P&S Processing-in-Memory

Real-World Processing-in-Memory Architectures: Alibaba Hybrid Bonding PNM Engine

> Dr. Juan Gómez Luna Prof. Onur Mutlu ETH Zürich Spring 2022 12 May 2022

UPMEM Processing-in-DRAM Engine (2019)

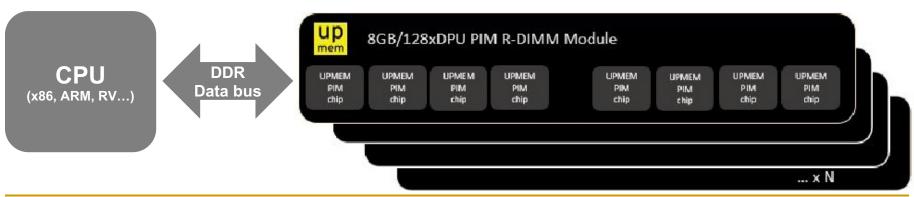
Processing in DRAM Engine

 Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

- DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process

Large amounts of compute & memory bandwidth

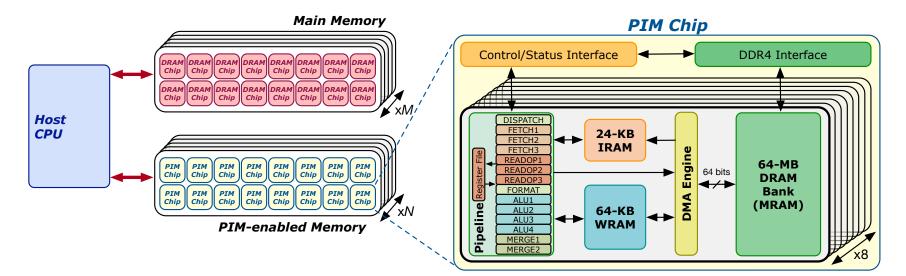


https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

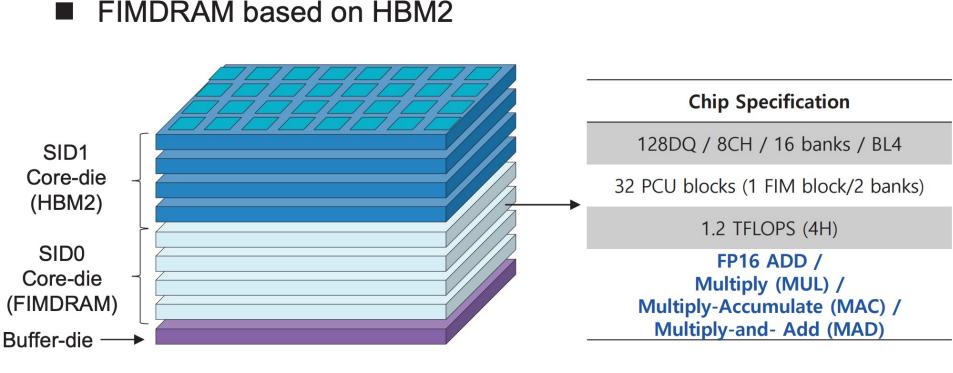
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

UPMEM PIM System Organization

- A UPMEM DIMM contains 8 or 16 chips
 - Thus, 1 or 2 ranks of 8 chips each
- Inside each PIM chip there are:
 - 8 64MB banks per chip: Main RAM (MRAM) banks
 - 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per rank



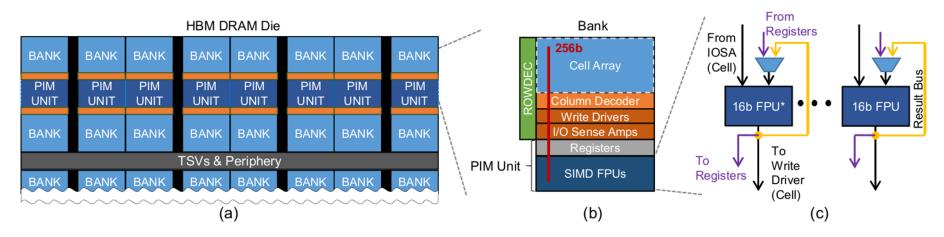
FIMDRAM: Chip Structure



[3D Chip Structure of HBM with FIMDRAM]

FIMDRAM: System Organization (III)

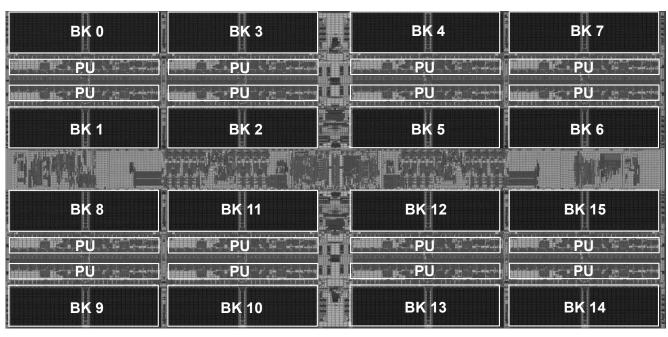
- PIM units respond to standard DRAM column commands (RD or WR)
 - Compliant with unmodified JEDEC controllers
- They execute one wide-SIMD operation commanded by a PIM instruction with deterministic latency in a lock-step manner
- A PIM unit can get 16 16-bit operands from IOSAs, a register, and/or the result bus



AiM: Chip Implementation

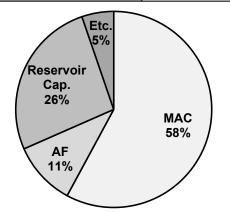
4 Gb AiM die with 16 processing units (PUs)

AiM Die Photograph



1 Process Unit (PU) Area

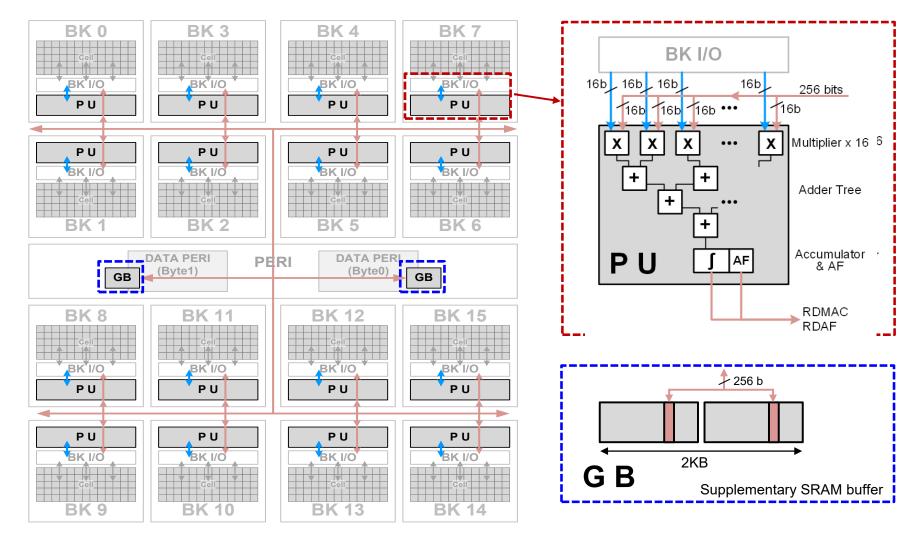
Total	0.19mm ²
MAC	0.11mm ²
Activation Function (AF)	0.02mm ²
Reservoir Cap.	0.05mm ²
Etc.	0.01mm ²



Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications, ISSCC 2022

AiM: System Organization

GDDR6-based AiM architecture

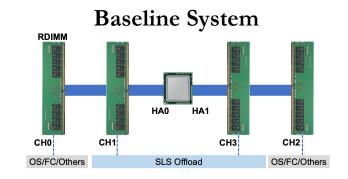


Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications, ISSCC 2022

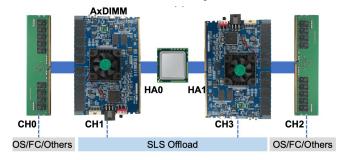
7

Samsung AxDIMM (2021)

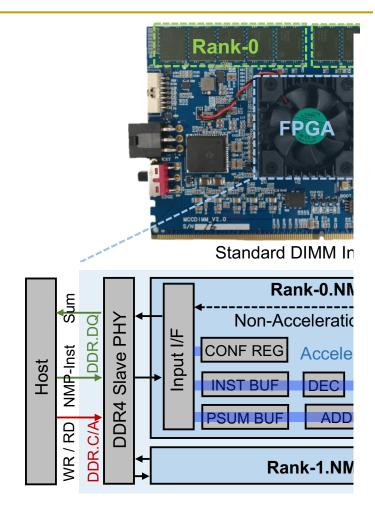
- DIMM-based PIM
 - DLRM recommendation system

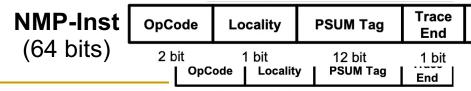


AxDIMM System



AxDIMM Design: Hardw





Ke et al. "Near-Memory Processing²i^{hit}Action: ^{Abit}celeratin¹/₂^{pie}rsonali¹/₂^{bit}Recommendation with AxDIMM", IEEE Micro (2021)

