (x[i] == Blue) new_imagelil =ylil;
else new_imageli] = x[il;

}

Figure 10. Using the mask with logical MMX instructions to perform a conditional select.

Movag- g mm3, memt. -/ Load _éight pixels from
a S woman’s image
Movg ~~ mmd4,mem2 - /*Load eight pixels from the

o : blossom image
Pcmpegb. mm1, mm3

Pand mmd4, mm1.
Pandn mmi, mm3

Por mmd, mmt.

Figure 11. MMX code sequence for performing a condi-
tional select.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

8

Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous

systems

More suitable devices for each type of workload
Increased performance and energy efficiency

(CPU (CPU CPU e N
core || core | | core
_ 0 1 N-1 GPU
[L1][L1][L1] x J) Scratchpad | pMm
L2] L2 4
A A |
| I I
I (Coherent interconnect) |
| i' LLC ' !
(Crossbar)

DRAM controller

o [| om

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

A
‘ Non-coherent bus

I Coherent bus

9

Goals of this P&S Course

P&S Heterogeneous Systems: Contents

We will introduce the need for heterogeneity in current
computing systems, in order to achieve high performance
and energy efficiency

You will get familiar with some of the different
heterogeneous devices that are available in computing
systems

You will learn workload distribution and parallelization
strategies that leverage heterogeneous devices

You will work hands-on: analyzing workloads, programming
heterogeneous architectures, proposing

scheduling/offloading mechanisms, etc.
11

NVIDIA A100 (2020)

PCI Express 4.0 Host Interface

1

Memory Ct

Memory C

Memory Controller

13jj03u0Q AlowRp

Memory C

J13)j0u09 Alowsapy

Memory C

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache

NVIDIA A100 Core

L1 Instruction Cache

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Data Cache / Shared Memory

Tex

GPU compute throughput:
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

Sparse Tensor I
Core

Select

T

Input activations

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

R /
=

Output activations

Non-zero
data values
Fine-tuned sparse and
compressed weights

Dense trained
weights

D

Fine-tune weights

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

13

Cerebras’s Water Scale Engine (2019)

= The largest ML
accelerator chip (2019

= 400,000 cores

J TS
T TAIWAN 1723A1

PFBY82.M00 ‘&i
8%5-A1

Cerebras WSE Largest GPU
1.2 Trillion transistors 21.1 Billion transistors
46,225 mm?2 815 mm?2
NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning 14

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Cerebras’s Water Scale Engine-2 (2021)

= The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU

2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2
NVIDIA Ampere GA100

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning 15
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Google TPU Generation I (~20106)

—> —> —>» Data

R

VR

i Partial Sums
o[22 [
] | ,|) ’_l — Done

Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input 1s read at once, and they instantly
update one location of each of 256 accumulator RAMs.

Figure 3. TPU Printed Circuit Board. It can be inserted in the slot
for an SATA disk 1n a server, but the card uses PCle Gen3 x16.

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.

16

Google TPU Generation 11 (2017)

https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/

4 TPU chips
vs 1 chip in TPU1

High Bandwidth Memory
vs DDR3

Floating point operations
vs FP16

45 TFLOPS per chip
vs 23 TOPS

Designed for training
and inference
vs only inference

17

Google TPU Generation 111 (2019)

Core Core Core
scalar/ vector scalar/ vector scalar/

units units vector units
Dooooooo oooooooo [| HEEEEEER | REEEEEEE
D0ooooooo oooooooo i} e HBM
Doooooooo Oooooooo 8] SENEEEEE (I EEEEEEE 16GB
oooooooo OOoooooao al SIEEEEEE | FEEEEEER
DOooooooo DEpEEEED i EEEEEEEN || EEEEREEE
oooooooo oooooooo @ SEEEEEEE | IEEEEEEN
oooooooo oooooooo a SENEEEEE (I EEEEEEE
Doooooooo Oooooooo B SENEEEEE (A EEEEEEE

