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n Processing in DRAM Engine 
n Includes standard DIMM modules, with a large 

number of DPU processors combined with DRAM chips.

n Replaces standard DIMMs
q DDR4 R-DIMM modules

n 8GB+128 DPUs (16 PIM chips)
n Standard 2x-nm DRAM process

q Large amounts of compute & memory bandwidth

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

CPU
(x86, ARM, RV…)

DDR
Data bus

UPMEM Processing-in-DRAM Engine (2019)

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
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UPMEM PIM System Organization
• A UPMEM DIMM contains 8 or 16 chips

- Thus, 1 or 2 ranks of 8 chips each

• Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks
- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per 

rank

24-KB 
IRAM

D
M

A
 E

n
g

in
e

64-KB 
WRAM

DISPATCH
FETCH1
FETCH2
FETCH3

READOP1
READOP2
READOP3
FORMAT

ALU1
ALU2
ALU3
ALU4

MERGE1
MERGE2

Re
gi

st
er

 F
ile

P
ip

el
in

e
64-MB 
DRAM 
Bank

(MRAM)

64 bits



4Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 
Machine Learning Applications, ISSCC 2021

FIMDRAM: Chip Structure



FIMDRAM: System Organization (III)
n PIM units respond to standard DRAM column commands 

(RD or WR)
q Compliant with unmodified JEDEC controllers

n They execute one wide-SIMD operation commanded by a 
PIM instruction with deterministic latency in a lock-step 
manner

n A PIM unit can get 16 16-bit operands from IOSAs, a 
register, and/or the result bus

5Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021



n 4 Gb AiM die with 16 processing units (PUs)

6Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE 
International Solid-State Circuits Conference 37 of 42

Chip Implementation

� An 4Gb aim die photograph with 16 processing units
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AiM: System Organization
n GDDR6-based AiM architecture

7Lee et al., A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for 
Deep-Learning Applications, ISSCC 2022

11.1: A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep Learning Applications© 2022 IEEE 
International Solid-State Circuits Conference 8 of 42

AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations 
near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations 
near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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AiM Architecture

� AiM Architecture with 16 processing units (PUs) for deep-learning operations 
near DRAM cells and a 2KB global buffer (GB) for temporary data storage
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Samsung AxDIMM (2021)
n DIMM-based PIM

q DLRM recommendation system

8

Baseline System

AxDIMM System

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



AxDIMM Design: Hardware Architecture
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Figure 4: (a) DDR4-compatible FPGA-based
AxDIMM platform, (b) hardware architecture of
Rank-NMP module, (c) NMP-Instruction format.

3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions
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Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in
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3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions
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Figure 5: (a) AxDIMM address map, (b) control flow of
Rank-NMP, (c) Host-NMP offloading model.

and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in
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3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2⇥ memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions
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and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in

4

9Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021)



Alibaba 3D Logic-to-DRAM 
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11https://doi.org/10.1109/ISSCC42614.2022.9731694

Hybrid Bonding with PnM Engine (ISSCC 2022)

https://doi.org/10.1109/ISSCC42614.2022.9731694


n Memory bandwidth is not enough for many ML workloads

12Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

Processing-in-Memory for Machine Learning
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Two PIM Approaches

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, 
and Rachata Ausavarungnirun,
"A Modern Primer on Processing in 
Memory"
Invited Book Chapter in Emerging 
Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, 
Springer, to be published in 2021.
[Tutorial Video on "Memory-Centric Computing 
Systems" (1 hour 51 minutes)]

14https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"A Modern Primer on Processing in Memory"
Invited Book Chapter in Emerging Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, Springer, to be published in 2021.

https://arxiv.org/pdf/1903.03988.pdf

PIM Review and Open Problems

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://arxiv.org/pdf/1903.03988.pdf


HB-PNM: Overall Architecture (I)
n 3D-stacked logic die and DRAM die vertically bonded by 

hybrid bonding (HB)

16
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.
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n Match engine and neural engine for matching and ranking in a 
recommendation system

17
29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE 

International Solid-State Circuits Conference 14 of 27

Overall Architecture

• Memory
• 4 x 1Gb blocks with 4096 bits I/O

• 38.4GB/s on-chip bandwidth per block

• Compute
• Match Engine: Coarse-grained Matching 

• Neural Engine: Fine-grained Ranking

• Dual-mode Interface

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022
29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE 

International Solid-State Circuits Conference 12 of 27

Typical Recommendation System

• A two-step Recommendation System
• Feature Generation

• Classification, object detection and feature extraction
• Computation-bound
• Typically executed on GPU

