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GPUs are SIMD Engines
Underneath




VIDIA A100 Block Diagram

PCI Express 4.0 Host Interface
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Core
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Evolution of NVIDIA GPUs
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Evolution ot NVIDIA GPUs (Updated)
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NVIDIA H100 Block Diagram

PCl Express 5.0 Host Interface
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https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

VIDIA H100 Core

Lt nsuction e 48 TFLOPS Single Precision*
erpLsot:::::'I:‘(’:zc!::':dlclk) erpL:cI:::::?‘(’:z‘:ha::lclk) 24 TF LO PS DO u b I e P rec i S i O n *

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 800 TFLO PS (FP16, TenSOI‘ CO reS)
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP64
TENSOR CORE FP32 FP32 FP64 TENSOR CORE
4™ GENERATION FP32 FP32 FP64 4" GENERATION
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP64
FP32 FP64
7] FP64
FP32 FP64
LD/ Lo/ LD/ LD/ Lo/ LD/ LD/ LD/ LD/ Lo/ LD/ LD/ Lo/ LD/ [ \
ST ST ST ST ST ST ST ST ST ST SFU FP8 FP8
s s matrix matrix
< Range Precision
LO Instruction Cache LO Instruction Cache k=l ¢ .
= — —— = — o exponen mantissa
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk) e8 m23 multiply
FP32 [T
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) e5 m10

accumulate into
FP32 or FP16

INT32 FP32 FP64 INT32 FP32 FP64

INT32 FP32 FP64 INT32 FP32

INT32 FP32 FP64 INT32 FP32

INT32 FP32 FP64 INT32 FP32

INT32 FP32 FPB4 INT32 FP32

INT32 FP64 INT32

INT32 FP64 INT32

INT32 FP64 TENSOR CORE INT32 TENSOR CORE

INT32 4™ GENERATION INT32 4™ GENERATION
INT32 NT32 - FP32|FP16|BF16|FP8
INT32 INT32 (E4M3) :

INT32 INT32 matrix SM

INT32 INT32 - v
INT32 INT32

INT32 INT32

INT32 INT32 Allocate 1 bit to either Support for multiple accumulator
g s s S S SS s s ER A range or precision and output types

bias/act/...

convert

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
* Preliminary performance estimates 8



https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Recall: Latency Hiding via Warp-Level FGMT
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Slide credit: Tor Aamodt




Recall: Warp Execution

32-thread warp executing ADD A[tid],B[tid] = C[tid]

Execution using
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functional unit
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Recall: SIMD Execution Unit Structure
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Recall: Warp Instruction Level Parallelism

Can overlap execution of multiple instructions
o Example machine has 32 threads per warp and 8 lanes
o Completes 24 operations/cycle while issuing 1 warp/cycle

Load Unit Multiply Unit Add Unit
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GPU Programming




Recall: Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)
++ Vector operations
-- Very inefficient if parallelism is irreqular
-- How about searching for a key in a linked list?

To program a vector machine, the compiler or hand coder
must make the data structures in the code fit nearly exactly the
regular structure built into the hardware. That’s hard to do in
first place, and just as hard to change. One tweak, and the
Jow-level code has to be rewritten by a very smart and
dedicated programmer who knows the hardware and often the
subtleties of the application area. Often the rewriting is

Fisher, “Very Long Instruction Word architectures and the ELI-512,” ISCA 1983. 4



General Purpose Processing on GPU

Easier programming of SIMD processors with SPMD
o GPUs have democratized High Performance Computing (HPC)
o Great FLOPS/$, massively parallel chip on a commodity PC

Many workloads exhibit inherent parallelism
o Matrices

o Image processing

o Deep neural networks

However, this is not for free

o New programming model

o Algorithms need to be re-implemented and rethought
Still some bottlenecks

o CPU-GPU data transfers (PCIe, NVLINK)

o DRAM memory bandwidth (GDDR5, GDDR6, HBM2, HBM3)
Data layout
15



Recommended Readings (I)

7

= Hwu and Kirk, “Programming Massively Parallel Processors,
Third Edition, 2017
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Recommended Readings (II)

= CUDA Programming Guide

o https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html

"‘? DEVELOPER CUDA TOOLKIT DOCUMENTATION
nvinDia ZONE

CUDA Toolkit v11.6.2

Programming Guide (PDF) - v11.6.2 (older) - Last updated March 24, 2022 - Send Feedback

Programming Guide

@t edtetion CUDA C++ Programming Guide
2lioeamminaiiiocel The programming guide to the CUDA model and interface.