MXU MXU MXU MXU

128x128 128x128 128x128 128x128

TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip

32GB HBM per chip
vs 16GB HBM in TPU2

4 Matrix Units per chip 90 TFLOPS per chip
vs 2 Matrix Units in TPU2 vs 45 TFLOPS in TPU2

https://cloud.google.com/tpu/docs/system-architecture 1 8

Google TPU Generation IV (2019)

-V
" o' BN 5.8
.
|
L
-

g l*. ;
=
_|
U
C

S

250 TFLOPS per chip in 2021

New ML applications (vs. TPU3): vs 90 TFLOPS in TPU3
« Computer vision

» Natural Language Processing (NLP) @

« Recommender system

* Reinforcement learning that plays Go 1 ExaFLOPS per board

https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests
19

An Example Modern Systolic Array: TPU (11

As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy
by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left,
and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a
diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new
block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update
one location of each of 256 accumulators. From a correctness perspective, software 1s unaware of the systolic nature of the
matrix unit, but for performance, it does worry about the latency of the unit.

N

I
Y
: L j Pairtial Sums
ey

Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA 2017.
20

An F anmple Modern Systolic Array: TPU (I11)
@ | DDR3 DRAM Chips | |

) 30 GiB/s
14 GiB/s DDR3 30 GiB/s M \yeight FIFO
Interfaces |::> (Weight Fetcher)
o o
e N BEEE
- SEEH
badl _ Unified - Matrix Multiply
g £ . @ 10 GiB/s Buffer Systolic Tnit
14 GiB/s | © % 14 GiB/s “E (Loca| Data 1 '(64!'(; er uyuw’
(] % % |
<:::> o- <::> 8 Activation Setup j I
o £ Storage) J
§ |
= - \ j & Accumulators
1 Activation
T 167 GiB/s
—__J = Normalize / Pool
|:| Off-Chip /0 l |
I:I Data Buffer
— [= e
. Control

Not to Scale

Figure 1. TPU Block Diagram. The main computation part 1s the
yellow Matrix Multiply unit in the upper right hand corner. Its inputs
are the blue Weight FIFO and the blue Unified Buffer (UB) and its
output 1s the blue Accumulators (Acc). The yellow Activation Unit
performs the nonlinear functions on the Acc, which go to the UB.

21

Xilinx Versal ACAP (2020) (I)

= Three compute engines inside the same chip

o Different workloads, different devices

Scalar Processing Adaptable Hardware Vector Processing

(e.g., GPU, DSP)

E =CINE SUIEE G

2°n| (B°n| (B°n
FEE [olo-
& n| [®s| (@

Complex Algorithms Processing of Domain-specific

and Decision Making Irregular Data Structures Parallelism

Genomic Sequencing

Latency
Critical Workloads
Real-Time Control

Signal Processing
Complex Math, Convolutions

Sensor Fusion Video and
Pre-processing, Programmable I/O Image Processing

https://www.xilinx.com/products/silicon-devices/acap/versal.html 22

https://www.xilinx.com/products/silicon-devices/acap/versal.html

Xilinx Versal ACAP (2020) (II)

= Three compute engines inside the same chip
o Scalar cores, reconfigurable engines, vector processors

Scalar Engines Adaptable Engines Intelligent Engines
Arm -) ~
Dual-Core - Al Engines
Cortex-A72
. KR
J
- ~ _
DSP Engines
v ' W
\. J
= Network-on-Chip S
| mP || 112Gbis |
PCle DDR Nx 100G 600G Direct
ceix HIEM tpopR | VoS || s8abs || Ehoret || Gores RF
[saverio | [s2abs |

'

https://www.xilinx.com/products/silicon-devices/acap/versal.html

https://www.xilinx.com/products/silicon-devices/acap/versal.html

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 24

https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Samsung AXDIMM (2021)

m DIMM-based PIM o Baseline Systm
o DLRM recommendation system

CHo! CH1! CH3!
1 1

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHO! CH2!
1 1

OS/FC/Others SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 25

SK Hynix Accelerator-in-Memory (2022)

SKhynix Newsroom ® e -

INSIGHT SK hynix STORY PRESS CENTER MULTIMEDIA Search Q

SK hynix Develops PIM, Next-Generation Al Accelerator

February 16, 2022 in)(f)(w

Seoul, February 16, 2022

SK hynix (or “the Company”, www.skhynix.com) announced on February 16 that it has developed PIM", a next-

generation memory chip with computing capabilities.

