o~ A
SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula
lvan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

!

@) UNIVERSIDAD
WS DE MALAGA

© O Q Q National Technical University of Athens

SAFARI ETH:zirich :€SLab

Our Work

Efficient Algorithmic Designs

The first open-source Sparse Matrix Vector Multiplication
(SpMV) software package, SparseP, for real Processing-In-
Memory (PIM) systems

SparseP is Open-Source
SparseP: https://github.com/CMU-SAFARI/SparseP

Extensive Characterization

The first comprehensive analysis of SpMV on the first real
commercial PIM architecture

Recommendations for Architects and Programmers
Full Paper: https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf
https://github.com/CMU-SAFARI/SparseP

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV):

= Widely-used kernel in graph processing,
machine learning, scientific computing ...

= A highly memory-bound kernel
Roofline Model

Peak Compute Performance

Performance

Operational Intensity 3

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth

Vs

Host
CPU

~

Bus

Bus

DRAM DRAM DRAM
Bank Bank Bank Bank

Main Memory

PIM Core

DRAM
Bank

PIM-Enabled Memo

PIM Core

DRAM
Bank

PIM Core

PIM Core

DRAM
Bank

>

J

J

4

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:
* High levels of parallelism

* Low memory access latency
* Large aggregate memory bandwidth

Lee+, [ISSCC 2022]

Kwon+, [ISSCC 2021]

GDDR6-AIM

SparseP: SpMV Library for Real PIMs

Our Contributions:

1. Design efficient SpMV kernels for current and future PIM
systems

= 25 SpMV kernels

= 4 compressed matrix formats (CSR, COO, BCSR, BCOO)

6 data types

4 data partitioning techniques

Various load balancing schemes among PIM cores/threads
3 synchronization approaches

2. Provide a comprehensive analysis of SpMV on the first
commercially-available real PIM system up
= 16 sparse matrices I
= Comparisons to state-of-the-art CPU and GPU systems

= Recommendations for software, system and hardware
designers

QOutline

SpMV Kernels for Real PIM Systems

{Key Takeaways from Our Study J

4)

Conclusion

- J

7/

SpMV Execution on a PIM System

‘Main Memory\

@ " PIM-Enabled Memory\

0 | @ o
Load the Execute the Retrieve the Merge the
input vector kernel partial results partial results

g _/
" Host CPU

Data Partitioning Techniques

SparseP supports two types of data partitioning techniques:

1D Partitioning 2D Partitioning

Core 1 Core 2

Core 3 Core 4

4x input vector

1x output vector
2x input vector
*

2x output vector

L

perform the complete trade-off
SpMV computation computation vs
only on PIM cores data transfer costs

1D Partitioning Technique

Load-Balancing Approaches:

* CSR, COO:

* Balance Rows
* Balance NNZs *

* BCSR, BCOO:
* Balance Blocks *

* Balance NNZs *

* row-granularity for CSR
* block-row-granularity for BCSR

10

1D Partitioning Technique

Load-Balancing of #NNZs:
* CSR (row-granularity), COO

CSR COO

row- nnz-

granularity Core 1 granularity Core 1
[_'aaifi_r—] o () Core 2
u Core 3 u Core 3

row-order nnz-order

| rowptr NEIEERAVARIEE] | | rowind [IENEIPAEIEIEWA |
colind AR colind AR
values PARBEN I - IO 2 1 8 B69 3 4 7

11

1D Partitioning Technique

Load-Balancing of #NNZs:
* CSR (row-granularity), COO

* BCSR (block-row-granularity), BCOO
BCSR BCOO

block-row- block-

granularity Core 1 granularity Core 1
[_'aaifi_r—] o () Core 2
u Core 3 u Core 3

block-row-order block-order

| rowptr MEIEEFAVARN] | | rowind [IENENFIFIEIENEWA
colind colind
values values

12

2D Partitioning Technique

Equally-Sized Tiles ' Equally-Wide Tiles 1 Variable-Sized Tiles

input vector input vector

| I(>\l<

input vector

J LT

% Ax

TILD|x

4x 4

Core1 Core3

I 4 I
Core 2 Core 4
output! output! output
1 vector! 1 vector, 1 vector
High NNZ imbalance | High NNZ balance High NNZ balance
across PIM cores across PIM cores of the across all PIM cores

same vertical partition 13

Load-Balance across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded] Core 1 Core 2
Core 2 PIM Core
Core 3 DRAM Core 3 Core 4
[Core 4 Bank
| \ I \
\ 11 1
i \ , Balance |
I Balance | I #Rows
: #Rows \ *
Thread 1 Thread 1
Thread 2 Thread 2