Alibaba 3D Logic-to-DRAM Hybrid Bonding with Processing-near-Memory Engine

ISSCC 2022 / SESSION 29 / ML CHIPS FOR EMERGING A

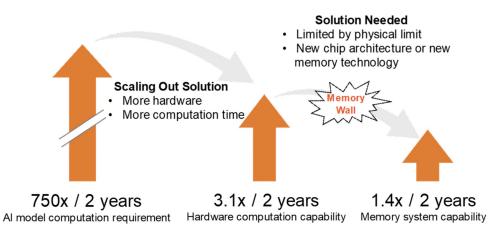
29.1 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System

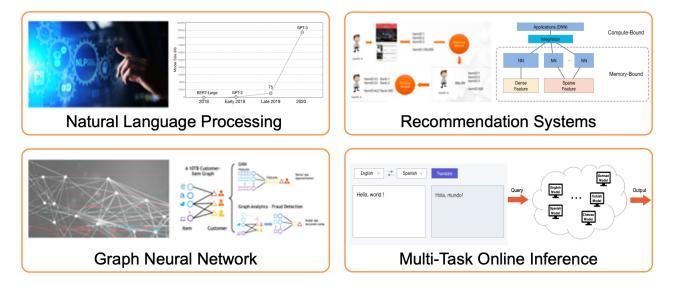
Dimin Niu¹, Shuangchen Li¹, Yuhao Wang¹, Wei Han¹, Zhe Zhang², Yijin Guan², Tianchan Guan³, Fei Sun¹, Fei Xue¹, Lide Duan¹, Yuanwei Fang¹, Hongzhong Zheng¹, Xiping Jiang⁴, Song Wang⁴, Fengguo Zuo⁴, Yubing Wang⁴, Bing Yu⁴, Qiwei Ren⁴, Yuan Xie¹

¹Alibaba DAMO Academy, Sunnyvale, CA; ²Alibaba DAMO Academy, Beijing, China ³Alibaba DAMO Academy, Shanghai, China; ⁴UniIC, Xian, China

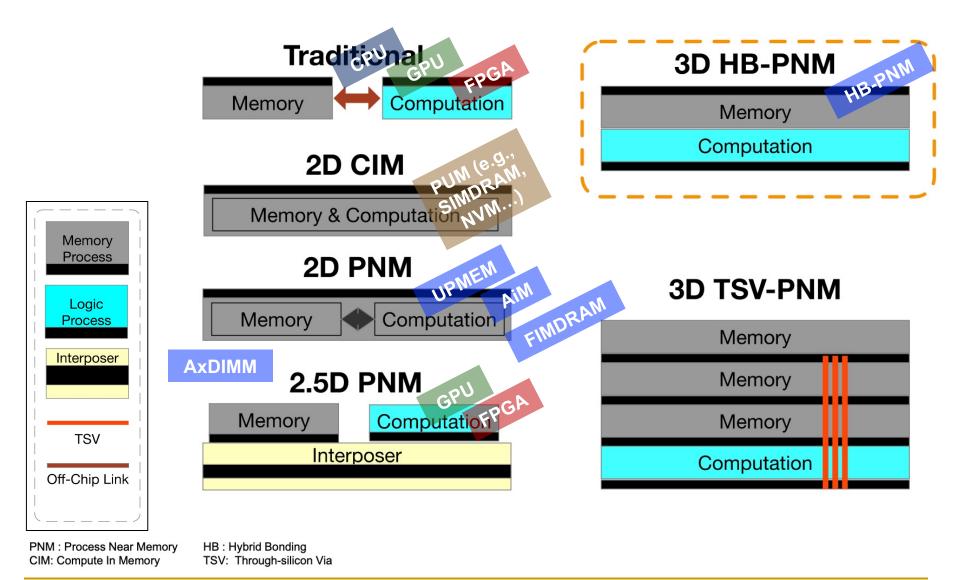
Processing-in-Memory for Machine Learning

Memory bandwidth is not enough for many ML workloads





Processing-in-Memory Classification



Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

Two PIM Approaches

5.2. Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory technology innovations that we discuss in Section 5.1 to enable and implement PIM. We find that these works generally take one of two approaches, which are categorized in Table 1: (1) *processing using memory* or (2) *processing near memory*. We briefly describe each approach here. Sections 6 and 7 will provide example approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to	
PIM used by recent works. Adapted from [309].	

Approach	Enabling Technologies
Processing Using Memory	SRAM DRAM Phase-change memory (PCM) Magnetic RAM (MRAM) Resistive RAM (RRAM)/memristors
Processing Near Memory	Logic layers in 3D-stacked memory Silicon interposers Logic in memory controllers

Processing using memory (PUM) exploits the existing memory architecture and the operational principles of the memory circuitry to enable operations within main memory with minimal changes. PUM makes use Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging</u> <u>Computing: From Devices to Systems -</u> <u>Looking Beyond Moore and Von Neumann</u>,

Springer, to be published in 2021. [Tutorial Video on "Memory-Centric Computing Systems" (1 hour 51 minutes)]

A Modern Primer on Processing in Memory

Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d

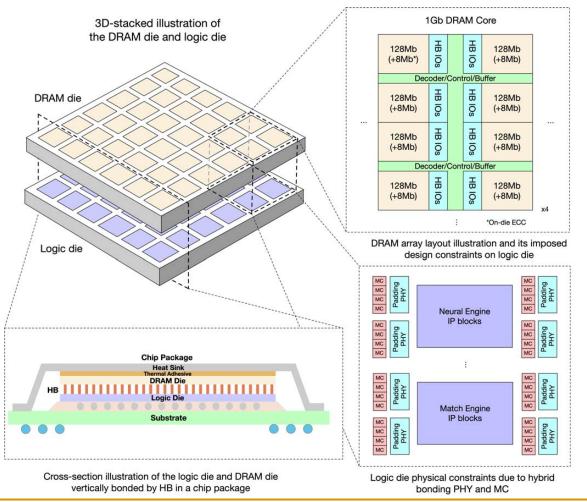
SAFARI Research Group

^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" *Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> <i>Looking Beyond Moore and Von Neumann*, Springer, to be published in 2021.

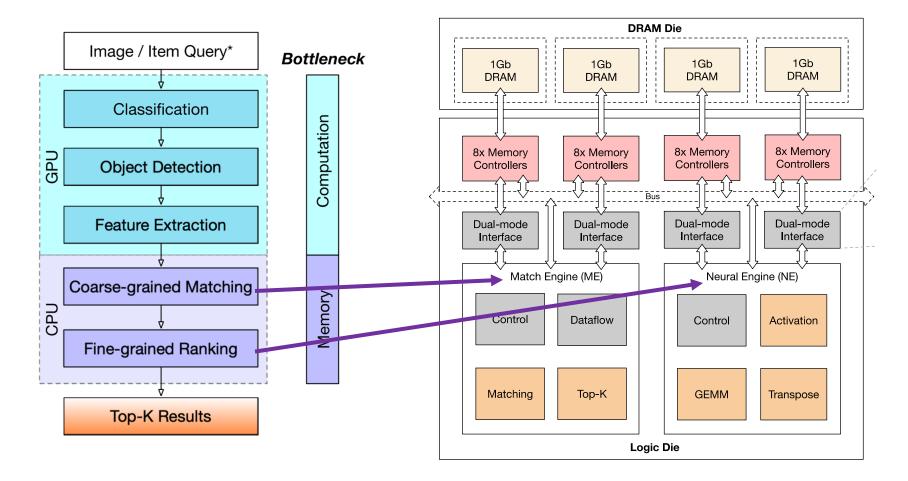
HB-PNM: Overall Architecture (I)

 3D-stacked logic die and DRAM die vertically bonded by hybrid bonding (HB)



HB-PNM: Overall Architecture (II)

Match engine and neural engine for matching and ranking in a recommendation system

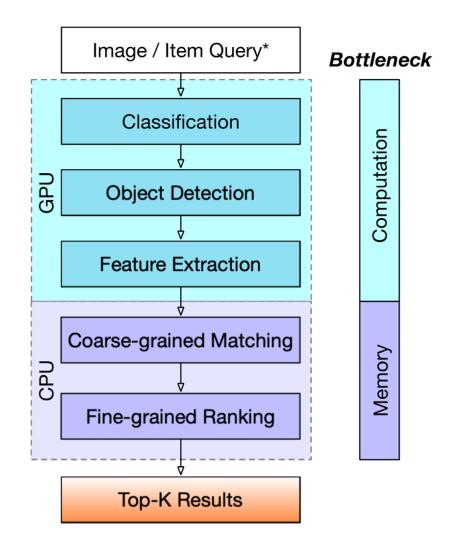


Recommendation Systems

Feature Generation + Matching & Ranking

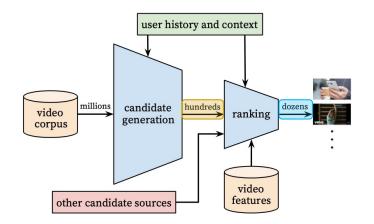
Recommendation system

- Feature generation
 - Classification, object detection, feature extraction
 - Compute-bound
 - Good fit for GPU
- Matching and ranking
 - Coarse-grained matching, fine-grained ranking
 - Memory-bound
 - Most latency (89.87%) and energy (82.97%)
 - Typically run on CPU