*PIM(Processing In Memory): A next-generation technology that provides a solution for data congestion issues for Al and big data by adding

computational functions to semiconductor memory

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK
hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory,

has found a breakthrough solution with the development of the latest technology.

SK hynix plans to showcase its PIM development at the world's most prestigious semiconductor conference, 2022 111 A1ynm1.25V 8Gb, 16Gh/s/pin GDDRG-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and
Various Activation Functions for Deep-Learning Applications
Seongiju Lee, SK hynix, Icheon, Korea

technology to bring the memory-centric computing, in which semiconductor memory p|ay5 a central role, a step closer In Paper 11.1, SK Hynix describes an 1ynm, GDDR6-based accelerator-in-memory with a command set for deep-learning operation. The
8Gb design achieves a peak throughput of 1TFLOPS with 1GHz MAC operations and supports major activation functions to improve

to the reality in devices such as smartphones. accuracy.

ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this

*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of “Intelligent Silicon for a
Sustainable World”

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AIM (Accelerator” in
memory). The GDDR6-AIM adds computational functions to GDDR6™ memory chips, which process data at 16Gbps. A
combination of GDDR6-AIM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times

faster. GDDR6-AIM is widely expected to be adopted for machine learning, high-performance computing, and big data

computation and storage.

26

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/

https://news.skhynix.com/sk-hynix-develops-pim-next-generation-ai-accelerator/

Key Takeaways

This P&S is aimed at improving your

o Knowledge in Computer Architecture and Heterogeneous

Systems
o Technical skills in programming heterogeneous architectures
a Critical thinking and analysis
o Interaction with a nice group of researchers
o Familiarity with key research directions

o Technical presentation of your project

27

Key Goal

(Learn how to) take advantage of

existing heterogeneous devices
by programming them,

analyzing workloads, proposing

offloading/scheduling techniques...

28

Prerequisites of the Course

Digital Design and Computer Architecture (or equivalent

course)
o https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
o https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

Familiarity with C/C++ programming
o FPGA implementation or GPU programming (desirable)

Interest in
o computer architectures and computing paradigms

o discovering why things do or do not work and solving
problems

o making systems efficient and usable

29

https://safari.ethz.ch/digitaltechnik/spring2021/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

Course Info: Who Are We? (I)

Onur Mutlu

o 0o 0o 0 o 0O

Full Professor @ ETH Zurich ITET (INFK), since September 2015
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)
https://people.inf.ethz.ch/omutlu/projects.htm

Research and Teaching in:

o 0o 0o 0 o O

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation

Architectures for bioinformatics, health, medicine

30

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu/projects.htm

Course Info: Who Are We? (1)

= Lead Supervisor:
o Dr. Juan Gomez Luna

= Supervisors:
o Dr. Mohammed Alser
o Dr. Behzad Salami
o Dr. Gagandeep Singh

= Get to know us and our research
o https://safari.ethz.ch/safari-group/

31

https://safari.ethz.ch/safari-group/

Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-january-2021/

40+ Researchers

T

https://safari.ethz.ch 32

https://safari.ethz.ch/safari-newsletter-january-2021/
https://safari.ethz.ch/

SAFARI Newsletter December 2021 Edition

= https://safari.ethz.ch/safari-newsletter-december-2021/
SAFARI

SAFARI| Researc h Group

Think Big, Aim High

f vyinD

ETH:zurich

View in your browser
December 2021

33

https://safari.ethz.ch/safari-newsletter-december-2021/

SAFARI Live

Seminars (I)

SAFARI Live Seminars in Computer Architecture SA FAR’

. X SAFARI Research Group
Dr. Juan Gémez Luna, ETH Zurich

Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental
Characterization

SAFARI Live Seminars in Computer Architecture

ARI

Gennady Pekhimenko, University of Toronto SAAR re:eeehlciotd

Efficient DNN Training at Scale: from Algorithms to Hardware

DNN Training vs. Inference

Step 1 - Forward Pass (makes a prediction) ——
«—— Step 2- Backward Pass (calculates error gradients)