> 3. Programming Interface

> 4. Hardware Implementation Changes from Version 11.3
> 5. Performance Guidelines
A. CUDA-Enabled GPUs * Added Graph Memory Nodes.

o Formalized Asynchronous SIMT Programming Model.

> B. C++ Language Extensions

> C. Cooperative Groups

> D. CUDA Dynamic Parallelism

> E. Virtual Memory Management

1. Introduction
1.1. The Benefits of Using GPUs

> F. Stream Ordered Memory The Graphics Processing Unit (GPU)' provides much higher instruction throughput and memory bandwidth than the CPU within a similar price and power envelope. Many applications
Allocator leverage these higher capabilities to run faster on the GPU than on the CPU (see GPU Applications). Other computing devices, like FPGAs, are also very energy efficient, but offer

> G. Graph Memory Nodes much less programming flexibility than GPUs.

P H. Mathematical Functions This difference in capabilities between the GPU and the CPU exists because they are designed with different goals in mind. While the CPU is designed to excel at executing a

> 1. C++ Language Support sequence of operations, called a thread, as fast as possible and can execute a few tens of these threads in parallel, the GPU is designed to excel at executing thousands of them in

> J. Texture Fetching parallel (amortizing the slower single-thread performance to achieve greater throughput).

D> K. Compute Capabilities 4

: The GPU is specialized for highly parallel computations and therefore designed such that more transistors are devoted to data processing rather than data caching and flow control.
> L. Driver API | The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a GPU.

17
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CPU vs. GPU

= Different design philosophies
o CPU: A few out-of-order cores
o GPU: Many in-order FGMT cores

CPU

- ==

Slide credit: Hwu & Kirk
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GPU Computing

Computation is offloaded to the GPU

Three steps

o CPU-GPU data transfer (1)
o GPU kernel execution (2)
o GPU-CPU data transfer (3)

CPU
cores

CPU
memory

Matrix

GPU
memory

Matrix

GPU
cores

19



Traditional Program Structure

= CPU threads and GPU kernels

o Sequential or modestly parallel sections on CPU

o Massively parallel sections on GPU

Serial Code (host)

Parallel Kernel (device)

DO

KernelA<<< nBlk, nThr >>>(args); 2

Serial Code (host)

D

Parallel Kernel (device)

KernelB<<< nBlk, nThr >>>(args); g S || S

Slide credit: Hwu & Kirk
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Recall: SPMD

Single procedure/program, multiple data
a This is a programming model rather than computer organization

Each processing element executes the same procedure, except on
different data elements

o Procedures can synchronize at certain points in program, e.g. barriers

Essentially, multiple instruction streams execute the same
program

o Each program/procedure 1) works on different data, 2) can execute a
different control-flow path, at run-time

o Many scientific applications are programmed this way and run on MIMD
hardware (multiprocessors)

o Modern GPUs programmed in a similar way on a SIMD hardware

21



CUDA/OpenCL Programming Model
SIMT or SPMD

Bulk synchronous programming
o Global (coarse-grain) synchronization between kernels

The host (typically CPU) allocates memory, copies data,
and launches kernels

The device (typically GPU) executes kernels
o Grid (NDRange)
o Block (work-group)
Within a block, shared memory, and synchronization

o Thread (work-item)
22



Traditional Program Structure in CUDA

Function prototypes

float serialFunction(..);

__global  void kernel(..);

main()

1) Allocate memory space on the device — cudaMalloc(&d _in, bytes);
2) Transfer data from host to device — cudaMemCpy (d_in, h in, ..);