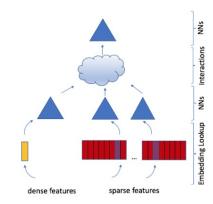


Recommendation Systems

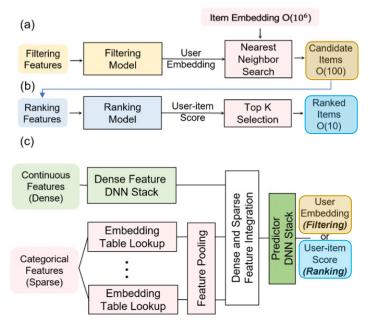
Candidate recommendations are retrieved and then ranked



Covington et al., Deep Neural Networks for YouTube Recommendations, RecSys 2016



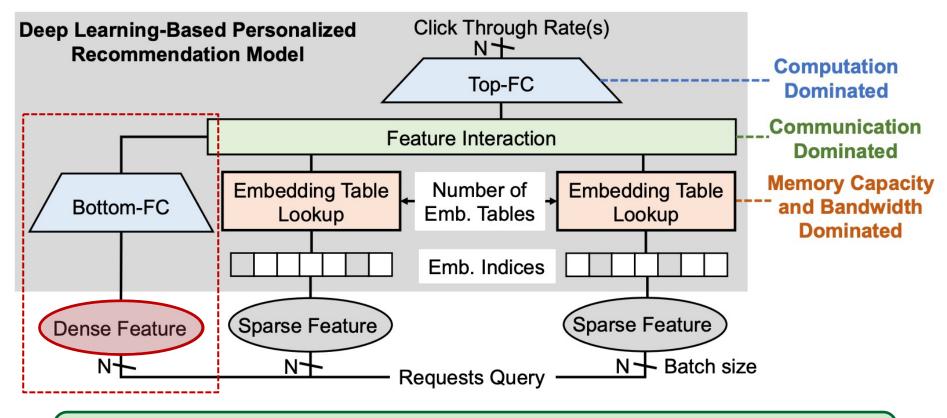
Naumov et al., Deep Learning Recommendation Model for Personalization and Recommendation Systems, arXiv:1906.00091, 2019



Li et al., iMARS: An In-Memory-Computing Architecture for Recommendation Systems, arXiv:2202.09433, 2022

Overview of Recommendation Models

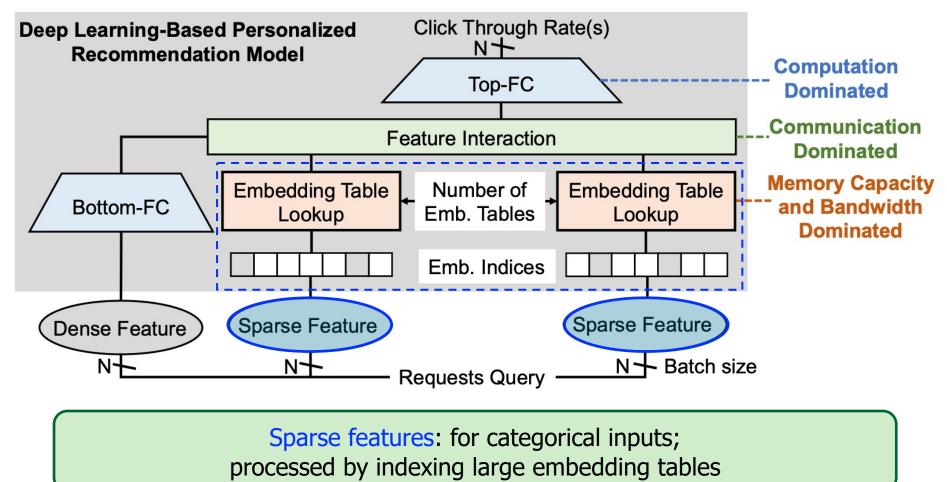
Personalized recommendation: recommend content to users, e.g., Facebook's DLRM recommendation system



Dense features: continuous inputs in vectors and matrices are processed by typical DNN layers (e.g., fully connected layers)

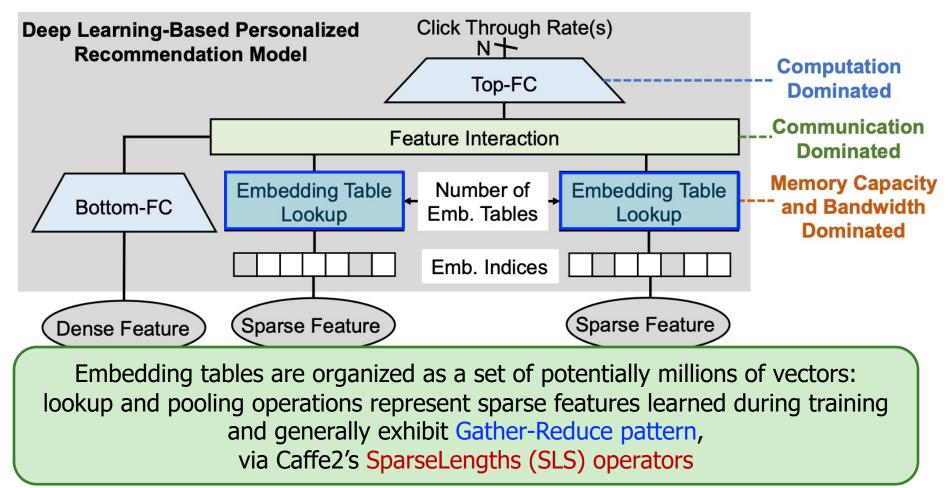
Overview of Recommendation Models

Personalized recommendation: recommend content to users, e.g., Facebook's DLRM recommendation system



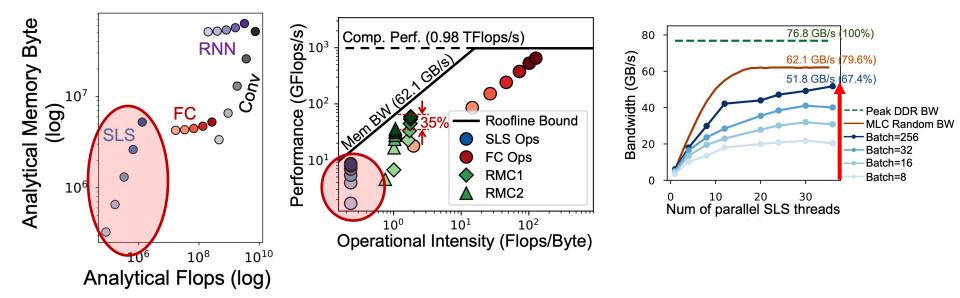
Overview of Recommendation Models

Personalized recommendation: recommend content to users, e.g., Facebook's DLRM recommendation system



DLRM Performance Characterization

Identifying key performance bottlenecks for the DLRM system



SparseLengths (SLS) operators:

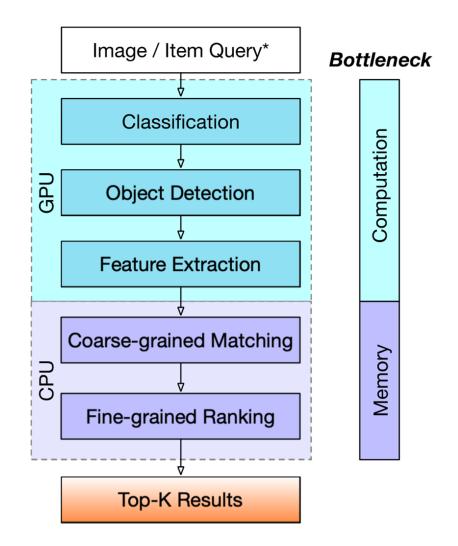
- Low FP intensity
- Larger batch size:
 - Higher memory footprint
 - Higher memory intensity

The memory bandwidth can easily be saturated by embedding operations especially as both the batch size and the number of threads increase

Feature Generation + Matching & Ranking

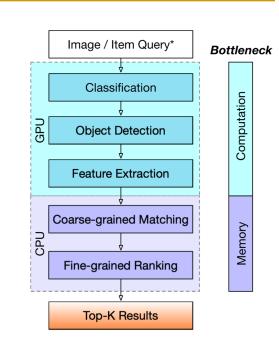
Recommendation system

- Feature generation
 - Classification, object detection, feature extraction
 - Compute-bound
 - Good fit for GPU
- Matching and ranking
 - Coarse-grained matching, fine-grained ranking
 - Memory-bound
 - Most latency (89.87%) and energy (82.97%)
 - Typically run on CPU

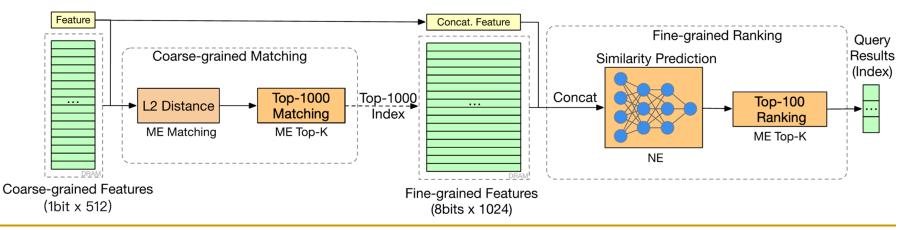


Matching & Ranking

- Coarse-grained matching
 - Binary feature vectors with 512 dimensions
 - Distance calculation
 - Top-1000 items selected from 40K items
- Fine-grained ranking
 - Features with 8 bits x 1024 dimensions
 - 3-layer MLP (2048-256-64-1) for similarity prediction