. \I\\. !|mermed.amaveruumm

Generated in the forward pass Used in the backward pass

DNN training requires stashing feature maps for the backward pass
(not required in Inference)

SAFARI Live Seminars in Computer Architecture SAFARI

SAFARI Research Group

Minesh Patel, ETH Zurich Tues
Enabling Effective Error Mitigation in Memory Chips That Use On-Die ECCs 2 1 Sep

2021
@ Position Paper (Ongoing)

@ REAPER (ISCA'17)

@ BEER (MICRO'20, best paper)

1

DRAM Chi

" | onDie Data
f ECC Logic 1 Store

@ HARP (MICRO"21) @ EIN (DSN'1g, best paper)

To processor

SAFARI Live Seminars in Computer Architecture

RI

SAFARI Research Group

Dr. Andrew Walker, Schiltron Corporation & Nexgen Power Systems
An Addiction to Low Cost Per Memory Bit — How to Recognize it and What to Do About it

Mo
Jul
2021

Watch on @8 Youl

SAFARI Live Seminars in Computer Architecture

Jawad Haj-Yahya, Huawei Research Center Zurich

S,

SAFARI

SAFARI Research Group

Power Management Mechanisms in Modern Microprocessors and Their Security Implications

* 3 domains in modern
thermally-constrained mobile
SoC: Compute, Memory, 10

(\ 16:

* Several voltage sources exist,
and some of them are shared
between domains

« 10 controllers and engines,

“ * &

\‘X\ \& 10 interconnect, memory
controller, and DDRIO

o | typically each has an

3 \ 3 (] independent clock

SAFARI Live Seminars in Computer Architecture

Christina Giannoula, National Technical University of Athens

Efficient Synchronization Support for Near-Data-Processing Architectures

NDP Synchronization Solution Space

—_

[shoreamemory) [Messagerpassing |

Hardware | Remote || Specialized | Software- || Specialized
Cache Atomics Hardware based Hardware
|_Coherence | Support _ Scheme:

Support |

NDP Systems:

SynCron
[HPCA'21]

Overview of a Modern SoC Architecture

==l LE o

10 zngm/ olg
Controllers. 22 o
5o
0 interconnet || [Memory | gz 2
fointereonnect | controller
100omain | Memory Doma

System On Chip

Graphics
Engines
Compute Domain
VG

ARI

SAFARI Research Group

27%
2021

SAFARI Live Seminars in Computer Architecture SA FAR’

SAFARI Research Group

Geraldo F. Oliveira, ETH Zurich
DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

Near-Data Processing (2/2)

Samsung FIMDRAM (2021)

UPMEM (2019)

Near-DRAM-banks processing
for neural networks

Near-DRAM-banks processing
for general-purpose computing
0.9 TOPS compute throughput 1.2 TFLOPS compute throughput?

SAFARI 7

ARI

SAFARI Research Group

SAFARI Live Seminars in Computer Architecture

Ataberk Olgun, TOBB & ETH Zurich
QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in

Commodity DRAM Chips
UAC to Generate Random Values

Use QUAC to activate DRAM rows thatare initialized with conflicting
data (e.g, two “1's and two ‘0's) to generate random values

Capacitor

). T
Sense Amplifiers Random Values

ACT 42> PRE > ACT

SAFARI (>Kasirga

SAFARI Live Seminars in Computer Architecture S A F A R '

Jawad Haj-Yahya, Huawei Research Center Zurich SAFARI Research Group
Security Implications of Power Management Mechanisms In Modern Processors, Current
Studies and Future Trends

Experimental Methodology

+ We experimentally study three modern Intel processors
- Haswell, Coffee Lake, and Cannon La

+ We measure voltage and current using a Data Acquisition card (NI-DAQ)

Configure/

Host Computer

Resistor

Processor

CPU Cores

https://safari.ethz.ch/safari-seminar-series/

https://safari.ethz.ch/safari-seminar-series/

SAFARI Live Seminars (II)

@ SAFARFSéminar-CODICA Low-Cost Substrate for Enabling Custom InDRA...