3) Execution configuration setup: #blocks and #threads

4) Kernel call — kernel<<<execution configuration>>>(args..);

5) Transfer results from device to host — cudaMemCpy (h_out, d out, ..);

I I R N

Kernel — global  void kernel(type args,..)

o Automatic variables transparently assigned to registers
o Shared memory:  shared
o Intra-block synchronization:  syncthreads();

Slide credit: Hwu & Kirk

repeat
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CUDA Programming ILanguage

Memory allocation
cudaMalloc( (void**)&d in, #bytes);

Memory copy

cudaMemcpy(d in, h in, #bytes, cudaMemcpyHostToDevice);

Kernel launch

kernel<<< #blocks, #threads >>>(args);

Memory deallocation

cudaFree(d 1in);

Explicit synchronization

cudaDeviceSynchronize();

24



Host Code Example: Vector Addition

void vecadd(float* A, float* B, float* C, int N) {

// Allocate GPU memory
float *A_d, *B_d, *C_d;
cudaMalTloc((void**) &A_d, N*sizeof(float));
cudamalloc((void**) &B_d, N*sizeof(float));
cudamalloc((void**) &C_d, N*sizeof(float));

// Copy data to GPU memory
cudaMemcpy(A_d, A, N*sizeof(float), cudamemcpyHostToDevice);
cudaMemcpy(B_d, B, N*sizeof(float), cudamMemcpyHostToDevice);

// Perform computation on GPU

// Copy data from GPU memory
cudaMemcpy(C, C_d, N*sizeof(float), cudamMemcpybeviceToHost);

// Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);

}

Slide credit: 1zzat El Hajj
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Vector Addition (I)

= Our first GPU programming example
= We assign one GPU thread to each element-wise addition

RRRRRRRRRRRRERE




Vector Addition (1I)

= The whole set of threads is called a grid
= We need a way to assign threads to GPU cores

RRRRRRRRRRRRERE




Vector Addition (I1I)

= We group threads into blocks




Transparent Scalability

= Hardware is free to schedule thread blocks

==
N ~
| o g A7 ot s
N l oo Bosk 1 Boskz Bk
_ Each block can execute in any order relative to other blocks.
v

29
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Launching a Grid

Threads in the same grid execute the same function known
as a kernel

A grid can be launched by calling a kernel and configuring it
with appropriate grid and block sizes

const unsigned int numThreadsPerBlock = ;
const unsigned int numBlocks = N/numThreadsPerBlock;

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

30
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Host Code Example: Vector Addition

void vecadd(float* A, float* B, float* C, int N) {

// Allocate GPU memory
float *A_d, *B_d, *C_d;

cudamalloc((void**) &A_d, N* (float));
cudaMalloc((void**) &B_d, N* (float));
cudaMalloc((void**) &C_d, N* (float));

// Copy data to GPU memory

cudamemcpy (A_d, A, N¥ (float), );
cudaMemcpy(B_d, B, N¥ (float), );

// Perform computation on GPU
const unsigned int numThreadsPerBlock = :

const unsigned int numBlocks = N/numThreadsPerBlock;

vecadd_kernel<<<numBlocks, numThreadsPerBlock>>>(A_d, B_d, C_d, N);

// Copy data from GPU memory
cudaMemcpy(C, C_d, N* (float), );

// Deallocate GPU memory
cudaFree(A_d);
cudaFree(B_d);
cudaFree(C_d);

}

31
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Sample GPU SIMT Code (Simplified)

CPU code

for (ii = 0; ii < 100000; ++ii) {
C[ii] = A[ii] + BJii];

b
CUDA code I

[// there are 100000 threads \
__global__ void KernelFunction(...) {
int tid = blockDim.x * blockIdx.x + threadldx.x;
int varA = aal[tid];
int varB = bb[tid];
C[tid] = varA + varB;

W J

Slide credit: Hyesoon Kim



Vector Addition Kernel

It is preceded by the keyword global to indicate that
it is @ GPU kernel

It uses special keywords to distinguish different threads
from each other

o Block index (blockIdx.x), block size (blockDim.x), thread
index (threadIdx.x)