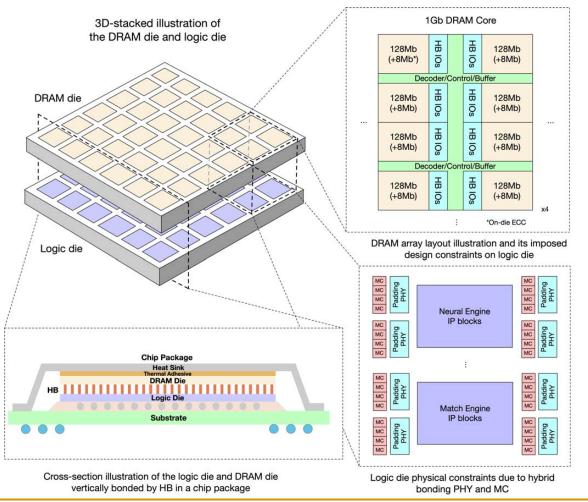
Top-100 ranking results from 1K items



3D Logic-to-DRAM Hybrid Bonding

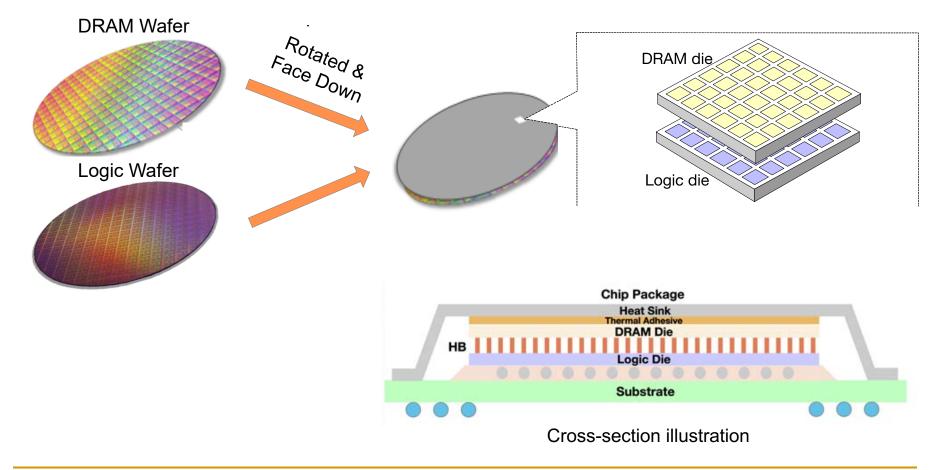
HB-PNM: Overall Architecture (I)

 3D-stacked logic die and DRAM die vertically bonded by hybrid bonding (HB)



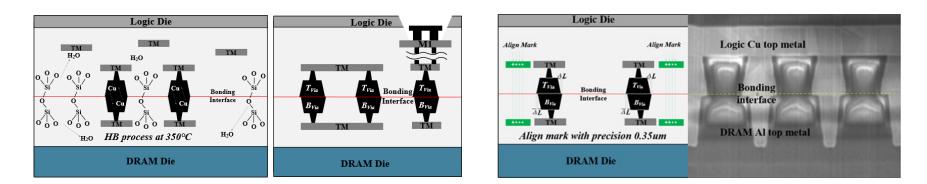
HB-PNM: Chip Implementation

- 3D Logic-to-DRAM Hybrid Bonding
 - Face-to-face hybrid wafer bonding



HB-PNM: Hybrid-Bonding Interconnection

- 3D Logic-to-DRAM Hybrid Bonding
 - Face-to-face hybrid wafer bonding
 - Logic and memory manufactured independently: this avoids the challenges of integrating logic into memory chips
 - Cu-Cu direct fusion with low bonding temperature (<350°C)
 - Much denser vias than other 3D-stacking technologies
 - Low pitch size (3 um) vs. HBM microbumps (35 um¹)
 - High inter-layer bandwidth (1.38 TB/s) vs. HBM2E (460 GB/s²)

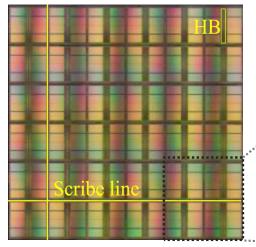


¹ Kim et al. Signal Integrity and Computing Performance Analysis of a Processing-In-Memory of High Bandwidth Memory (PIM-HBM) Scheme, IEEE TCPMT, 2021 ² <u>https://product.skhynix.com/products/dram/hbm/hbm2e.go</u>

HB-PNM: DRAM Die and Logic Die

DRAM die and logic die

DRAM Die Photo (36Gb)



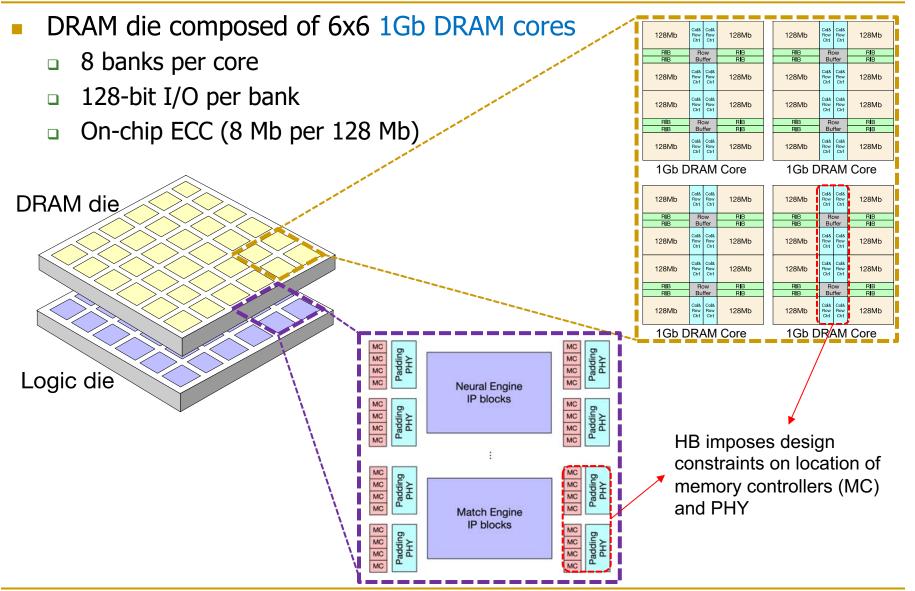
Neural Engine Region				
MC	NE IP	MC		
5.90 mm ² 5 E				
		gieri		
PHY	ME IP	PHY		
мс	7.02 mm ²	MC		

DRAM Die		
Technology	25nm	
	Total*	602.22 mm ²
Area	Neural Engine	32 mm ²
	Match Engine	32 mm²
Voltage	1.1 V	
Frequency (max)	150 MHz	
Power	300 mW per 1Gb	
Bandwidth**	153.60 GB/s / 1.38 TB/s	

Logic Die			
Technology	55nm		
	Total*	602.22 mm ²	
Area	Neural Engine	5.90 mm ²	
	Match Engine	7.02 mm ²	
# of MC	16 per IP		
Voltage	1.2 V		
Frequency	300 MHz		
Power	977.70 mW		
Precision	INT8		

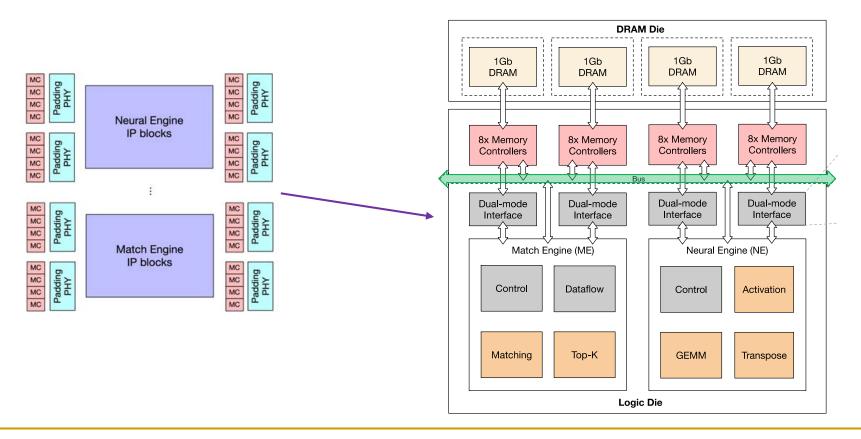
HB-PNM Architecture

HB-PNM Architecture



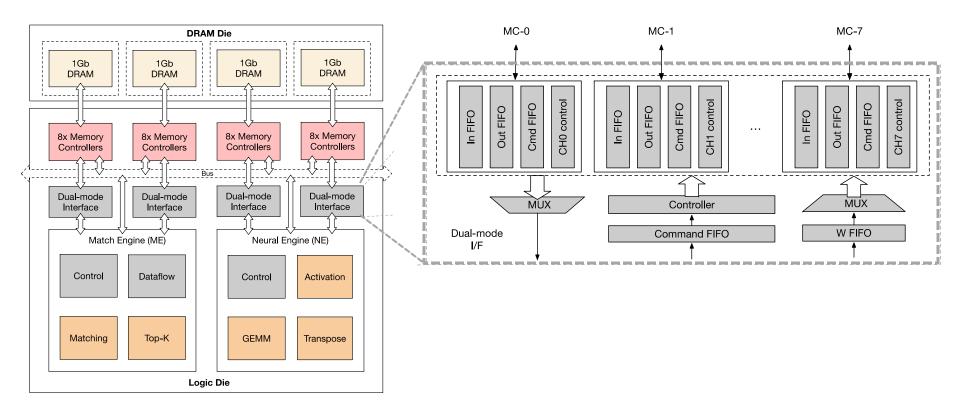
HB-PNM: Logic Die

- Match engine and neural engine for matching and ranking in a recommendation system
 - Direct access to their counterpart DRAM blocks
 - Access to other DRAM blocks via on-chip bus