• Matching & Ranking
• Coarse-grained matching and fine-grained ranking
• Memory-bound
• Typically executed on CPU and commercial DRAM as 

external memory
• Consumes most latency (89.87%) and energy (82.97%)
• Requires high-bandwidth, large-capacity and energy-

efficient memory

HB-PNM: Overall Architecture (II)



Recommendation Systems

18



n Recommendation system
q Feature generation

n Classification, object 
detection, feature 
extraction

n Compute-bound
n Good fit for GPU

q Matching and ranking
n Coarse-grained matching, 

fine-grained ranking
n Memory-bound

q Most latency (89.87%) and 
energy (82.97%)

q Typically run on CPU

19

Feature Generation + Matching & Ranking
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• Feature Generation

• Classification, object detection and feature extraction
• Computation-bound
• Typically executed on GPU

• Matching & Ranking
• Coarse-grained matching and fine-grained ranking
• Memory-bound
• Typically executed on CPU and commercial DRAM as 

external memory
• Consumes most latency (89.87%) and energy (82.97%)
• Requires high-bandwidth, large-capacity and energy-

efficient memory
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n Candidate recommendations are retrieved and then ranked

20

Recommendation Systems

Naumov et al., Deep Learning Recommendation 
Model for Personalization and Recommendation 
Systems, arXiv:1906.00091, 2019

Covington et al., Deep Neural Networks for YouTube 
Recommendations, RecSys 2016

Li et al., iMARS: An In-Memory-Computing Architecture for 
Recommendation Systems, arXiv:2202.09433, 2022



n Personalized recommendation: recommend content to 
users, e.g., Facebook’s DLRM recommendation system

Dense features: continuous inputs in vectors and matrices 
are processed by typical DNN layers (e.g., fully connected layers)

21

Overview of Recommendation Models

Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020



Overview of Recommendation Models
n Personalized recommendation: recommend content to 

users, e.g., Facebook’s DLRM recommendation system

Sparse features: for categorical inputs; 
processed by indexing large embedding tables

22Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020



Overview of Recommendation Models
n Personalized recommendation: recommend content to 

users, e.g., Facebook’s DLRM recommendation system

Embedding tables are organized as a set of potentially millions of vectors:
lookup and pooling operations represent sparse features learned during training 

and generally exhibit Gather-Reduce pattern,
via Caffe2’s SparseLengths (SLS) operators

23Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020



DLRM Performance Characterization
n Identifying key performance bottlenecks for the DLRM system

SparseLengths (SLS) operators:
• Low FP intensity
• Larger batch size:

• Higher memory footprint
• Higher memory intensity

The memory bandwidth can easily be 
saturated by embedding operations 

especially as both the batch size and the 
number of threads increase

24Ke et al. ”RecNMP: Accelerating personalized recommendation with near-memory processing," ISCA 2020



n Recommendation system
q Feature generation

n Classification, object 
detection, feature 
extraction

n Compute-bound
n Good fit for GPU

q Matching and ranking
n Coarse-grained matching, 

fine-grained ranking
n Memory-bound

q Most latency (89.87%) and 
energy (82.97%)

q Typically run on CPU

25

Feature Generation + Matching & Ranking
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Typical Recommendation System

• A two-step Recommendation System
• Feature Generation

• Classification, object detection and feature extraction
• Computation-bound
• Typically executed on GPU

• Matching & Ranking
• Coarse-grained matching and fine-grained ranking
• Memory-bound
• Typically executed on CPU and commercial DRAM as 

external memory
• Consumes most latency (89.87%) and energy (82.97%)
• Requires high-bandwidth, large-capacity and energy-

efficient memory

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022



n Coarse-grained matching
q Binary feature vectors with 512 dimensions
q Distance calculation
q Top-1000 items selected from 40K items

n Fine-grained ranking
q Features with 8 bits x 1024 dimensions
q 3-layer MLP (2048-256-64-1) for similarity 

prediction
q Top-100 ranking results from 1K items

26

Matching & Ranking
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• A two-step Recommendation System
• Feature Generation

• Classification, object detection and feature extraction
• Computation-bound
• Typically executed on GPU

• Matching & Ranking
• Coarse-grained matching and fine-grained ranking
• Memory-bound
• Typically executed on CPU and commercial DRAM as 

external memory
• Consumes most latency (89.87%) and energy (82.97%)
• Requires high-bandwidth, large-capacity and energy-

efficient memory
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Ranking & Matching
• Coarse-grained Matching 

