
P&S Heterogeneous Systems
Algorithmic Improvement and GPU Acceleration

of the GenASM Algorithm

Joël Lindegger
ETH Zürich
Spring 2022

24 June 2022

Genome Sequencing & Analysis

Genome Sequencing

n Genome sequencing: Enables us to determine the order of
the DNA sequence in an organism’s genome
q Plays a pivotal role in:

n Personalized medicine
n Outbreak tracing
n Understanding of evolution

n Challenges:
q There is no sequencing machine that takes long DNA as an

input, and gives the complete sequence as output
q Sequencing machines extract small randomized fragments

of the original DNA sequence

3

Genome DNA

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Genome Sequencing (cont’d)

4

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Genome Sequencing (cont’d)

5

Sequencing Technologies

6

Oxford Nanopore
(ONT)

PacBio Illumina

Current State of Sequencing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
7

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Current State of Sequencing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
8

Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Genome Sequencing (cont’d)

9

Read Mapping, method of aligning the
reads against the reference genome in

order to detect matches and variations.

ACGTACCCCGT
GATACACTGT
G

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT
AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of
merging the reads in order to

construct the original sequence.

Reference
Genome Original

Sequence

Genome Sequence Analysis

10
Reads Mapped Reads Reads Assembled Reads

GSA with Read Mapping

n Read mapping: First key step in genome sequence analysis (GSA)
q Aligns reads to one or more possible locations within the reference

genome, and
q Finds the matches and differences between the read and the

reference genome segment at that location

n Multiple steps of read mapping require approximate string matching
q Approximate string matching (ASM) enables read mapping to account

for sequencing errors and genetic variations in the reads

n Bottlenecked by the computational power and memory bandwidth
limitations of existing systems

11

More on Genomics

12https://safari.ethz.ch/projects_and_seminars/spring2022/
doku.php?id=bioinformatics

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics

Approximate String Matching

Approximate String Matching

n Sequenced genome may not exactly map to the reference genome due
to genetic variations and sequencing errors

n Approximate string matching (ASM):
q Detect the differences and similarities between two sequences
q In genomics, ASM is required to:

n Find the minimum edit distance (i.e., total number of differences)
n Find the optimal alignment with a traceback step

§ Sequence of matches, substitutions, insertions and deletions,
along with their positions

q Usually implemented as a dynamic programming (DP) based algorithm

14

Reference:
Read:

insertionsubstitutiondeletion

AAAATGTTTAGTGCTACTG
AAATGTTTACTGCTACTTG
AAAATGTTTAGTGCTACTG
AAAATGTTTACTGCTACTTG
AAAATGTTTAGTGCTACTG
AAAATGTTTAGTGCTACTTG
AAAATGTTTAGTGCTACTTG
AAAATGTTTAGTGCTACTTGC

A
T

G

Commonly-used
algorithm for ASM

in genomics…

...with quadratic
time and space

complexity

Arithmetic Dynamic Programming
for Approximate String Matching

15

Text A C G T -
Exact Match 1111 1111 1111 1111 1111

1 Edit 0110 1010 1100 1110 1110
2 Edits 0000 0000 1000 1100 1100
3 Edits 0000 0000 0000 1000 1000
4 Edits 0000 0000 0000 0000 0000

• Two-dimensional, but different axes
• Entries are bitvectors instead of numbers

Bitvector-Based Dynamic Programming
for Approximate String Matching: Bitap Algorithm

16

Bitap Algorithm

For each character of the text (char):
Copy previous R bitvectors as oldR
R[0] = (oldR[0] << 1) | PM [char]
For d = 1…k:

deletion = oldR[d-1]
substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match =(oldR[d] << 1) | PM [char]
R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:
If 1, no match.
If 0, match with d many errors.

17

Inner Loop

Outer Loop
Bitwise Operations

Bitwise Operations

Output

Traceback is Required

18

1. So far we only have the
optimal score

2. However, we also
require the optimal
sequence of edits

(“CIGAR string”)

The CIGAR string is obtained through
“traceback”, i.e., following the

optimal solution through the table

GenASM
n Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.

Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.
[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

19

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

GenASM Extends Bitap
n Adds traceback

n Performance improvements
q Windowing heuristic
q Intra-task parallelism

20Senol Cali+, “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

https://arxiv.org/abs/2009.07692

GenASM’s Traceback

For each character of the text (char):
Copy previous R bitvectors as oldR
R[0] = (oldR[0] << 1) | PM [char]
For d = 1…k:

deletion = oldR[d-1]
substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match =(oldR[d] << 1) | PM [char]
R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:
If 1, no match.
If 0, match with d many errors.

21

1. Store these

2. Follow a trail of 0’s in the stored bitvectors

Senol Cali+, “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

https://arxiv.org/abs/2009.07692

Accelerating GenASM on GPUs

Implementation Attempt #1
n Compile existing C code with CUDA, with minor changes
n One GPU thread per sequence pair
n Store the DP table in global memory

23

Severely memory bound

Implementation Attempt #2
n Compile existing C code with CUDA, with minor changes
n One GPU thread per sequence pair
n Store the DP table in shared memory

24

Compute Bound

has limited capacity

Recall: GenASM’s Traceback

For each character of the text (char):
Copy previous R bitvectors as oldR
R[0] = (oldR[0] << 1) | PM [char]
For d = 1…k:

deletion = oldR[d-1]
substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match =(oldR[d] << 1) | PM [char]
R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:
If 1, no match.
If 0, match with d many errors.

25

1. Store these

2. Follow a trail of 0’s in the stored bitvectors

Senol Cali+, “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

https://arxiv.org/abs/2009.07692

GenASM’s Memory Footprint

26

Footprint=

Bitvector size

|text|*|pattern| *3*k bits

Senol Cali+, “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

https://arxiv.org/abs/2009.07692

27

Footprint =64*64*3*64 bits * 32
=96KiB * 32
=3MiB

Assume
• |text|=|pattern|=k=64
• One warp of 32 threads

Shared memory capacity of he NVIDIA A6000 GPU:
99KiB per SM

Memory Footprint of Implementation Attempt #2

n Compile existing C code with CUDA, with minor changes
n One GPU thread per sequence pair
n Store the DP table in shared memory has limited capacity

Implementation Attempt #2

28

Compute Bound

Fails
Because the DP table does not fit into shared memory

Implementation Attempt #3
n Rewrite code for GPUs
n 64 threads in a thread block cooperate per seq. pair
n Store the DP table in shared memory

29

Compute Bound

Mapping Threads to DP Cells

30

Text A C G T -
Exact Match 1111 1111 1111 1111 1111

1 Edit 0110 1010 1100 1110 1110
2 Edits 0000 0000 1000 1100 1100
3 Edits 0000 0000 0000 1000 1000
4 Edits 0000 0000 0000 0000 0000

Thread 0 Thread 1 Thread 2 Thread 3

Memory Footprint of Implementation Attempt #3

31

Footprint =64*64*3*64 bits * 1
=96KiB * 1
=96KiB

Assume
• |text|=|pattern|=k=64
• 1 thread block

Shared memory capacity of he NVIDIA A6000 GPU:
99KiB per SM

Occupancy Problem of Implementation Attempt #3

n Due to the memory footprint and shared memory capacity,
at most 1 thread block of 64 threads can be active per SM

n This is called “low occupancy”

n Occupancy should be high for good performance
q Simultaneous multithreading hides instruction latencies,

but requires multiple active warps to work

32

More About Occupancy

33https://youtu.be/BYkPHLaFATM

https://youtu.be/BYkPHLaFATM

Implementation Attempt #3
n Rewrite code for GPUs
n 64 threads in a thread block cooperate per seq. pair
n Store the DP table in shared memory

34

Compute Bound

Low performance
Due to low occupancy

Scrooge
n Joël Lindegger, Damla Senol Cali, Mohammed Alser, Juan Gomez-Luna, and Onur Mutlu,

"Algorithmic Improvement and GPU Acceleration of the GenASM Algorithm"
Proceedings of the 21st IEEE International Workshop on High Performance Computational
Biology (HiCOMB), Virtual, May 2022.
[Slides (pptx) (pdf)]