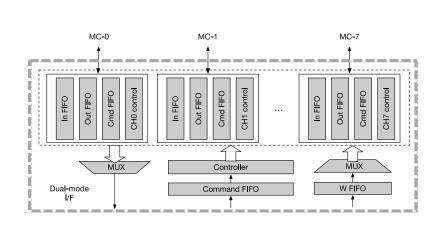
HB-PNM Logic Die: Dual-mode Interface

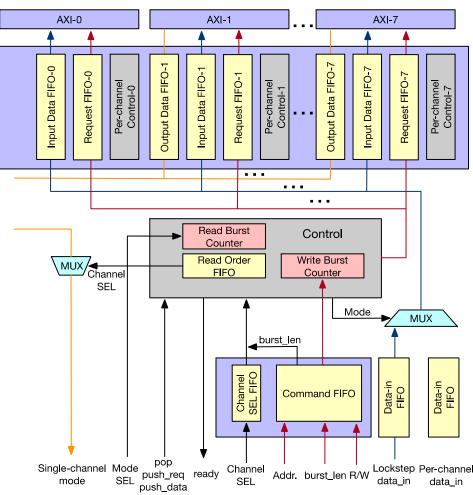
- Dual-mode interface can switch between
 - All 8 banks in lock-step for full bandwidth
 - Single channel (1 of 8 banks)



Neural Engine: Interface Bridge

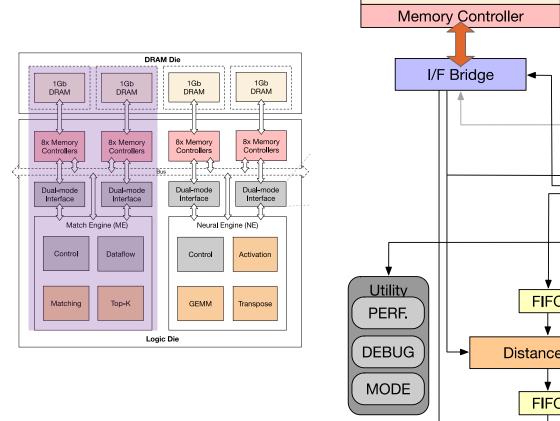
- Support for single-channel mode and lockstep mode
- Read/write counters to support burst requests

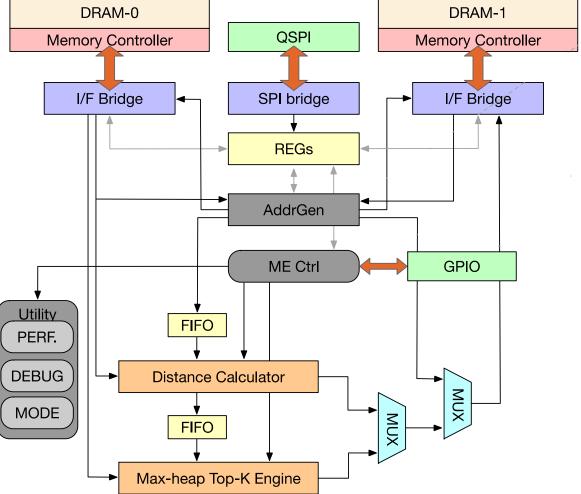




HB-PNM: Match Engine

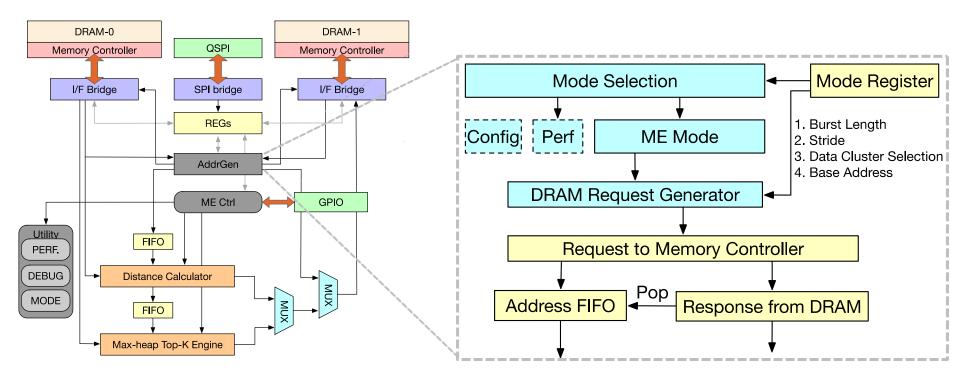
Responsible for coarse-grained matching





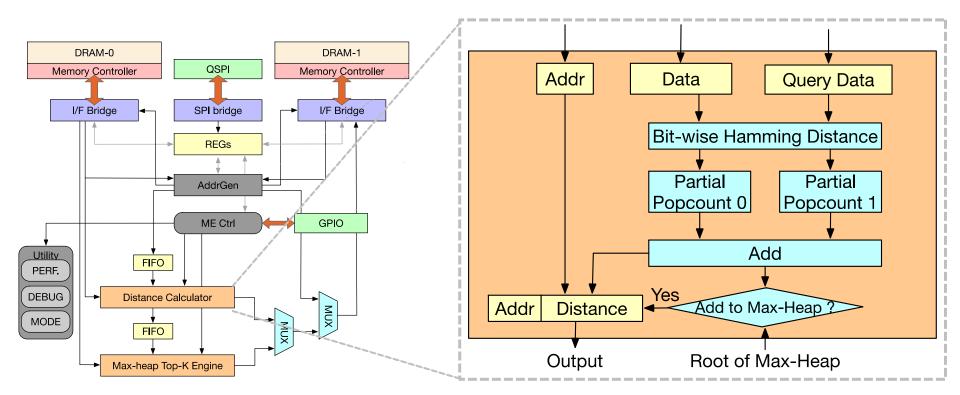
Match Engine: Address Generator

- AddGen generates the address of the input query
 - Mode selection for different access patterns
 - Configurable via registers



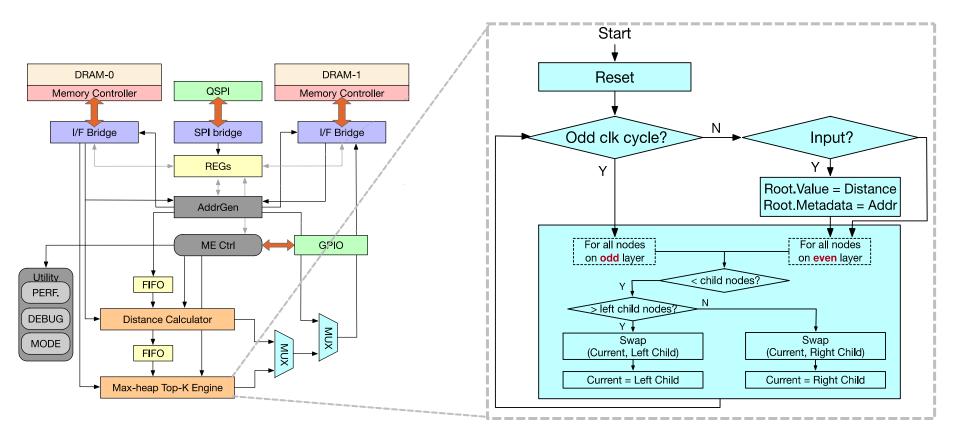
Match Engine: Distance Calculator

- Distance calculator obtains similarity between input query and feature vectors
 - It computes Hamming distance of two 512-bit vectors
 - Distance is filtered by root of max-heap