__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
int 1 = blockDim.x * blockIdx.x + threadIdx.x;

cli]l = A[1] + B[1];

33



Boundary Conditions

= What if the size of the input is not a multiple of the number
of threads per block?

o Solution: use the ceiling to launch extra threads then omit the
threads after the boundary

const unsigned int numBlocks = (N +numThreadsPerBlock - 1)/numThreadsPerBlock;

= Kernel code
__global__ void vecadd_kernel(float* A, float* B, float* C, int N) {
int 1 = blockDim.x*blockIdx.x + threadIdx.x;

it < N) {
c[i] = A[1] + B[1];
¥

34



Compilation

U C/C++ and CUDA

code
|
[ NVIDIA CUDA Compiler (NVCC) J

1 v
Host C/C++ Code .C Gt}> PTX (Virtual) ISA code

l ]

Host C/C++ Device Just-in-Time
Compiler Compiler

}

Host Assembly Device Assembly
(e.g., x86, Power, (e.g., SASS)
ARM) |

Slide credit: Izzat El Hajj

GPU
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Indexing and Memory Access

= Images are 2D data structures
o height x width
o Image[j][i], where 0 < j < height, and 0 < i < width

Image[0][1]
\‘ 0 1 2 3 4 5 6 7

\$

Image[1][2]—

0
1
2
3
4

(0]




Image Layout in Memory

= Row-major layout
= Image[j][i] = Image[j x width + i]

[T [T T[T [T T T T IT]

\
| Image[0][1] = Image[0 x 8 + 1]
Stride = width
Image[1][2] = Image[1l x 8 + 2]

37



Indexing and Memory Access: 1D Grid

= One GPU thread per pixel
s Grid of Blocks of Threads

0 gridDim.x, blockDim.x
0 blockIdx.x, threadIdx.x

Thread 0
Thread 1
Thread 2
Thread 3

blockIdx.x Block O

threadIdx.x

Block 0

6*4+1=25

blockIdx.x * blockDim.x +
threadIdx.x




Indexing and Memory Access: 2D Grid

= 2D blocks

0 gridDim.x, gridDim.y

threadIdx.x
threadIdx.y

Block (0 0)

blockIdx.x
blockIdx.y
Col = blockIdx.x *
blockDim.x + threadIdx.x __....__

Row = blockIdx.y *
blockDim.y + threadIdx.y

Row=1*2+1=3
Col=0*2+1=1

Image[3][1] = Image[3 * 8 + 1]

39



Recall: From Blocks to Warps

N G PU CO res : SI M D pi pel i nes Streaming Multiprocessor
o Streaming Multiprocessors (SM) | rtcton e |

| Warp Scheduler || Warp Scheduler |
. | Dispatch Unit I Dispatch Unit |
o Streaming Processors (SP)
SP | sP SP | sp I—,,%l
Block divided i e
= Blocks are divided Into warps A
. LD/ST
o SIMD unit (32 threads) N =
LD/ST ST
SP | spP SP | spP S
LD/ST
Block 0’s warps Block 1’s warps Block 2’s warps SRR SRR SR SE Lot |
I l I SFU
SP | sP SP sP %
t0t1t2..t31 t0t1t2..t31 t0tlt2..t31 LD/ST
NNNNNNNNNY NNNNNNNNNNY NNNNNNNNN SP SP SP SP
SO S [ tosT ] SFU
p : p 3 ¢ 3 LD/ST
| & 4 || & 4 u P e 4 SP | sP SP | sP EEEE
Shared Memory / L1 Cache

| Constant Cache |

NVIDIA Fermi architecture
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Recommended Readings

= Hwu and Kirk, “Programming Massively Parallel Processors,”
Third Edition, 2017
o Chapter 1: Introduction
o Chapter 2: Data parallel computing
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Memory Hierarchy

Block (0, 0)

Block (1, 0)

Shared memory

Shared memory

Registers

Registers

!

!

Registers

Registers

!

!

; Thread (0, 0)

; Thread (1, 0)

; Thread (0, 0)

; Thread (1, 0)
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