* CODIC substrate enables greater contro! over DRAM interna
Ircuit timing:

* CODIC is an efficient and low-cost way to enable new
functionalities and optimizations in DRAM

* CODIC controls four key s at
orchestrate DRAM lnternal circuit timings :
» wordline (wl): Connects DRAM cells to bitlines 3
* sense_p and sense_n: Trigger sense amplifiers :

* EQ: Triggers the logic that prepares a DRAM
bank for the next access

Watch on (€8 Youlube

SAFARI Live Seminar: Lois Orosa, 10 Feb 2022

January 16, 2022 by ewent

Join us for our next SAFARI Live Seminar with Lois Orosa.
Thursday, February 10 at 5:00 pm Zurich time (CET)

Lois Orosa, SAFARI Research Group, ETH Zurich
CODIC: A Low-Cost Substrate for Enabling Custom In-DRAM Functionalities and Optimizations

Livestream on YouTube Link

https://safari.ethz.ch/safari-live-seminar-lois-orosa-10-feb-2022/

35

https://safari.ethz.ch/safari-live-seminar-lois-orosa-10-feb-2022/

Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics
* Memory and storage (DRAM, flash, emerging), interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
* Energy efficiency, fault tolerance, hardware security, performance

» Genome sequence analysis & assembly algorithms and architectures

* Biologically inspired systems design for bio/medicine

@ cormnientn

Heterogeneos Persistent Memory/Storage

Processors and
Accelerators

ooooooooooooooo

Broad research
spanning apps, systems, logic

—————

Graphics and Vision Processing 36

Course Info: How About You?

Let us know your background, interests

Why did you join this P&S?

37

Course Requirements and Expectations

= Attendance required for all meetings
= Study the learning materials

= Each student will carry out a hands-on project

o Build, implement, code, and design with close engagement from
the supervisors

= Participation
o Ask questions, contribute thoughts/ideas
o Read relevant papers

We will help in all projects!
If your work is really good, you may get it published!

38

Course Website

= https://safari.ethz.ch/projects and_seminars/doku.php?id=

heterogeneous_systems

= Useful information about the course
= Check your email frequently for announcements

= We also have Moodle for Q&A

39

https://safari.ethz.ch/projects_and_seminars/doku.php?id=heterogeneous_systems

Meeting 1

Required materials:
1. An introduction to SIMD processors and GPUs (Dr. Juan Gomez Luna, lecture).

(PDF) (PPT)
Video

2. An introduction to GPUs and heterogeneous programming (Dr. Juan Gomez Luna, lecture).

(PDF) (PPT)
Video

Recommended materials:
3. Programming heterogeneous collaborative systems (Dr. Juan Gomez Luna, lecture):

(PDF) (PPT)
https://youtu.be/uhQjXbNo6Cc?t=3040

4. Juan Gomez-Luna, Izzat El Hajj, Li-Wen Chang, Victor Garcia-Flores, Simon Garcia de Gonzalo, Thomas B. Jablin, Antonio J. Pefia and Wen-mei Hwu,
"Chai: Collaborative Heterogeneous Applications for Integrated-architectures”

Proceedings of the 2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa, California, April 2017.
https://chai-benchmarks.github.io

https://qgithub.com/chai-benchmarks/chai

5. Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gdmez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"

Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]

[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]

6. Mohammed Alser, Taha Shahroodi, Juan Gomez Luna, Can Alkan, and Onur Mutlu,

"SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs"
Bioinformatics, 26 December 2020.