• Coarse-grained features with 1bit x 512 dimensions

• Matching: L2 distance calculation

• Top-1000 items selected from 40K items

• Fine-grained Ranking
• Fine-grained features with 8bits x 1024 dimensions

• Similarity prediction: three-layer MLP (2048-256-64-1)

• Top-100 ranking results selected from 1K items

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022



3D Logic-to-DRAM 
Hybrid Bonding

27



HB-PNM: Overall Architecture (I)
n 3D-stacked logic die and DRAM die vertically bonded by 

hybrid bonding (HB)

28
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.
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n 3D Logic-to-DRAM Hybrid Bonding
q Face-to-face hybrid wafer bonding

29Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

HB-PNM: Chip Implementation
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• Logic-to-DRAM face-to-face Hybrid wafer Bonding
• 25nm DRAM technology with 36 x 1Gbits array
• 1Gbits DRAM core with 8 banks and on-chip ECC
• Each bank with 128 bits I/O, and implemented with HB 

1Gb DRAM Core
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.
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n 3D Logic-to-DRAM Hybrid Bonding
q Face-to-face hybrid wafer bonding

n Logic and memory manufactured independently: this avoids the 
challenges of integrating logic into memory chips

q Cu-Cu direct fusion with low bonding temperature (<350ºC)
q Much denser vias than other 3D-stacking technologies

n Low pitch size (3 um) vs. HBM microbumps (35 um1)
n High inter-layer bandwidth (1.38 TB/s) vs. HBM2E (460 GB/s2)

30Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

HB-PNM: Hybrid-Bonding Interconnection

1 Kim et al. Signal Integrity and Computing Performance Analysis of a Processing-In-Memory of High Bandwidth Memory (PIM-HBM) Scheme, IEEE TCPMT, 2021
2 https://product.skhynix.com/products/dram/hbm/hbm2e.go

29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE 
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Hybrid-bonding Interconnection

• Cu-Cu direct fusion with low bonding temperature (< 350oC)

• Up to 110,000/mm2 integration density

• Small pitch size of 3μm

• Align marker with high precision of 0.35μm

https://product.skhynix.com/products/dram/hbm/hbm2e.go


n DRAM die and logic die

31Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022
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Die Photo and Summary
DRAM Die Photo (36Gb)

HB-PNM: DRAM Die and Logic Die



HB-PNM Architecture

32



n DRAM die composed of 6x6 1Gb DRAM cores
q 8 banks per core
q 128-bit I/O per bank
q On-chip ECC (8 Mb per 128 Mb)

33
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• Each bank with 128 bits I/O, and implemented with HB 
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.
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n Match engine and neural engine for matching and ranking in a 
recommendation system
q Direct access to their counterpart DRAM blocks
q Access to other DRAM blocks via on-chip bus

34
29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE 

International Solid-State Circuits Conference 14 of 27

Overall Architecture

• Memory
• 4 x 1Gb blocks with 4096 bits I/O

• 38.4GB/s on-chip bandwidth per block

• Compute
• Match Engine: Coarse-grained Matching 

• Neural Engine: Fine-grained Ranking

• Dual-mode Interface
Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

HB-PNM: Logic Die
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.
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n Dual-mode interface can switch between
q All 8 banks in lock-step for full bandwidth
q Single channel (1 of 8 banks)

3529.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE 
International Solid-State Circuits Conference 14 of 27

Overall Architecture

• Memory
• 4 x 1Gb blocks with 4096 bits I/O

• 38.4GB/s on-chip bandwidth per block

• Compute
• Match Engine: Coarse-grained Matching 

• Neural Engine: Fine-grained Ranking

• Dual-mode Interface

HB-PNM Logic Die: Dual-mode Interface
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n Support for single-channel mode and lockstep mode
n Read/write counters to support burst requests

36
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Interface Bridge & Debug

• Support both single-channel mode and lockstep-mode
• Read/write counter to support burst requests
• Support cycle-wise debug with clock gating

Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

Neural Engine: Interface Bridge
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Overall Architecture

• Memory
• 4 x 1Gb blocks with 4096 bits I/O

• 38.4GB/s on-chip bandwidth per block

• Compute
• Match Engine: Coarse-grained Matching 

• Neural Engine: Fine-grained Ranking

• Dual-mode Interface



n Responsible for coarse-grained matching

37
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Match Engine Architecture (1)

• Address Generator
• Multi-mode to support different 

access patterns
• Configurable via registers
• Build-in performance evaluation 

mode & performance counter

HB-PNM: Match Engine
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n AddGen generates the address of the input query
q Mode selection for different access patterns
q Configurable via registers
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Match Engine Architecture (1)

