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Heterogeneous Computing Systems
n The end of Moore’s law created the need for heterogeneous 

systems
n More suitable devices for each type of workload
n Increased performance and energy efficiency
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Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor
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Data Parallelism
n Concurrency arises from performing the same operation on 

different pieces of data
q Single instruction multiple data (SIMD)
q E.g., dot product of two vectors

n Contrast with data flow
q Concurrency arises from executing different operations in parallel (in 

a data driven manner)

n Contrast with thread (“control”) parallelism
q Concurrency arises from executing different threads of control in 

parallel

n SIMD exploits operation-level parallelism on different data
q Same operation concurrently applied to different pieces of data
q A form of ILP where instruction happens to be the same across data
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SIMD Processing
n Single instruction operates on multiple data elements

q In time or in space
n Multiple processing elements (PEs), i.e., execution units

n Time-space duality

q Array processor: Instruction operates on multiple data 
elements at the same time using different spaces (PEs)

q Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space (PE)
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Array vs. Vector Processors
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ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



Vector Processors (I)
n A vector is a one-dimensional array of numbers
n Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)
C[i] = (A[i] + B[i]) / 2

n A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values

n Basic requirements
q Need to load/store vectors à vector registers (contain vectors)
q Need to operate on vectors of different lengths à vector length 

register (VLEN)
q Elements of a vector might be stored apart from each other in 

memory à vector stride register (VSTR)
n Stride: distance in memory between two elements of a vector
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n A and B matrices, both stored in memory in row-major order

n Load A’s row 0 (A00 through A05) into vector register V1
q Each time, increment address by 1 to access the next column
q Accesses have a stride of 1

n Load B’s column 0 (B00 through B50) into vector register V2
q Each time, increment address by 10 to access the next row
q Accesses have a stride of 10
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Vector Processors (II)
n A vector instruction performs an operation on each element 

in consecutive cycles
q Vector functional units are pipelined
q Each pipeline stage operates on a different data element

n Vector instructions allow deeper pipelines
q No intra-vector dependencies à no hardware interlocking 

needed within a vector
q No control flow within a vector
q Known stride allows easy address calculation for all vector 

elements
n Enables easy loading (or even early loading, i.e., prefetching) of 

vectors into registers/cache/memory
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Recall: Vector Processor Disadvantages
-- Works (only) if parallelism is regular (data/SIMD parallelism)

++ Vector operations
-- Very inefficient if parallelism is irregular

-- How about searching for a key in a linked list?

10Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983.



Vector Registers
n Each vector data register holds N M-bit values
n Vector control registers: VLEN, VSTR, VMASK
n Maximum VLEN can be N

q Maximum number of elements stored in a vector register
n Vector Mask Register (VMASK)

q Indicates which elements of vector to operate on
q Set by vector test instructions

n e.g., VMASK[i] = (Vk[i] == 0)
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Loading/Storing Vectors from/to Memory
n Requires loading/storing multiple elements

n Elements separated from each other by a constant distance 
(stride)
q Assume stride = 1 for now

n Elements can be loaded in consecutive cycles if we can 
start the load of one element per cycle
q Can sustain a throughput of one element per cycle

n Question: How do we achieve this with a memory that 
takes more than 1 cycle to access?

n Answer: Bank the memory; interleave the elements across 
banks

12



Memory Banking
n Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks
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Vectorizable Loops
n A loop is vectorizable if each iteration is independent of any 

other

n For I = 0 to 49
q C[i] = (A[i] + B[i]) / 2

n Vectorized loop (each instruction and its latency):
MOVI VLEN = 50 1
MOVI VSTR = 1 1
VLD V0 = A 11 + VLEN – 1
VLD V1 = B 11 + VLEN – 1
VADD V2 = V0 + V1 4 + VLEN – 1
VSHFR V3 = V2 >> 1 1 + VLEN – 1
VST C = V3 11 + VLEN – 1

14
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Basic Vector Code Performance
n Assume no chaining (no vector data forwarding)

q i.e., output of a vector functional unit cannot be used as the 
direct input of another 

q The entire vector register needs to be ready before any 
element of it can be used as part of another operation

n One memory port (one address generator)
n 16 memory banks (word-interleaved)

n 285 cycles
15
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V0 = A[0..49] V1 = B[0..49] ADD SHIFT STORE

VLD V0=A VLD V1=B VADD V2=V0+V1 VSHFR V3=V2>>1 VST C=V3



Vector Code Performance - Chaining
n Vector chaining: Data forwarding from one vector 

functional unit to another

n 182 cycles
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11 49

These two VLDs cannot be 
pipelined. WHY?

VLD and VST cannot be 
pipelined. WHY?