[Source Code] [Online link at Bioinformatics Journal]

7. Real Processing-in-DRAM with UPMEM (Dr. Juan Gomez Luna, lecture, Fall 2020).
(PDF) (PPT) Video

40

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture24-simdandgpu-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture24-simdandgpu-afterlecture.pptx
http://www.youtube.com/watch?v=hOeIkAYraTE
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pdf
https://safari.ethz.ch/digitaltechnik/spring2018/lib/exe/fetch.php?media=digitaldesign-2018-lecture22-gpuprogramming-afterlecture.pptx
http://www.youtube.com/watch?v=y40-tY5WJ8A
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture14-afterlecture.pdf
https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture14-afterlecture.pptx
https://youtu.be/uhQjXbNo6Cc?t=3040
https://chai-benchmarks.github.io/assets/ispass17.pdf
https://chai-benchmarks.github.io/
https://github.com/chai-benchmarks/chai
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0
https://people.inf.ethz.ch/omutlu/pub/SneakySnake_UniversalGenomePrealignmentFilter_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/SneakySnake
https://doi.org/10.1093/bioinformatics/btaa1015
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=upmem-2020-10-30.pdf
https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=upmem-2020-10-30.pptx
http://www.youtube.com/watch?v=Sscy1Wrr22A

Meeting 2

We will announce the projects and will give you some
description about them

We will give you a chance to select a project

Then, we will have 1-1 meetings to match your interests,
skills, and background with a suitable project

It is important that you study the learning materials before
our next meeting!

41

Next Meetings

Individual meetings with your mentor/s

Tutorials and short talks
o GPU/FPGA programming
o Recent research works

Presentation of your work

42

Hetero. Systems (Fall’21)

= Fall 2021 Edition:

o https://safari.ethz.ch/projects and semi
nars/fall2021/doku.php?id=heterogeneou

s systems

= Youtube Livestream:

o https://www.youtube.com/watch?v=QY
bjwzsfMM&ist=PL5Q2s0XY2Zi OwkTgEy
A6tk3UsoPBH737

= Project course
o Taken by Bachelor’'s/Master’s students
o GPU and Parallelism lectures
o Hands-on research exploration
o Many research readings

™ core 54 f}{(' | C FPGA
N] H’ ‘GPU U U
Ju) (U@ . G saatchpad | pua
] 4

A
‘ Non-coherent bt

I Coherent bus

Watch on @3 YouTube
g g for Heterogeneous Integrated Systems,” ICPE 2017.

Fall 2021 Meetings/Schedule

Week Date
W1 07.10
Thu.
W2 14.10
Thu.
W3 21.10
Thu.
W4 28.10
Thu.
w5 04.11
Thu.
W6 11.11
Thu.
w7 18.11
Thu.
w8 25.11
Thu.
W9 02.12
Thu.
W10 09.12
Thu.
w11 16.12
Thu.
W12 2212
Thu.
W13 06.01
Thu.

Livestream

YoulD Live

YoulD Live

YoulD Live

YoulD Live

YoulD Live

Youl D Live

Youl D Live

Youl B Live

YoulD Live

YoulD Live

Youl D Live

YoulD Live

Youl D Live

Meeting Learning Materials

M1: P&S Course Presentation Required Materials

am (PDF) zx (PPT) Recommended
Materials

M2: SIMD Processing and GPUs
am (PDF) mx (PPT)

M3: GPU Software Hierarchy
am (PDF) @x (PPT)

M4: GPU Memory Hierarchy
am (PDF) @r (PPT)

M5: GPU Performance
Considerations
am (PDF) zx (PPT)

M6: Parallel Patterns: Reduction
am (PDF) zm (PPT)

M7: Parallel Patterns: Histogram
am (PDF) x (PPT)

M8: Parallel Patterns: Convolution
am (PDF) @m (PPT)

M9: Parallel Patterns: Prefix Sum
(Scan)
am (PDF) il (PPT)

M10: Parallel Patterns: Sparse
Matrices
am (PDF) zxl (PPT)

M11: Parallel Patterns: Graph
Search
am (PDF) zx (PPT)

M12: Dynamic Parallelism
am (PDF) i (PPT)

M13: Collaborative Computing
am (PDF) il (PPT)

52

Assignments

HW 0 Out

https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule
https://safari.ethz.ch/projects_and_seminars/fall2021/doku.php?id=heterogeneous_systems
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=QY_bjwzsfMM&list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737
https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX
https://www.youtube.com/watch?v=QY_bjwzsfMM&list=PL5Q2soXY2Zi_OwkTgEyA6tk3UsoPBH737

Exploiting Data Parallelism:
SIMD Processors and GPUs

Recall: Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

45

Recall: MMX

Hxample: Image Overlaying (I)

= Goal: Overlay the human in image X on top of the background in image y

Figure 8. Chroma keying: image overlay using a background color.