• Address Generator
• Multi-mode to support different 

access patterns
• Configurable via registers
• Build-in performance evaluation 

mode & performance counter

Match Engine: Address Generator
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n Distance calculator obtains similarity between input query and 
feature vectors
q It computes Hamming distance of two 512-bit vectors
q Distance is filtered by root of max-heap
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Match Engine Architecture (2)

• Distance Calculator
• Compare the similarity between input 

feature and query
• Compute the Hamming distance of two 

512-bit features
• Filtered by rot of max-heap



n Max-heap hardware block and data structure with 1000 nodes 
<address, distance> for the 1000 shortest distances
q New input every two cycles
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Match Engine: Top-K Engine (I)
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Match Engine Architecture (3)

• Top-k Engine
• Maintain a max-heap hardware block
• Receives input every two cycles 
• Alternately heapifies nodes in odd layers and even layers 
• Stores the top-1000 matching results
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n Max-heap hardware block and data structure with 1000 nodes 
<address, distance> for the 1000 shortest distances
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Match Engine: Top-K Engine (II)
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.

29

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 31,2022 at 11:08:08 UTC from IEEE Xplore.  Restrictions apply. 

Distance calculator

Top-K

If Distance < left child, swap left child;
Else, swap right child



n Responsible for similarity prediction for fine-grained ranking

42

29.1: 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System© 2022 IEEE 
International Solid-State Circuits Conference 20 of 27

Interface Bridge & Debug

• Support both single-channel mode and lockstep-mode
• Read/write counter to support burst requests
• Support cycle-wise debug with clock gating
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HB-PNM: Neural Engine
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Overall Architecture

• Memory
• 4 x 1Gb blocks with 4096 bits I/O

• 38.4GB/s on-chip bandwidth per block

• Compute
• Match Engine: Coarse-grained Matching 

• Neural Engine: Fine-grained Ranking

• Dual-mode Interface



n Activations based on LUTs
q Support for GeLU and Exp

n Transpose
q Transpose 16x16 matrix with ping-pong array
q 2D register file array
q Row-based writes and column-based reads
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Neural Engine: Vector Processing Unit
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Neural Engine Architecture (1)

• Vector Process Unit
• Activations

• LUT based design
• Supports GeLU & Exp 

• Transpose
• Transpose 16x16 matrix with ping-pong array
• Implemented with 2D register file array 
• Supports row-based writes and column-based reads



n 32x32 INT8 fully-pipelined systolic array
q Partial sums accumulated in INT32 accumulator

44Niu et al., 184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System, ISSCC 2022

Neural Engine: GEMM
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Neural Engine Architecture (2)

REGs

DRAM-0

AddrGen
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QSPIMemory Controller

DRAM-1

Memory Controller

I/F Bridge

NE Ctrl

SPI bridge

VPU

GEMM

Utility

PERF.

DEBUG GPIO

Staging 
FIFO-0

Staging 
FIFO-1
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FIFO-2

GEMM ControllerWeight 
Pre-loader

…
…

…

……… …
Systolic
PE Array

32

32

Accu Buffer

Accumulator

…
32

GEMM

• GEMM
• 32 by 32 systolic PE array (INT8)
• Partial sum accumulated by the accumulator (INT32)
• 600GOPS (@300MHz)



Lecture on Systolic Arrays

45https://youtu.be/UtLy4Yagdys?t=2948

https://youtu.be/UtLy4Yagdys?t=2948


n Five working states and one idle state
q Each working state is for one instruction
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Neural Engine: Finite State Machine
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Figure 29.1.1: Motivations and comparison of state-of-the-art PNM/CIM architectures.
Figure 29.1.2: Illustration of 3D-stacked chip, cross-illustration of package, DRAM 
array layout and design blocks on logic die.

Figure 29.1.3: Overall architecture of PNM logic. Detailed flow of typical 
recommendation system.

Figure 29.1.4: Detailed design of Match Engine (ME), showing internal data-path 
micro-architecture of AddGen, distance calculator, and top-K engine.

Figure 29.1.5: Detailed design of Neural Engine (NE), showing internal datapath, 
interface modules, micro architecture of VPU and GEMM, FSM of control modules 
and lock-step debug module.

Figure 29.1.6: Illustration of FPGA-based evaluation platform, comparison with prior 
near-memory processing designs, and end-to-end performance evaluation of our HB 
chip and CPU-DRAM system on recommendation application.
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n Comparison table
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Comparison
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*** J. Choquette et al, Hotchip 2020
**** Y. C. Kwon et al, ISSCC 2021
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Comparison

• High off-chip bandwidth
• High bandwidth per capacity
• Low energy per bit *    H. Jia et al, ISSCC 2021.