Strict assumption:
Each memory bank 
has a single port 
(memory bandwidth
bottleneck)

VLD V0=A VLD V1=B

VADD V2=V0+V1

VSHFR V3=V2>>1

VST C=V3



Vector Code Performance – Multiple Memory Ports

n Chaining and 2 load ports, 1 store port in each bank

n 79 cycles
n 19X perf. improvement!
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Conditional Operations in a Loop
n What if some operations should not be executed on a vector 

(based on a dynamically-determined condition)?
loop: for (i=0; i<N; i++)

if (a[i] != 0) then b[i]=a[i]*b[i]

n Idea: Masked operations 
q VMASK register is a bit mask determining which data element 

should not be acted upon
VLD V0 = A
VLD V1 = B
VMASK = (V0 != 0)
VMUL V1 = V0 * V1
VST B = V1

q This is predicated execution. Execution is predicated on mask bit.
18



Another Example with Masking
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for (i = 0; i < 64; ++i)
if (a[i] >= b[i]) 

c[i] = a[i]
else 

c[i] = b[i]

A B VMASK    
1 2 0                 
2 2 1
3 2 1
4 10 0
-5 -4 0
0 -3 1
6 5 1
-7 -8 1

Steps to execute the loop in SIMD code

1. Compare A, B to get 
VMASK

2. Masked store of A into C

3. Complement VMASK

4. Masked store of B into C



Some Issues
n Stride and banking

q As long as they are relatively prime to each other and there 
are enough banks to cover bank access latency, we can 
sustain 1 element/cycle throughput

n Storage format of a matrix
q Row major: Consecutive elements in a row are laid out 

consecutively in memory
q Column major: Consecutive elements in a column are laid out 

consecutively in memory
q You need to change the stride when accessing a row versus 

column
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n A and B matrices, both stored in memory in row-major order

n Load A’s row 0 (A00 through A05) into vector register V1
q Each time, increment address by 1 to access the next column
q Accesses have a stride of 1

n Load B’s column 0 (B00 through B50) into vector register V2
q Each time, increment address by 10 to access the next row
q Accesses have a stride of 10
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Vector Stride Example: Matrix Multiply

A4x6 B6x10 → C4x10

Dot product of each row vector of 
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Different strides can lead 
to bank conflicts

How do we minimize them?



Recall: Memory Banking
n Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks
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Minimizing Bank Conflicts
n More banks

n More ports in each bank

n Better data layout to match the access pattern
q Is this always possible?

n Better mapping of address to bank
q E.g., randomized mapping
q Rau, “Pseudo-randomly interleaved memory,” ISCA 1991.
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Minimizing Bank Conflicts: Recommended Reading

24Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.



SIMD Operations in Modern ISAs



MMX Example: Image Overlaying (I)
n Goal: Overlay the human in image x on top of the background in image y

26Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.
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Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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MMX Example: Image Overlaying (II)

27Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.
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Figure 7. Flow diagram of matrix-vector mult iply. 

much like the one in Figure 6. This operation and similar ones 
appear in many multimedia algorithms and applications. 

A multiply-accumulate operation (MAC)-the product of 
two operands added to a third operand (the accumulator)- 
requires two loads (operands of the multiplication opera- 
tion), a multiply, and an add (to the accumulator). MMX does 
not support three-operand instructions, therefore it does not 
have a full MAC capability. On the other hand, MMX does 
define the PMADDWD instruction that performs four multi- 
plies and two 32-bit adds. A following PADDD instruction 
performs the additional two adds. 

We start by looking at a vector dot product, the building 
block of the matrix-vector multiplication. For this perfor- 
mance example, we assume both input vectors are 16 ele- 
ments long, with each element in the vectors being signed 
16 bits. Accumulation takes place in 32-bit precision. A 
Pentium processor microarchitecture, for example, would 
have to process the operations one at a time in sequential 
fashion. This amounts to 32 loads, 16 multiplies, and 1 j addi- 
tions, for a total of 63 instructions. Assume we perform four 
MACs (out of the 16) per loop iteration of our code. Then, 
we need to add 12 instructions for loop control (3 instructions 
per iteration, increment, compare, branch) and 1 instruction 
to store the result. Now the total is 76 instructions. 

Assuming all data and instructions are in the on-chip 
caches, and that exiting the loop will incur one branch mis- 
prediction, the integer assembly optimized version of this 
code (using both pipelines) takes just over 200 cycles on a 
Pentium processor microarchitecture. The cycle count is 
dominated by the nonpipelined, 11-cycle integer multiply 
operation. Under the same conditions, but assuming the data 
is in floating-point format, the floating-point optimized 
assembly version executes in 74 cycles. This version is faster 
as the floating-point multiply takes only three cycles to exe- 
cute and executes in a pipelined unit. 

Now, we can look at MMX technology MMX computes 
four elements at a time. This reduces the instruction count to 
eight loads, four PMADDWD instructions, three PADDD 
instructions, one store instruction, and three additional 
instructions (overhead due to packed data types), totaling 19 
instructions. Performing loop unrolling of four PMADDWD 
instructions eliminates the need to insert loop control instruc- 
tions. The four PMADDWDs already perform the 16 required 
MACs. Thus, the MMX instruction count is four times less than 
that for integer or floating-point operations. With the same 
assumptions applied to a Pentium processor microarchitec- 
ture, an MMX-optimized assembly version of the code using 
both pipelines will execute in only 12 cycles. This is a 

speedup of six times over floating- 
point and much more over integer. 