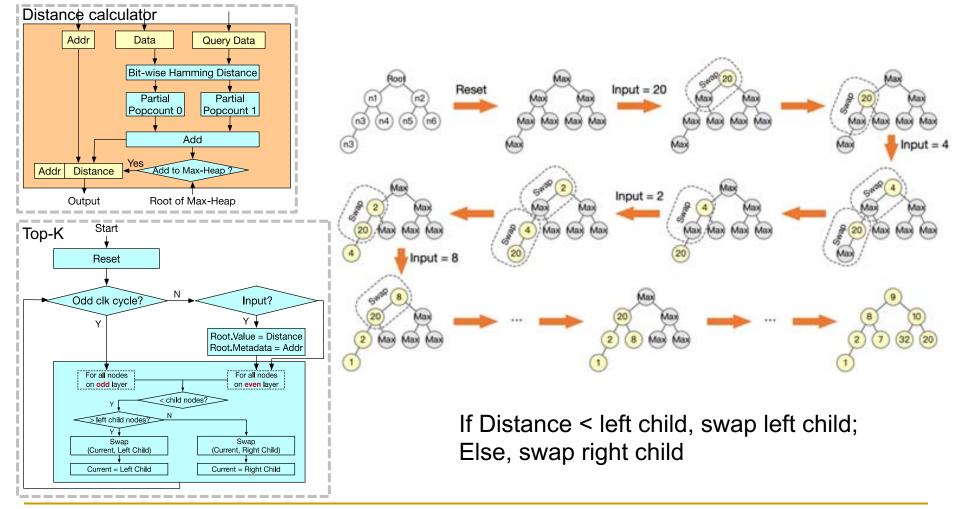
Match Engine: Top-K Engine (I)

- Max-heap hardware block and data structure with 1000 nodes <address, distance> for the 1000 shortest distances
 - New input every two cycles



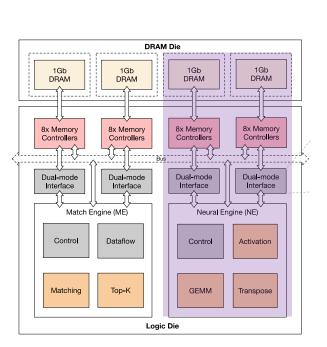
Match Engine: Top-K Engine (II)

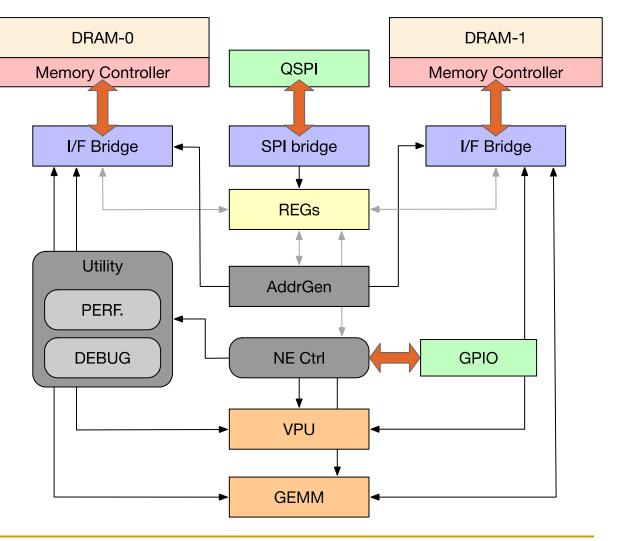
 Max-heap hardware block and data structure with 1000 nodes <address, distance> for the 1000 shortest distances



HB-PNM: Neural Engine

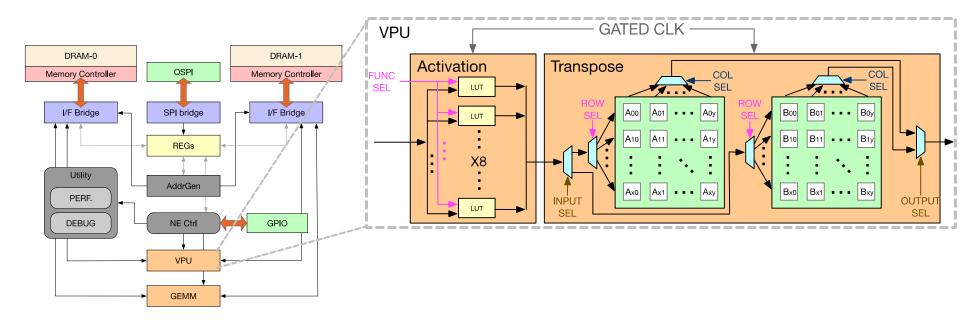
Responsible for similarity prediction for fine-grained ranking





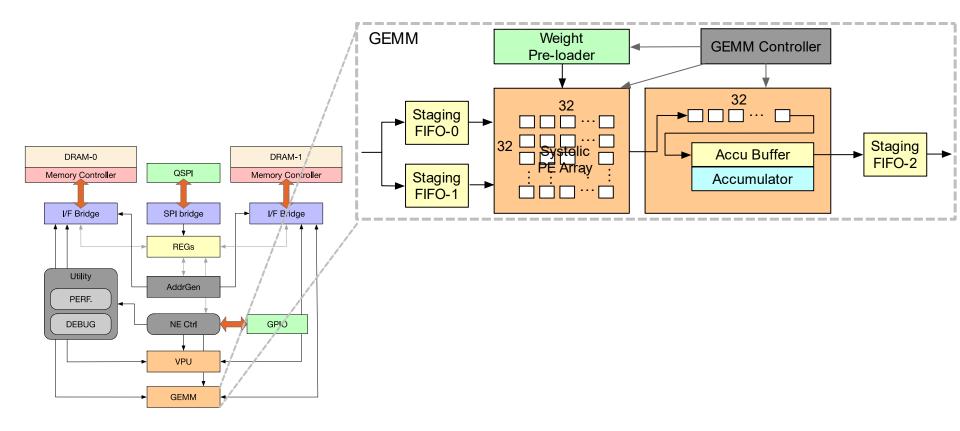
Neural Engine: Vector Processing Unit

- Activations based on LUTs
 - Support for GeLU and Exp
- Transpose
 - Transpose 16x16 matrix with ping-pong array
 - 2D register file array
 - Row-based writes and column-based reads

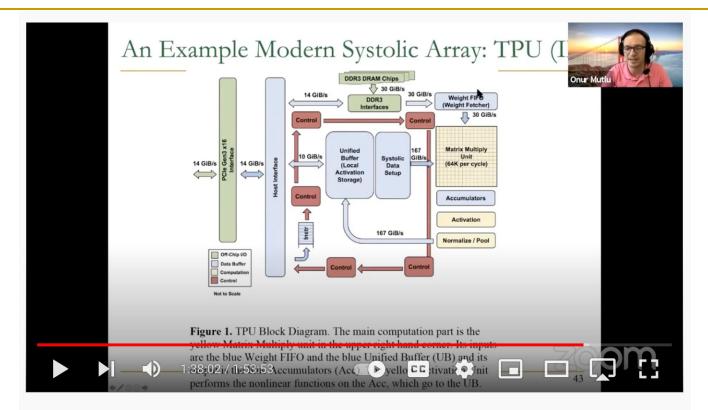


Neural Engine: GEMM

- 32x32 INT8 fully-pipelined systolic array
 - Partial sums accumulated in INT32 accumulator



Lecture on Systolic Arrays

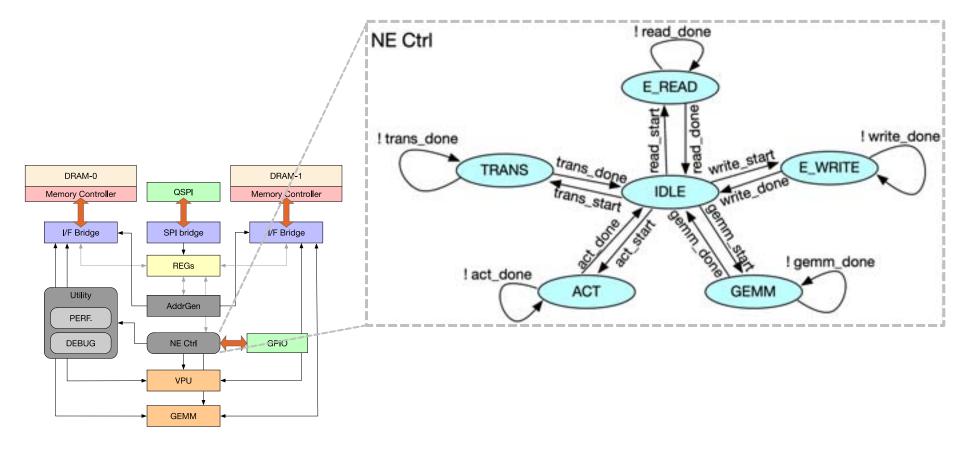


Digital Design & Computer Arch. - Lecture 19: VLIW, Systolic Arrays, DAE (ETH Zürich, Spring 2021)

https://youtu.be/UtLy4Yagdys?t=2948

Neural Engine: Finite State Machine

- Five working states and one idle state
 - Each working state is for one instruction



HB-PNM: Key Feature Summary

Comparison table

	2D CIM *	UPMEM PIM **	A100 GPU ***	FIMDRAM ****	This work
Type of Memory	SRAM	DDR4	HBM2	HBM2	LPDDR4
Technology (Memory/Logic)	16nm	2xnm / 2xnm	1y# / 7nm	20nm / 20nm	25nm / 55nm
Capacity	4.5 Mb	8GB / DIMM	80GB	6GB / cube	4.5GB
Bandwidth	-	128GB/s / DIMM	1935GB/s	1200GB/s / cube#	38.4GB/s / 1Gb
Frequency (Logic)	200MHz	500MHz	1410MHz	300MHz	300MHz
Bandwidth/Capacity (a.u.)	-	16	24.2	200	307
Energy	-	~25pJ/bit	4.47pJ/bit	2.75pJ/bit	0.88pJ/bit