35

https://arxiv.org/pdf/2203.15561.pdf
http://www.hicomb.org/
https://people.inf.ethz.ch/omutlu/pub/GenASM-GPU_hicomb22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-GPU_hicomb22-talk.pdf

36Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

Motivation
•Pairwise sequence alignment is a bottleneck in genomic pipelines (e.g., read mapping)
•GenASM is a state-of-the-art sequence aligner, its hardware implementation is up

to 10,000x faster than prior software aligners and draws 500x less power

Problem
Three inefficiencies in the GenASM algorithm limit its throughput and energy efficiency:
1. It has a large memory footprint
2. It has a high bandwidth pressure
3. It does some unnecessary work

Goal Enable fast and efficient implementations of GenASM for CPUs, GPUs, and ASICs

Scrooge

Three novel algorithmic improvements to the GenASM algorithm:
•SENE and DENT reduce the memory footprint and data movement of GenASM
•Early Termination eliminates unnecessary work

High-performance CPU and GPU implementations

Results
•12-24x memory footprint reduction
•1.9x speedup over GenASM on a recent CPU (Xeon Gold 5118)
•5.9x speedup over GenASM on a recent GPU (NVIDIA A6000)
•Similar improvements to be expected for ASICs

Scrooge – Executive Summary

https://arxiv.org/abs/2203.15561

Algorithmic Improvement 1:
Store Entries, Not Edges (SENE)

SENE results in a 3x reduction in
memory footprint and data movement

SENE
Improvement

GenASM Scrooge
Stores 3 edges per table entry
for traceback

Stores table entries directly,
edges are regenerated

Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

37

https://arxiv.org/abs/2203.15561

Algorithmic Improvement 2:
Discard Entries Not used by Traceback (DENT)

GenASM’s traceback does not cross the entire table

DENT results in a 4x reduction in
memory footprint and data movement

Scrooge discards entries that are never reached

Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

38

https://arxiv.org/abs/2203.15561

Implementation Attempt #4 – Scrooge
n 64 threads in a thread block cooperate per seq. pair
n Store the DP table in shared memory
n Algorithmically reduced memory footprint

39Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

SENE+DENT results in a 12x reduction in
memory footprint and data movement

https://arxiv.org/abs/2203.15561

Scrooge’s Memory Footprint

40

Footprint =64/2*64/2*1*64 bits * 12
=8KiB * 12
=96KiB

Assume
• |text|=|pattern|=k=64
• 12 thread blocks

Shared memory capacity of he NVIDIA A6000 GPU:
99KiB per SM

Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

https://arxiv.org/abs/2203.15561

Implementation Attempt #4 – Scrooge
n 64 threads in a thread block cooperate per seq. pair
n Store the DP table in shared memory
n Algorithmically reduced memory footprint

41Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

SENE+DENT results in a 12x reduction in
memory footprint and data movement

High performance
Thanks to high occupancy

https://arxiv.org/abs/2203.15561

Scaling with Threadblocks

42Lindegger+, ”Algorithmic Improvement and GPU Acceleration
of the GenASM Algorithm“, HiCOMB 2022

Scrooge Full

Scrooge DENT Only

Scrooge SENE Only

Increased
Occupancy

https://arxiv.org/abs/2203.15561

Generating Pattern Bitmasks

Pattern Bitmasks
n GenASM requires pre-computing “pattern bitmasks”

q One-hot (or one-cold) encoding of the pattern string

44Senol Cali+, “GenASM: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis”, MICRO 2020

https://arxiv.org/abs/2009.07692

__device__ PM_t generatePatternBitmask(int m, char *pattern){
PM_t pm;
pm[A] = ONES;
pm[C] = ONES;
pm[G] = ONES;
pm[T] = ONES;

for (int j = 0; j < m; j++){

pm[pattern[j]] &= SINGLE_ZERO_AT(j);
}
return pm;
}

Pattern Bitmasks – Serial Implementation

45

Initialize to all 1s

For each char in pattern

Set a 0

No parallelism
Only one thread per block does useful work

__device__ PM_t generatePatternBitmask(int m, char *pattern){
PM_t pm;
pm[A] = ONES;
pm[C] = ONES;
pm[G] = ONES;
pm[T] = ONES;