Now, we extend this example to 
a full matrix-vector multiply. We 
assume a 16x16 matrix multiplies a 
16-element vector, an operation built 
of 16 vector dot products. Repeating 
the same exercise as before, and 
assuming a loop unrolling that per- 
forms four vector dot products each 
iteration, the regular Pentium proces- 

sol- floating-point code will total 4(4x76 + 3) or 1,228 instnic- 
tions. Using MMX technology will require 4(4x19 + 3) or 316 
instructions. The MMX instruction count is 3.9 times less than 
when using regular operations. The best regular code imple- 
mentation (floating-point optimized version) takes just under 
1;200 cycles to complete in comparison to 207 cycles for the 
MMX code version. This is a speedup of 5.8 times. 

Chroma k e y ~ ~ g  
Chroma keying is an image overlay technique frequently 

referred to as the weatherman example. In this example, we 
use a dark-blue screen to overlay an image of a woman on 
a picture of a spring blossom (see Figure 8). The required C 
code operation is 

for (i=O: i<image-size; i++) i 
if (x[il == Blue) new-image[i] =y[il; 

else new-image[il = x[il; 
1 

arhere x is the image of the woman on a blue blackground, 
and y is the image of the spring blossom. 

Using MMX technology, we load eight pixels from the pic- 
ture with the woman on a blue background. In Figure 9, the 
compare instruction builds a mask for that data. This mask 
is a sequence of byte elements that are all 1s or all Os, rep- 
resenting the Boolean values of true and false. This reflects 
the h"anted" background and what we want to keep. 
Figure 9 shows this result using a black-and-white picture. 

Figure 10 shows this mask being used on the same eight 
pixels from the picture with the woman and the corre- 
sponding eight pixels from the spring blossom. The PANDN 
and PAND instructions use the mask to identify which pix- 
els to keep from the spring blossom and the woman. They 
also turn the unwanted pixels to Os. The POR instruction 
builds the final picture 

The MMX code sequence in Figure 11 processes eight pix- 
els using only six MMX instructions and doing so without 
branches. Being able to process a conditional move without 
using branch instructions or looking up condition codes is 
becoming an important performance issue with the advanced, 
deep-pipeline microarchitectures that use branch prediction. 
A branch based on the result of a compare operation on the 
incoming data is usually difficult to predict, as incoming data 
in many cases can change randomly and thus degrade the pre- 
diction quality. Eliminating branches used for data selection, 
together nTith the parallelism of the MMX instructions, com- 
bines into an important performance enhancement feature. 
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From MMX to AMX in x86 ISA
n MMX

q 64-bit MMX registers for integers
n SSE (Streaming SIMD Extensions)

q SSE-1: 128-bit XMM registers for integers and single-precision 
floating point

q SSE-2: Double-precision floating point
q SSE-3, SSSE-3 (supplemental): New instructions
q SSE-4: New instructions (not multimedia specific), shuffle operations

n AVX (Advanced Vector Extensions)
q AVX: 256-bit floating point
q AVX2: 256-bit floating point with FMA (Fused Multiply Add)
q AVX-512: 512-bit

n AMX (Advanced Matrix Extensions)
q Designed for AI/ML workloads
q 2-dimensional registers
q Tiled matrix multiply unit (TMUL)

28https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf

https://www.intel.sg/content/dam/www/public/apac/xa/en/pdfs/ssg/Intel_Processor_Architecture_SIMD_Instructions.pdf
https://gcc.gnu.org/wiki/cauldron2014?action=AttachFile&do=get&target=Cauldron14_AVX-512_Vector_ISA_Kirill_Yukhin_20140711.pdf


Lecture on SIMD Processing

29https://youtu.be/fP4kZ2Zx_84

https://youtu.be/fP4kZ2Zx_84


SIMD Operations in 
Modern (Machine Learning) Accelerators



Cerebras’s Wafer Scale Engine (2019)

31

Cerebras WSE               
1.2 Trillion transistors

46,225 mm2

Largest GPU               
21.1 Billion transistors

815 mm2

n The largest ML 
accelerator chip (2019)

n 400,000 cores 

NVIDIA TITAN V
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Cerebras’s Wafer Scale Engine-2 (2021)

32

Cerebras WSE-2               
2.6 Trillion transistors

46,225 mm2

Largest GPU               
54.2 Billion transistors

826 mm2

n The largest ML 
accelerator chip (2021)

n 850,000 cores 

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/


Size, Place, and Route in Cerebras’s WSE
n Neural network mapping onto the whole wafer is a 

challenge

33James et al., “ISPD 2020 Physical Mapping of Neural Networks on a Wafer-Scale Deep Learning Accelerator.”