PCMPEQB MM1, MM3

for (i=0; i<image_size; i++) {

if (x{i] == Blue) new_imageli] =ylil;

else new_imageli] = x[i;

MM1

Image x[| MM3

Bit mask Mm1

Blue Blue Blue Blue Blue | Biue Blue Blue
X7!=blue | X6!=blue | X5=blue | X4=blue | X3!=blue|X2!=blue | X1=blue | XO=blue
0x0000 | Ox0000 | OxFFFF | OxFFFF | Ox0000 | Ox0000 | OxFFFF | OxFFFF

Bitmask

Figure 9. Generating the selection bit mask.

Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 40

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

47

Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Different ti
LD VR € A[3:0] Lpo| D1 [LD2 D3 Lpp Drerenters@tme
ADD VR ¢ VR, 1
’ ADO| AD1 |AD2
MUL VR € VR 2 0 AD3 LD1 | ADO
ST A[3:0] € VR MUO| MU1 IMU2 MU3 LD2 | AD1 [MUO
STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
—
Different ops @ same space AD3 |MU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—™> <«<——Space———>

48

NVIDIA A100 Core

L1 Instruction Cache

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 [FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

TENSOR CORE TENSOR CORE

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64 INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Data Cache / Shared Memory

Tex

GPU compute throughput:
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

Sparse Tensor I
Core

Select

T

Input activations

= zero entry

Fine-grained
structured pruning

—

2:4 sparsity: 2 non-
zero out of 4 entries

Compress

R /
=

Output activations

Non-zero
data values
Fine-tuned sparse and
compressed weights

Dense trained
weights

D

Fine-tune weights

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

49

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irreqular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. "

Warps not Exposed to GPU Programmers

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU
o Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. DI DO DI DO
Parallel Kernel (device) S || SSBDS || S S
KernelA<<<nBlk , nThr>>> (args) ;)()“)()()()())()()())“))()()()()())()()() S)(
Serial Code (host)
. DO DO SSUSSIISH SIS
Parallel Kernel (device) < > S

A
AN AN/A

A /)
n
Va
7\

KernelB<<<nBlk, nThr>>>(args) ;|| 5SS

Slide credit: Hwu & Kirk

51

Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii)
C[ii] = A[ii] + BJ[ii];

b
CUDA code I

/// there are 100000 threads
__global__ void KernelFunction(...) {

~

int tid = blockDim.x * blockIdx.x + threadldx.x;

int varA = aa[tid];
int varB = bb[tid];

C[tid] = varA + varB;

J

J

Slide credit: Hyesoon Kim

52

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irreqular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. >3

Heterogeneous Computing Systems

The end of Moore’s law created the need for heterogeneous

systems

More suitable devices for each type of workload
Increased performance and energy efficiency

(CPU (CPU CPU e N
core || core | | core
_ 0 1 N-1 GPU
[L1][L1][L1] x J) Scratchpad | pMm
L2] L2 4
A A |
| I I
I (Coherent interconnect) |
| i' LLC ' !
(Crossbar)

DRAM controller

o [| om

Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.

A
‘ Non-coherent bus

I Coherent bus

54

Chai Benchmark Suite

= Heterogeneous execution on CPU, GPU, FPGA

= Collaboration patterns
o 8 data partitioning benchmarks

o 3 coarse-grain task partitioning benchmarks

0 3 fine-grain task partitioning benchmarks - I I I 1

= Discrete (D) and Unified (U) versions
= Chai versions
o CUDA and OpenCL for CPU+GPU

o OpenCL for CPU+FPGA
- CUDA-Sim for Gem5-GPU CHAI

https://chai-benchmarks.github.io

Gomez-Luna+, “Chai: Collaborative Heterogenous Applications for Integrated Architectures,” ISPASS 2017.

55

P&S Heterogeneous Systems

Hands-on Acceleration
on Heterogeneous Computing Systems

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Spring 2022

11 March 2022