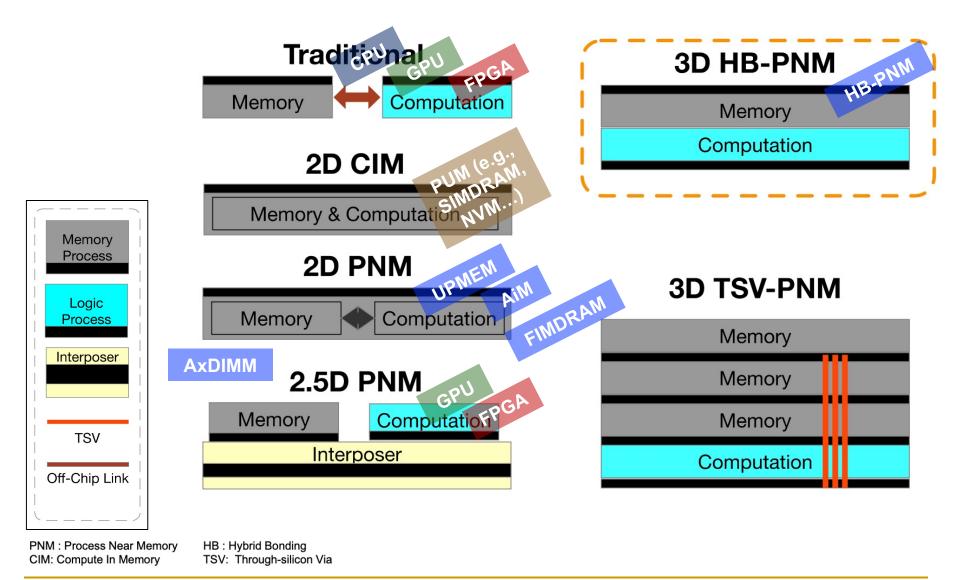
* H. Jia et al, ISSCC 2021.

** F. Devaux et al, Hotchip 2019

*** J. Choquette et al, Hotchip 2020

**** Y. C. Kwon et al, ISSCC 2021

Processing-in-Memory Classification



Two PIM Approaches

5.2. Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM)

Many recent works take advantage of the memory technology innovations that we discuss in Section 5.1 to enable and implement PIM. We find that these works generally take one of two approaches, which are categorized in Table 1: (1) *processing using memory* or (2) *processing near memory*. We briefly describe each approach here. Sections 6 and 7 will provide example approaches and more detail for both.

Table 1: Summary of enabling technologies for the two approaches to	
PIM used by recent works. Adapted from [309].	

Approach	Enabling Technologies		
Processing Using Memory	SRAM DRAM Phase-change memory (PCM) Magnetic RAM (MRAM) Resistive RAM (RRAM)/memristors		
Processing Near Memory	Logic layers in 3D-stacked memory Silicon interposers Logic in memory controllers		

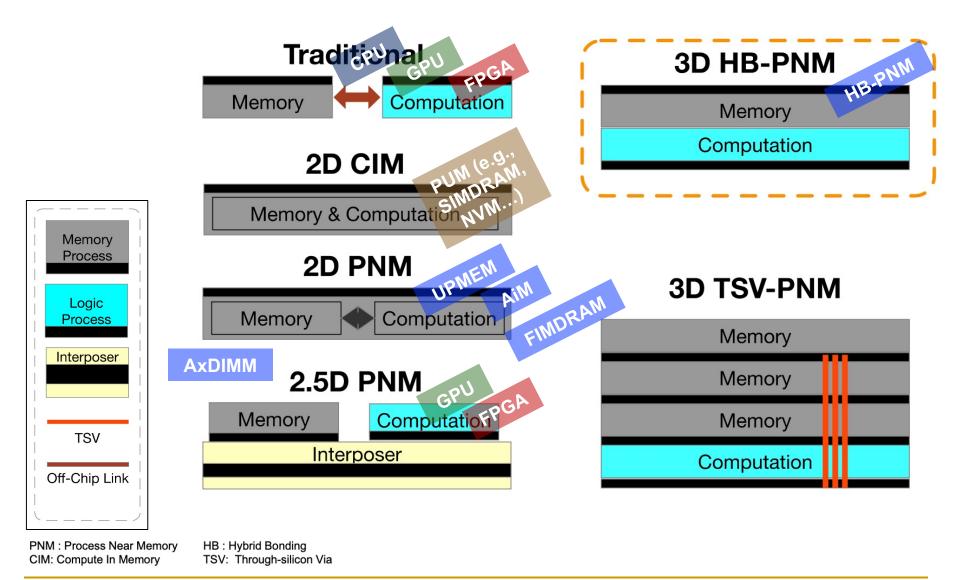
Processing using memory (PUM) exploits the existing memory architecture and the operational principles of the memory circuitry to enable operations within main memory with minimal changes. PUM makes use Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging</u> <u>Computing: From Devices to Systems -</u> <u>Looking Beyond Moore and Von Neumann</u>, Springer, to be published in 2021.

[Tutorial Video on "Memory-Centric Computing Systems" (1 hour 51 minutes)]

Similarities and Differences among Current PIM Systems

- Similarities
 - Current real-world processing-in-memory architectures follow a processing-near-memory approach
 - All based on DRAM memory
- Differences
 - Near-bank (UPMEM, FIMDRAM, AiM, HB-PNM) vs. near-chip (AxDIMM)
 - General-purpose (UPMEM) vs. special-function (FIMDRAM, AiM, HB-PNM)
 - FGMT (UPMEM) vs. SIMD (FIMDRAM, AiM, AxDIMM) vs. systolic array (HB-PNM)
 - Natively integer (UPMEM, HB-PNM) vs. floating point (FIMDRAM)
 - FP16 (FIMDRAM) vs. BF16 (AiM) vs. FP32 (AxDIMM)
 - DDR4 (UPMEM, AxDIMM) vs. LPDDR4 (HB-PNM) vs. HBM2 (FIMDRAM) vs. GDDR6 (AiM)

Processing-in-Memory Classification



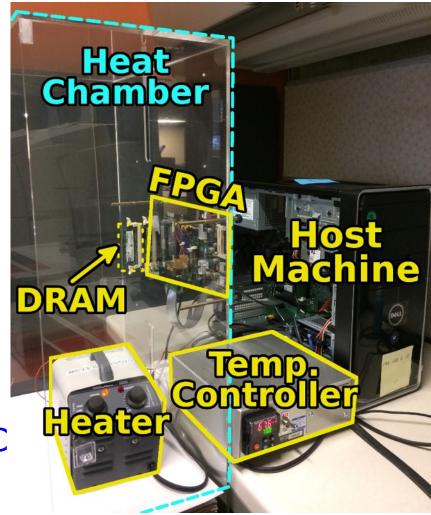
ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs

Fei Gao feig@princeton.edu Department of Electrical Engineering Princeton University Georgios Tziantzioulis georgios.tziantzioulis@princeton.edu Department of Electrical Engineering Princeton University David Wentzlaff wentzlaf@princeton.edu Department of Electrical Engineering Princeton University

SoftMC: Open Source DRAM Infrastructure

 Hasan Hassan et al., "<u>SoftMC:</u> <u>A Flexible and Practical</u> <u>Open-Source Infrastructure</u> <u>for Enabling Experimental</u> <u>DRAM Studies</u>," HPCA 2017

- Flexible
- Easy to Use (C++ API)
- Open-source github.com/CMU-SAFARI/SoftMC



RowClone & Bitwise Ops in Real DRAM Chips

MICRO-52, October 12-16, 2019, Columbus, OH, USA

 $\frac{V_{dd}}{2}$ R_{1} R_{2} R_{3} R_{4} R_{5} R_{4} R_{5} R_{4} R_{5} R_{1} R_{2} R_{3} R_{4} R_{5} R_{1} R_{2} R_{3} R_{4} R_{5} R_{1} R_{2} R_{1} R_{2} R_{2} R_{2} R_{2} R_{2} R_{3} R_{4} R_{5} R_{1} R_{1} R_{2} R_{1} R_{2} R_{3} R_{4} R_{2} R_{2} R_{2} R_{2} R_{3} R_{4} R_{2} R_{2} R_{3} R_{4} R_{2} R_{2} R_{3} R_{4} R_{2} R_{4} R_{4} R_{2} R_{4} R_{4}

Figure 4: Timeline for a single bit of a column in a row copy operation. The data in R_1 is loaded to the bit-line, and overwrites R_2 .