Multiple possible mappings

An example mapping

Different dies of the wafer work 
on different layers of the neural 
network: MIMD machine



Recall: Flynn’s Taxonomy of Computers

n Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966

n SISD: Single instruction operates on single data element
n SIMD: Single instruction operates on multiple data elements

q Array processor
q Vector processor

n MISD: Multiple instructions operate on single data element
q Closest form: systolic array processor, streaming processor

n MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams)
q Multiprocessor
q Multithreaded processor

34



A MIMD Machine with SIMD Processors (I)
n MIMD machine

q Distributed memory (no shared memory)
q 2D-mesh interconnection fabric
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Fig. 2. CS-1 Wafer Scale Engine (WSE). A single wafer (rightmost) contains one CS-1 processor. Each processor is a collection of dies arranged
in a 2D fashion (middle). Dies are then further subdivided into a grid of tiles. One die hosts thousands of computational cores, memory and
routers (leftmost). There is no logical discontinuity between adjacent dies and there is no additional bandwidth penalty for crossing the die-die
barrier. In total, there are 1.2 trillion transistors in an area of 462.25 cm2.

tensors, making use of tensor address generation hard-
ware to efficiently access tensor data in memory. These
play the role of nested loops and eliminate any loop
overhead. There are enough memory banks to provide
the bandwidth needed to fetch eight 16-bit words from
memory and store four such words per cycle, enough
to support SIMD-4, AXPY operations y = y + a ⇥ x,
where the operand a is a scalar held in a register and x
and y are tensors that stream to and from memory. Such
an operation can be launched with a single instruction.
The tensor operands can have more than four elements,
so the instruction executes for multiple cycles.

In mixed precision with multiplications in fp16 and
additions performed in fp32, the throughput is two
FMACs per core per cycle. Purely 32-bit floating point
computations run one FMAC per core per cycle. The
theoretical peak performance of the system varies de-
pending on the number of cores configured on the wafer,
clock rate and power settings.

The core connects to a local router that has five bidi-
rectional links, one to each of its four nearest neighbors
and one to its own core. The router can move data into
and out of these five links, in parallel, on every cycle.
Even with scalar granularity, communication is efficient.
The router has hardware queues for its connection to
the core and for each of a set of virtual channels,
avoiding deadlock. Communication between potentially
distant processors occurs along predetermined routes.
Routing is configured offline, as part of compilation;
data travel along virtual channels that can be program-
matically reconfigured at run time. The fanout of data
to multiple destinations is done through the routing; the
router can forward an input word to any subset of its

five output ports. There is no runtime software involved
with communication. Arriving data are deposited by the
hardware directly into memory or registers or routed to
functional units as specified by the program.

An instruction with tensor operands can run syn-
chronously or, at the discretion of the programmer, as
a background thread that shares the datapath with other
threads including the main one. A background thread
runs a single tensor operation, as a single asynchronously
running instruction. There is no context switch overhead.
The registers and memory used by an asynchronous
thread are those assigned by the programmer or compiler
in the instruction, and these may not be overwritten until
the thread terminates. Subsequent computation can be
delayed until the thread terminates. The core supports
nine concurrent threads of execution.

A stream of data to or from the fabric may be used
as an input to a tensor operation, or as the destination
for one. The hardware directly implements scheduling
activities that would normally be performed by an oper-
ating system. This allows compact and efficient software
implementations. For example, one core can be sending
data from its local memory to another core; simultane-
ously it can receive data from another core while adding
it to values stored in its local memory. All of this is
accomplished using only two machine instructions that
run as independent threads.

Code consists of tasks that react to events. Tasks are
triggered by other tasks, or by arriving data words. The
channel of the arriving word determines the code that is
triggered. There is little delay between the completion
of a task and the start of a subsequent task, as this is
handled in hardware. Together with the SIMD operations

Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.

84 dies4539 tiles



A MIMD Machine with SIMD Processors (II)
n SIMD processors

q 4-way SIMD for 16-bit floating point operands
q 48 KB of local SRAM

36Rocki et al., “Fast stencil-code computation on a wafer-scale processor.” SC 2020.
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tensors, making use of tensor address generation hard-
ware to efficiently access tensor data in memory. These
play the role of nested loops and eliminate any loop
overhead. There are enough memory banks to provide
the bandwidth needed to fetch eight 16-bit words from
memory and store four such words per cycle, enough
to support SIMD-4, AXPY operations y = y + a ⇥ x,
where the operand a is a scalar held in a register and x
and y are tensors that stream to and from memory. Such
an operation can be launched with a single instruction.
The tensor operands can have more than four elements,
so the instruction executes for multiple cycles.

In mixed precision with multiplications in fp16 and
additions performed in fp32, the throughput is two
FMACs per core per cycle. Purely 32-bit floating point
computations run one FMAC per core per cycle. The
theoretical peak performance of the system varies de-
pending on the number of cores configured on the wafer,
clock rate and power settings.