** F. Devaux et al, Hotchip 2019
*** J. Choquette et al, Hotchip 2020
**** Y. C. Kwon et al, ISSCC 2021

UPMEM PIM ** A100 GPU ***UPMEM PIM ** FIMDRAM ****

HB-PNM: Key Feature Summary
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GPU
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GPU
FPGA
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HB-PNM
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PUM (e.g., 

SIMDRAM, 

NVM…)

Processing-in-Memory Classification



Two PIM Approaches

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, 
and Rachata Ausavarungnirun,
"A Modern Primer on Processing in 
Memory"
Invited Book Chapter in Emerging 
Computing: From Devices to Systems -
Looking Beyond Moore and Von Neumann, 
Springer, to be published in 2021.
[Tutorial Video on "Memory-Centric Computing 
Systems" (1 hour 51 minutes)]

49https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf

https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf
https://people.inf.ethz.ch/omutlu/projects.htm
https://www.youtube.com/watch?v=H3sEaINPBOE
https://people.inf.ethz.ch/omutlu/pub/ModernPrimerOnPIM_springer-emerging-computing-bookchapter21.pdf


Similarities and Differences among Current PIM Systems

n Similarities
q Current real-world processing-in-memory architectures follow a 

processing-near-memory approach
q All based on DRAM memory

n Differences
q Near-bank (UPMEM, FIMDRAM, AiM, HB-PNM) vs. near-chip 

(AxDIMM)
q General-purpose (UPMEM) vs. special-function (FIMDRAM, AiM, HB-

PNM)
q FGMT (UPMEM) vs. SIMD (FIMDRAM, AiM, AxDIMM) vs. systolic 

array (HB-PNM)
q Natively integer (UPMEM, HB-PNM) vs. floating point (FIMDRAM)

n FP16 (FIMDRAM) vs. BF16 (AiM) vs. FP32 (AxDIMM)
q DDR4 (UPMEM, AxDIMM) vs. LPDDR4 (HB-PNM) vs. HBM2 

(FIMDRAM) vs. GDDR6 (AiM)
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52https://parallel.princeton.edu/papers/micro19-gao.pdf

Processing-using-Memory in Real DRAM Chips

https://parallel.princeton.edu/papers/micro19-gao.pdf


n Hasan Hassan et al., “SoftMC: 
A Flexible and Practical 
Open-Source Infrastructure 
for Enabling Experimental 
DRAM Studies,” HPCA 2017

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC: Open Source DRAM Infrastructure

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf
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RowClone & Bitwise Ops in Real DRAM Chips

https://parallel.princeton.edu/papers/micro19-gao.pdf


Row Copy in ComputeDRAM
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Bitline is	above	
VDD/2	when	R2	is	

activated.



Bitwise AND in ComputeDRAM

56

T1	very	short
Sense	amps	are	not	

activated

T2	very	short
PRE	cannot	close	R1

R3	will	appear	on	the	address	bus
ACT(R2)	will	activate	R3	and	R2



Experimental Methodology (I)
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Experimental Methodology (II)
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32 DDR3	Modules
~256 DRAM	Chips



Proof of Concept (I)
n How they test these memory modules:

q Vary T1 and T2, observe what happens.

SoftMC Experiment
1. Select a random subarray
2. Fill subarray with random data
3. Issue ACT-PRE-ACTs with given T1 & T2
4. Read out subarray
5. Find out how many columns in a row support either operation

q Row-wise success ratio
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Proof of Concept (II)
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n Each grid represents the success ratio of operations for a 
specific DDR3 module.



61https://parallel.princeton.edu/papers/micro19-gao.pdf

Processing-using-Memory in Real DRAM Chips

https://parallel.princeton.edu/papers/micro19-gao.pdf


n Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, 
Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, 
Lukas Gianinazzi, Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, 
Salvatore Di Girolamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,
"SISA: Set-Centric Instruction Set Architecture for Graph Mining on 
Processing-in-Memory Systems"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), 
Virtual, October 2021. [Older arXiv version]
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PnM and PuM Working Synergistically

http://www.microarch.org/micro54/
https://arxiv.org/abs/2104.07582


n PUM architectures and prototypes

n Case studies

q SpMV on UPMEM PIM architecture 

q Neural network accelerators for the edge

q Hybrid transactional and analytical processing (HTAP) databases

n Enabling the adoption of PIM
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