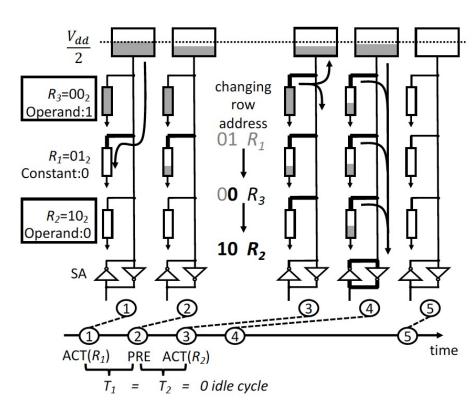
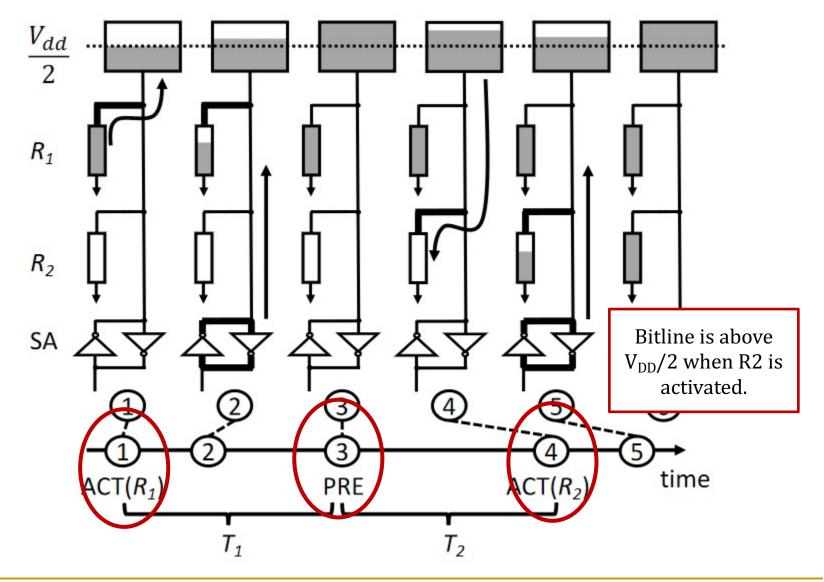


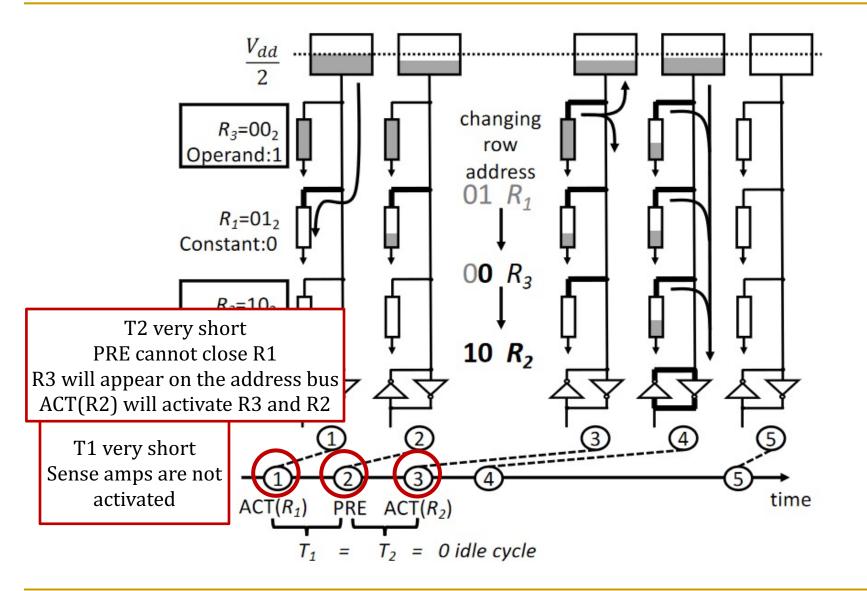
Figure 5: Logical AND in ComputeDRAM. R_1 is loaded with constant zero, and R_2 and R_3 store operands (0 and 1). The result (0 = 1 \land 0) is finally set in all three rows.

Gao et al.

Row Copy in ComputeDRAM



Bitwise AND in ComputeDRAM



Experimental Methodology (I)

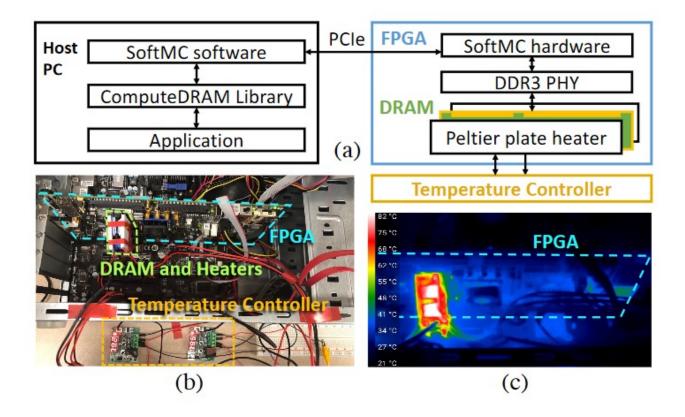


Figure 9: (a) Schematic diagram of our testing framework. (b) Picture of our testbed. (c) Thermal picture when the DRAM is heated to 80 °C.

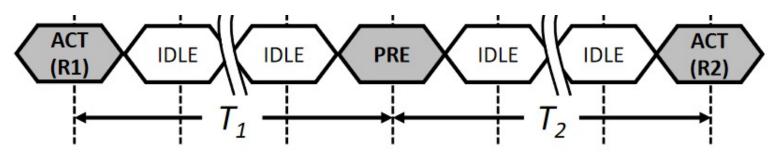
Experimental Methodology (II)

Table 1: Evaluated DRAM modules

Group ID: Vendor_Size_Freq(MHz)	Part Num	# Modules
SKhynix_2G_1333	HMT325S6BFR8C-H9	6
SKhynix_4C_1066	HMT451S6MMP8C-C7	2
SKhynix_4		2
SKhynix_4		4
SKhynix_4 32 DD	32 DDR3 Modules	
Samsung_4		2
Samsung_4 ~256	DRAM Chips	2
Micron_2G	L	2
Micron_2G		2
Elpida_2G_1333	EBJ21UE8BDS0-DJ-F	2
Nanya_4G_1333	NT4GC64B8HG0NS-CG	2
TimeTec_4G_1333	78AP10NUS2R2-4G	2
Corsair_4G_1333	CMSA8GX3M2A1333C9	2

Proof of Concept (I)

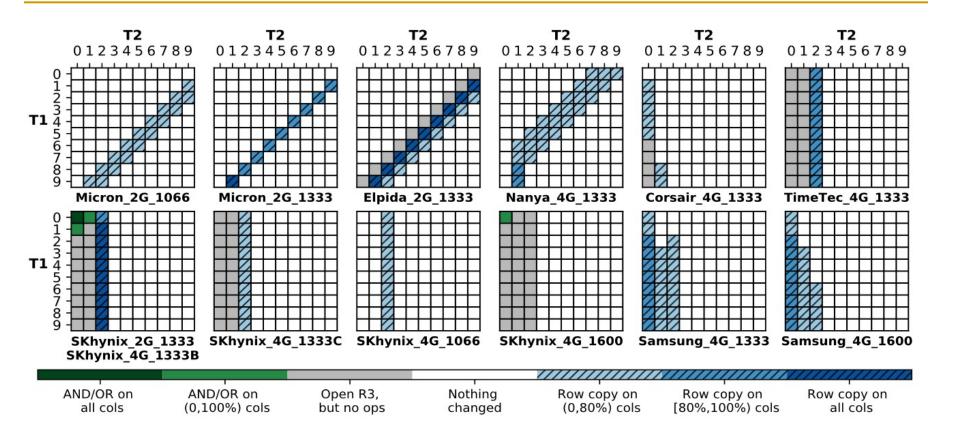
- How they test these memory modules:
 - Vary T_1 and T_2 , observe what happens.



SoftMC Experiment

- 1. Select a random subarray
- 2. Fill subarray with random data
- 3. Issue ACT-PRE-ACTs with given $T_1 \& T_2$
- 4. Read out subarray
- 5. Find out how many columns in a row support either operation
 - Row-wise success ratio

Proof of Concept (II)



 Each grid represents the success ratio of operations for a specific DDR3 module.

ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs

Fei Gao feig@princeton.edu Department of Electrical Engineering Princeton University Georgios Tziantzioulis georgios.tziantzioulis@princeton.edu Department of Electrical Engineering Princeton University David Wentzlaff wentzlaf@princeton.edu Department of Electrical Engineering Princeton University

PnM and PuM Working Synergistically

 Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler, "SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems"

Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Older arXiv version]

SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems

Maciej Besta¹, Raghavendra Kanakagiri², Grzegorz Kwasniewski¹, Rachata Ausavarungnirun³, Jakub Beránek⁴, Konstantinos Kanellopoulos¹, Kacper Janda⁵, Zur Vonarburg-Shmaria¹, Lukas Gianinazzi¹, Ioana Stefan¹, Juan Gómez Luna¹, Marcin Copik¹, Lukas Kapp-Schwoerer¹, Salvatore Di Girolamo¹, Marek Konieczny⁵, Onur Mutlu¹, Torsten Hoefler¹

¹ ETH Zurich ² IIT Tirupati ³ King Mongkut's University of Technology North Bangkok ⁴ Technical University of Ostrava ⁵ AGH-UST

Upcoming Lectures

PUM architectures and prototypes

- Case studies
 - □ SpMV on UPMEM PIM architecture
 - Neural network accelerators for the edge
 - Hybrid transactional and analytical processing (HTAP) databases

Enabling the adoption of PIM

P&S Processing-in-Memory

Real-World Processing-in-Memory Architectures: Alibaba Hybrid Bonding PNM Engine

> Dr. Juan Gómez Luna Prof. Onur Mutlu ETH Zürich Spring 2022 12 May 2022