The core connects to a local router that has five bidi-
rectional links, one to each of its four nearest neighbors
and one to its own core. The router can move data into
and out of these five links, in parallel, on every cycle.
Even with scalar granularity, communication is efficient.
The router has hardware queues for its connection to
the core and for each of a set of virtual channels,
avoiding deadlock. Communication between potentially
distant processors occurs along predetermined routes.
Routing is configured offline, as part of compilation;
data travel along virtual channels that can be program-
matically reconfigured at run time. The fanout of data
to multiple destinations is done through the routing; the
router can forward an input word to any subset of its

five output ports. There is no runtime software involved
with communication. Arriving data are deposited by the
hardware directly into memory or registers or routed to
functional units as specified by the program.

An instruction with tensor operands can run syn-
chronously or, at the discretion of the programmer, as
a background thread that shares the datapath with other
threads including the main one. A background thread
runs a single tensor operation, as a single asynchronously
running instruction. There is no context switch overhead.
The registers and memory used by an asynchronous
thread are those assigned by the programmer or compiler
in the instruction, and these may not be overwritten until
the thread terminates. Subsequent computation can be
delayed until the thread terminates. The core supports
nine concurrent threads of execution.

A stream of data to or from the fabric may be used
as an input to a tensor operation, or as the destination
for one. The hardware directly implements scheduling
activities that would normally be performed by an oper-
ating system. This allows compact and efficient software
implementations. For example, one core can be sending
data from its local memory to another core; simultane-
ously it can receive data from another core while adding
it to values stored in its local memory. All of this is
accomplished using only two machine instructions that
run as independent threads.

Code consists of tasks that react to events. Tasks are
triggered by other tasks, or by arriving data words. The
channel of the arriving word determines the code that is
triggered. There is little delay between the completion
of a task and the start of a subsequent task, as this is
handled in hardware. Together with the SIMD operations

4-way SIMD fused-multiply 
accumulate (FMAC) units.
AXPY: y = a * x + y

Address registers

Local memory
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Heterogeneous Computing Systems
n The end of Moore’s law created the need for heterogeneous 

systems
n More suitable devices for each type of workload
n Increased performance and energy efficiency
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Chang+, “Collaborative Computing for Heterogeneous Integrated Systems,” ICPE 2017.



GPUs (Graphics Processing Units)



NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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Recall: Array vs. Vector Processors

41

ARRAY PROCESSOR VECTOR PROCESSOR

LD     VR ß A[3:0]
ADD  VR ß VR, 1 
MUL  VR ß VR, 2
ST     A[3:0] ß VR

Instruction Stream

Time

LD0 LD1 LD2 LD3
AD0 AD1 AD2 AD3
MU0 MU1 MU2 MU3
ST0 ST1 ST2 ST3

LD0
LD1 AD0
LD2 AD1 MU0
LD3 AD2 MU1 ST0

AD3 MU2 ST1
MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space



NVIDIA A100 Core
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

42
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Recall: Memory Banking
n Memory is divided into banks that can be accessed independently; 

banks share address and data buses (to minimize pin cost)
n Can start and complete one bank access per cycle
n Can sustain N concurrent accesses if all N go to different banks
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GPUs are SIMD Engines Underneath
n The instruction pipeline operates like a SIMD pipeline (e.g., 

an array processor)

n However, the programming is done using threads, NOT 
SIMD instructions

n To understand this, let’s go back to our parallelizable code 
example

n But, before that, let’s distinguish between 
q Programming Model (Software)

vs.
q Execution Model (Hardware)

44



Programming Model vs. Hardware Execution Model

n Programming Model refers to how the programmer expresses 
the code
q E.g., Sequential (von Neumann), Data Parallel (SIMD), Dataflow, 

Multi-threaded (MIMD, SPMD), …

n Execution Model refers to how the hardware executes the 
code underneath
q E.g., Out-of-order execution, Vector processor, Array processor, 

Dataflow processor, Multiprocessor, Multithreaded processor, …

n Execution Model can be very different from the Programming 
Model
q E.g., von Neumann model implemented by an OoO processor
q E.g., SPMD model implemented by a SIMD processor (a GPU)
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How Can You Exploit Parallelism Here?

46

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Let’s examine three programming 
options to exploit instruction-level 

parallelism present in this sequential 
code:

1. Sequential (SISD)

2. Data-Parallel (SIMD)

3. Multithreaded (MIMD/SPMD)



Prog. Model 1: Sequential (SISD)
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load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code n Can be executed on a:

n Pipelined processor
n Out-of-order execution processor

q Independent instructions executed 
when ready

q Different iterations are present in the 
instruction window and can execute in 
parallel in multiple functional units

q In other words, the loop is dynamically 
unrolled by the hardware

n Superscalar or VLIW processor
q Can fetch and execute multiple 

instructions per cycle

for (i=0; i < N; i++)
C[i] = A[i] + B[i];



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 2: Data Parallel (SIMD)
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