int j = threadIdx.x;
pm[pattern[j]] &= SINGLE_ZERO_AT(j);

for (int offset = 16; offset > 0; offset /= 2){
//bitwise AND parallel reduction
...
}

return pm;
}

Pattern Bitmasks – Parallel Implementation

46

Initialize to all 1s

Each thread sets a 0

Merge results

Large amount parallelism
Every thread in the block does useful work

More About Parallel Reductions

47https://youtu.be/Xp0HHpcDwUc

https://youtu.be/Xp0HHpcDwUc

Resolving Data Dependencies

Recall: Mapping Threads to DP Cells

49

Text A C G T -
Exact Match 1111 1111 1111 1111 1111

1 Edit 0110 1010 1100 1110 1110
2 Edits 0000 0000 1000 1100 1100
3 Edits 0000 0000 0000 1000 1000
4 Edits 0000 0000 0000 0000 0000

Thread 0 Thread 1 Thread 2 Thread 3

Data Dependencies

50

Text A C G T -
Exact Match 1111 1111 1111 1111 1111

1 Edit 0110 1010 1100 1110 1110
2 Edits 0000 0000 1000 1100 1100
3 Edits 0000 0000 0000 1000 1000
4 Edits 0000 0000 0000 0000 0000

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

Intra-Thread Data Dependency
Inter-Thread Data Dependency

Data Dependencies

51

Text A C G T -
Exact Match 1111 1111 1111 1111 1111

1 Edit 0110 1010 1100 1110 1110
2 Edits 0000 0000 1000 1100 1100
3 Edits 0000 0000 0000 1000 1000
4 Edits 0000 0000 0000 0000 0000

Thread 0 Thread 1 Thread 2 Thread 3 Thread 4

Intra-Thread Data Dependency
Inter-Thread Data Dependency

Iteration 0
Iteration 1
Iteration 2
Iteration 3

Resolving Data Dependencies
n Memory accesses can resolve all dependencies

q But have undesirable latency and bandwidth
n Register accesses are preferred

q Works trivially for vertical intra-thread dependencies
q Does it also work for horizontal inter-thread dependencies?

52

Resolving Data Dependencies (cont’d)
n How to resolve inter-thread dependencies with registers?

q Warp shuffle instructions!

53https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-shuffle-functions

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

More About Warp Shuffle Functions

54https://youtu.be/Xp0HHpcDwUc

https://youtu.be/Xp0HHpcDwUc

Conclusion

55

Before:
1,800

alignments/second

After:
25,000

alignments/second

•Shared Memory
•Thread Cooperative
Implementation
•Algorithmic Improvements
•Bitmasks
\w parallel reduction
•Data dependencies
\w warp shuffle

Optimizing GPU code requires a holistic view
Ignoring any of the above aspects would ruin the performance of the program

n Understanding and Improving Modern DRAM Performance, Reliability,
and Security with Hands-On Experiments

n Designing and Evaluating Memory Systems and Modern Software
Workloads with Ramulator

n Accelerating Genome Analysis with FPGAs, GPUs, and New Execution
Paradigms

n Genome Sequencing on Mobile Devices
n Understanding and Designing Modern NAND Flash-Based Solid-State

Drives (SSDs)
n Intelligent Architectures using Hardware/Software Cooperative

Techniques

More P&S Courses: SSDs, Memory, Bioinformatics…

56

https://safari.ethz.ch/projects_and_seminars/
spring2022/doku.php?id=start

https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=start

n All P&S courses
n Digital Design and CompArch course
n Advanced CompArch course
n Seminar in CompArch

More Resources: Onur Mutlu Lectures

57https://www.youtube.com/c/OnurMutluLectures/playlists

https://www.youtube.com/c/OnurMutluLectures/playlists

P&S Heterogeneous Systems
Algorithmic Improvement and GPU Acceleration

of the GenASM Algorithm

Joël Lindegger
ETH Zürich
Spring 2022

24 June 2022