Vector Instruction

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Vectorized Code

Realization: Each iteration is independent

Idea: Programmer or compiler generates a SIMD 
instruction to execute the same instruction from 
all iterations across different data

Best executed by a SIMD processor (vector, array)

VLD     A à V1

VLD     B à V2

VADD     V1 + V2 à V3

VST     V3 à C



load

load

add

store

load

load

add

store

Iter. 1

Iter. 2

Scalar Sequential Code

Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine



Prog. Model 3: Multithreaded
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineCan be executed on a SIMT machine
Single Instruction Multiple Thread



A GPU is a SIMD (SIMT) Machine
n Except it is not programmed using SIMD instructions

n It is programmed using threads (SPMD programming model)
q Each thread executes the same code but operates a different 

piece of data
q Each thread has its own context (i.e., can be 

treated/restarted/executed independently)

n A set of threads executing the same instruction are 
dynamically grouped into a warp (wavefront) by the 
hardware
q A warp is essentially a SIMD operation formed by hardware!
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Warp 0 at PC X+3

Warp 0 at PC X+2

Warp 0 at PC X+1

SPMD on SIMT Machine
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for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2 Realization: Each iteration is independent

Idea: Programmer or compiler generates a thread 
to execute each iteration. Each thread does the 
same thing (but on different data)

Can be executed on a MIMD machine

This particular model is also called:

SPMD: Single Program Multiple Data

Can be executed on a SIMD machineA GPU executes it using the SIMT model:
Single Instruction Multiple Thread

Warp 0 at PC X

Warp: A set of threads that execute
the same instruction (i.e., at the same PC)



Graphics Processing Units
SIMD not Exposed to Programmer (SIMT)



SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently (on any type of scalar pipeline) à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Fine-Grained Multithreading of 
Warps 

55

for (i=0; i < N; i++)
C[i] = A[i] + B[i];

load

load

add

store

load

load

add

store

Iter. 
1

Iter. 
2

Warp 0 at PC X

n Assume a warp consists of 32 threads
n If you have 32K iterations, and 1 iteration/thread à 1K warps
n Warps can be interleaved on the same pipeline à Fine grained 

multithreading of warps

Warp 1 at PC X

Iter. 
33

Iter. 
34

Warp 20 at PC X+2

Iter.
20*32 + 1

Iter.
20*32 + 2



Fine-Grained Multithreading
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Fine-Grained Multithreading
n Idea: Hardware has multiple thread contexts (PC+registers). 

Each cycle, fetch engine fetches from a different thread.
q By the time the fetched branch/instruction resolves, no 

instruction is fetched from the same thread
q Branch/instruction resolution latency overlapped with execution 

of other threads’ instructions

+ No logic needed for handling control and
data dependences within a thread 

-- Single thread performance suffers 
-- Extra logic for keeping thread contexts
-- Does not overlap latency if not enough 

threads to cover the whole pipeline
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Fine-Grained Multithreading (II)
n Idea: Switch to another thread every cycle such that no two 

instructions from a thread are in the pipeline concurrently

n Tolerates the control and data dependence latencies by 
overlapping the latency with useful work from other threads

n Improves pipeline utilization by taking advantage of multiple 
threads

n Thornton, “Parallel Operation in the Control Data 6600,” AFIPS 
1964.

n Smith, “A pipelined, shared resource MIMD computer,” ICPP 1978.
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Lecture on Fine-Grained Multithreading

59https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16



Lectures on Fine-Grained Multithreading
n Digital Design & Computer Architecture, Spring 2021, Lecture 14

q Pipelined Processor Design (ETH, Spring 2021)
q https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39Y

B5pfW4SJ7LlN&index=16

n Digital Design & Computer Architecture, Spring 2020, Lecture 18c
q Fine-Grained Multithreading (ETH, Spring 2020)
q https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fU

YWPGiZUBQo2&index=26

60https://www.youtube.com/onurmutlulectures

https://www.youtube.com/watch?v=6e5KZcCGBYw&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LlN&index=16
https://www.youtube.com/watch?v=bu5dxKTvQVs&list=PL5Q2soXY2Zi_FRrloMa2fUYWPGiZUBQo2&index=26
https://www.youtube.com/onurmutlulectures


Warps and Warp-Level FGMT
n Warp: A set of threads that execute the same instruction 

(on different data elements) à SIMT (Nvidia-speak)
n All threads run the same code
n Warp: The threads that run lengthwise in a woven fabric …
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Thread Warp 3
Thread Warp 8

Thread Warp 7
Thread Warp

Scalar
Thread

W

Scalar
Thread

X

Scalar
Thread

Y

Scalar
Thread

Z

Common PC

SIMD Pipeline

Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



High-Level View of a GPU

62Lindholm et al., "NVIDIA Tesla: A Unified Graphics and Computing Architecture," IEEE Micro 2008.



Latency Hiding via Warp-Level FGMT
n Warp: A set of threads that 

execute the same instruction 
(on different data elements)

n Fine-grained multithreading
q One instruction per thread in 

pipeline at a time (No 
interlocking)

q Interleave warp execution to 
hide latencies

n Register values of all threads stay 
in register file

n FGMT enables long latency 
tolerance
q Millions of pixels 
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Warp Execution
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32-thread warp executing ADD A[tid],B[tid] à C[tid]

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

A[6] B[6]

Execution using 
one pipelined 
functional unit

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

A[24] B[24]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

A[25] B[25]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

A[26] B[26]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

A[27] B[27]

Execution using 
four pipelined 
functional units

Slide credit: Krste Asanovic

Time

Space

Time
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Lane

Functional Unit

Registers
for each 
Thread

Memory Subsystem

Registers for 
thread IDs
0, 4, 8, …

Registers for 
thread IDs
1, 5, 9, …

Registers for 
thread IDs
2, 6, 10, …

Registers for 
thread IDs
3, 7, 11, …

Slide credit: Krste Asanovic

SIMD Execution Unit Structure



Warp Instruction Level Parallelism
Can overlap execution of multiple instructions

q Example machine has 32 threads per warp and 8 lanes
q Completes 24 operations/cycle while issuing 1 warp/cycle
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n Same instruction in different threads uses thread id to 
index and access different data elements

SIMT Memory Access

Let’s assume N=16, 4 threads per warp à 4 warps 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
+

+ + + +

Slide credit: Hyesoon Kim

Threads

Data elements

Warp 0 Warp 1 Warp 2 Warp 3
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Sample GPU SIMT Code (Simplified)

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + B[ii];
}

// there are 100000 threads
__global__ void KernelFunction(…) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
int varA = aa[tid];
int varB = bb[tid];
C[tid] = varA + varB;

}

CPU code

CUDA code

Slide credit: Hyesoon Kim 68



n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers

69

Slide credit: Hwu & Kirk



Amdahl’s Law
n Amdahl’s Law

q f: Parallelizable fraction of a program
q N: Number of processors

q Amdahl, “Validity of the single processor approach to achieving large scale 
computing capabilities,” AFIPS 1967. 

n Maximum speedup limited by serial portion: Serial bottleneck

n All parallel machines “suffer from” the serial bottleneck

70

Speedup =
1

+1 - f f
N



n CPU threads and GPU kernels
q Sequential or modestly parallel sections on CPU
q Massively parallel sections on GPU: Blocks of threads

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<<nBlk, nThr>>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<<nBlk, nThr>>>(args);

Warps not Exposed to GPU Programmers
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Slide credit: Hwu & Kirk



From Blocks to Warps
n GPU cores: SIMD pipelines

q Streaming Multiprocessors (SM)
q Streaming Processors (SP)

n Blocks are divided into warps
q SIMD unit (32 threads)

Streaming Multiprocessor

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

SP SP

LD/ST

SFU

SFU

SFU

SFU

Register File

Shared Memory / L1 Cache

Constant Cache

Dispatch Unit Dispatch Unit

Warp Scheduler Warp Scheduler

Instruction Cache

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 0’s warps Block 1’s warps

…
t0 t1 t2 … t31

…
Block 2’s warps
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NVIDIA Fermi architecture



Warp-based SIMD vs. Traditional SIMD
n Traditional SIMD contains a single thread 

q Sequential instruction execution; lock-step operations in a SIMD instruction
q Programming model is SIMD (no extra threads) à SW needs to know 

vector length
q ISA contains vector/SIMD instructions

n Warp-based SIMD consists of multiple scalar threads executing in a 
SIMD manner (i.e., same instruction executed by all threads)
q Does not have to be lock step
q Each thread can be treated individually (i.e., placed in a different warp) 

à programming model not SIMD
n SW does not need to know vector length
n Enables multithreading and flexible dynamic grouping of threads

q ISA is scalar à SIMD operations can be formed dynamically
q Essentially, it is SPMD programming model implemented on SIMD 

hardware
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SPMD
n Single procedure/program, multiple data 

q This is a programming model rather than computer organization

n Each processing element executes the same procedure, except on 
different data elements
q Procedures can synchronize at certain points in program, e.g. barriers

n Essentially, multiple instruction streams execute the same 
program
q Each program/procedure 1) works on different data, 2) can execute a 

different control-flow path, at run-time
q Many scientific applications are programmed this way and run on MIMD 

hardware (multiprocessors)
q Modern GPUs programmed in a similar way on a SIMD hardware
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SIMD vs. SIMT Execution Model
n SIMD: A single sequential instruction stream of SIMD 

instructions à each instruction specifies multiple data inputs
q [VLD, VLD, VADD, VST], VLEN

n SIMT: Multiple instruction streams of scalar instructions à
threads grouped dynamically into warps
q [LD, LD, ADD, ST], NumThreads

n Two Major SIMT Advantages: 
q Can treat each thread separately à i.e., can execute each thread 

independently on any type of scalar pipeline à MIMD processing
q Can group threads into warps flexibly à i.e., can group threads 

that are supposed to truly execute the same instruction à
dynamically obtain and maximize benefits of SIMD processing
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Threads Can Take Different Paths in Warp-based SIMD

n Each thread can have conditional control flow instructions
n Threads can execute different control flow paths
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Slide credit: Tor Aamodt



Control Flow Problem in GPUs/SIMT
n A GPU uses a SIMD 

pipeline to save area 
on control logic
q Groups scalar threads 

into warps

n Branch divergence 
occurs when threads 
inside warps branch to 
different execution 
paths

77

Branch

Path A

Path B

Branch

Path A

Path B

Slide credit: Tor Aamodt

This is the same as conditional/predicated/masked execution. 
Recall the Vector Mask and Masked Vector Operations?
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NVIDIA A100 Block Diagram

108 cores on the A100
(Up to 128 cores in the full-blown chip)

40MB L2 cache

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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NVIDIA A100 Core
19.5 TFLOPS Single Precision
9.7 TFLOPS Double Precision
312 TFLOPS for Deep Learning (Tensor cores)

80
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/



Tensor Core Microarchitecture (Volta)
n Each warp utilizes two tensor cores
n Each tensor core contains two “octets”

q 16 SIMD units per tensor core (8 per octet)
q 4x4 matrix-multiply and accumulate each cycle per tensor core

81* M. A. Raihan, N. Goli and T. M. Aamodt, "Modeling Deep Learning Accelerator Enabled GPUs," ISPASS 2019.
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Figure 13: Proposed Tensor Core Microarchitecture

each FEDP unit, multiplication is performed in parallel in
the first stage and accumulation occurs over three stages for
a total of four pipeline stages. As each tensor core consists
of sixteen FP16 FEDP units, it is capable of completing one
4× 4 matrix multiplication each cycle.

V. MODELING AND EVALUATION

A. Modelling Tensor Cores
Our changes to model the tensor cores in Volta are avail-

able in the “dev” branch of GPGPU-Sim [24] on github3. We
extended the current version of GPGPU-Sim to support 16-
bit floating-point by using a half-precision C++ header-only
library [45]. The library provides an efficient implementation
of 16-bit floating-point conforming to the IEEE 754 half-
precision format. It provides common arithmetic operations
and type conversion. GPGPU-Sim currently only supports
SASS execution for the G90 architecture; therefore, we only
model tensor core operations at the PTX level. To do so,
we added functional and timing models for the wmma.load,
wmma.mma and wmma.store PTX instructions described in
Section II-C.

Our functional model of the wmma.load and wmma.store
PTX instructions support all possible layout combinations
for operand matrix A, B and C. Our functional model follows

3https://github.com/gpgpu-sim/gpgpu-sim_distribution/tree/dev

the operand matrix element to thread mapping shown in
Figure 7. We have verified the timing model generates
the exact same number of coalesced memory transactions
generated by the Titan V GPU for these operations.

Our functional model of the wmma.mma instruction sup-
ports all 32 possible configurations supported on the Titan V
GPU. A timing model for the tensor core functional unit
is added to the GPU pipeline. We interface our tensor
core timing model to the operand collector unit modeled
in GPGPU-Sim. Each wmma.mma instruction is issued to
the tensor core unit after all of its source operands are
ready in the operand collector. We updated the scoreboard to
check for RAW and WAW hazard associated with wmma.mma
instructions.

We validate our tensor core model by comparing against
an NVIDIA Tesla Titan V with CUDA Capability 7.0, hosted
by an Intel Core i7-4771 3.50GHz based workstation with
Ubuntu 16.04.4 LTS, CUDA Toolkit Version 9.0, NVIDIA
410.48 GPU driver, and gcc 4.9.4. Figure 14a compares the
cycles required to execute a WMMA based matrix-multiply
and accumulate kernel on the Titan V GPU and GPGPU-
Sim as matrix size varies. We find GPGPU-Sim tracks real
hardware very accurately with a standard deviation of less
than 5%. This is despite the fact our model is implemented
at the PTX level.
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Proposed* tensor core microarchitecture

SIMD unit

Unlike conventional SIMD, 
register contents are not
private to each thread, but 
shared inside the warp



Lecture on Graphics Processing Units

82https://youtu.be/eaxGCv0wRrU

https://youtu.be/eaxGCv0wRrU


Lecture on SIMD Processing & GPUs

83https://youtu.be/f3IU9IX990o

https://youtu.be/f3IU9IX990o
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Clarification of Some GPU Terms

85

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step) 
on a SIMD functional unit

Pipelined 
functional unit /
Scalar pipeline

Streaming 
processor /
CUDA core

- Functional unit that executes instructions for one 
GPU thread

SIMD functional 
unit /
SIMD pipeline

Group of N 
streaming 
processors (e.g., 
N=8 in GTX 285, 
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for 
an entire warp

GPU core Streaming 
multiprocessor

Compute unit It contains one or more warp schedulers and one 
or several SIMD pipelines