* Various load-balance schemes across threads

14

Load-Balance across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded] Core 1 Core 2
Core 2 PIM Core
Core 3 DRAM Core 3 Core 4
| Core 4
[\ / \
' “ ‘Balance
I \ , Balance |,
| Balance (if’r}%ggo /| #NNZs
1 #NNZs \ $ -
Thread 1 Thread 1
Thread 2 Thread 2

* Various load-balance schemes across threads

15

Load-Balance across Threads

Multithreaded PIM Cores:

1D Partitioning 2D Partitioning

Core 1
[Multithreaded} Core 1 Core 2
Core 2 PIM Core
Core 3 DRAM Core 3 Core 4
| Core 4
[\ / \
' “ ‘Balance
I 1 , Balance
! Balance |\ (eff’ljljnggo /| #NNZs
I #NNZs) .- -

\[hread 1

hread 2

\[hread 1
hread 2

 Various load-balance schemes across threads
 Various synchronization approaches among threads

16

Synchronization Approaches [eaded

Multithreaded PIM Core: DRAM Bank
Coarse-Grained (lb-cg) Fine-Grained (lb-fg)
Thread 1 w ﬁn ~ Thread 1 w Gn
g 5
Thread 2 - 3 Thread 2 -
2 o
Thread 3 = m 3 Thread 3 m G =

output vector

Lock-Free (lf)

partial results

Thread1ﬂzm-_l_-= .
- + - = g
Thread 2 Thread 1 Z
-]
a
Thread 3 m o : -

SparseP Software Package

25 SpMV kernels for PIM Systems -
https://github.com/CMU-SAFARI/SparseP

Partitioning Matrix Format | Load-Balancing
CSR rows, nnzs *
?; CO0 - rows, nnzs *, nnzs
Kernels BCSR blocks *, nnzs
BCOO & blocks, nnzs
CSR
4x CO0
2D BCSR
Equally-Sized Tiles
BCOO a
CSR nnzs *
bx CO0 - nnzs
o BCSR blocks * A
Equally-Wide Tiles OCKs “, nnzs
BCOO & blocks, nnzs
CSR nnzs *
bx CO0 - nnzs
P BCSR blocks * A
Variable-Sized Tiles OCKs , nNnzs
BCOO blocks, nnz

Load-balance

across PIM cores/threads:

* row-granularity (CSR)

* block-row-granularity (BCSR)

Synchronization
among threads of a PIM core:
a |b-cg, lb-fb, If (COO, BCOO)

~

(Data Types:

8-bit integer
* 16-bit integer
» 32-bit integer
* 64-bit integer
» 32-bit float

e 64-bit float
\ J

18

https://github.com/CMU-SAFARI/SparseP

QOutline

{SpMV Kernels for Real PIM Systems}

Key Takeaways from Our Study

4)

Conclusion

- J

19

UPMEM-based PIM System

e 20 UPMEM PIM DIMMs with 2560 PIM cores in total
* Each multithreaded PIM core supports 24 threads

~

128 GB Main Memory

p
Bus DRAM DRAM DRAM DRAM
Bank Bank Bank Bank
)
Host CPU o
(2-socket, A 160 GB PIM-Enabled Memor
Intel Xeon) PIM Core | PIM Core | PIM Core | PIM Core
ﬁ
Bus
& J
f;/
oo | DISPATCH le»
24x 8= { FETCH }
Yo ALU f
threads S8 meRaE
"

Sparse Matrix Data Set

26 sparse matrices®:

* Diverse sparsity patterns
* Variability on irregular patterns
* Variability on block patterns

Regular Matrix

.

._H
"

H

Scale-Free Matrix

* Suite Sparse Matrix Collection: https://sparse.tamu.edu/

21

https://sparse.tamu.edu/

Kernel Execution on One PIM Core

(- @)

3 4

Load the Execute the| Retrieve the Merge the

input vector . kernel) partial results partial results

‘Main Memory\

" PIM-Enabled Memory\

@ " Host CPU

22

Lock-Based Synchronization
16 threads, COO, 32-bit integer UPMEM DRAM bank

1 f Olb-cg|mlb-fg Multithreaded
PIM Core

2.0.8
0.6
)
& 0.4 g

0.2 Fine-grained locking (lb-fg)

0 does not improve performance
& S X & -oraj i :
Q g e NS ever coarse-grained locking (lb cg))

Fine-Grained Locking: memory accesses to the local DRAM bank
are serialized in the DMA engine of the UPEM PIM hardware.

Lock Based Synchromzatlon

Ke Takeaway 1
Fine-grained locking approaches cannot improve performance over
coarse-grained locking, when the PIM hardware does not support

L concurrent accesses to the local DRAM bank.)

Recommendation 1

Provide low-cost synchronization support and hardware support to
enable concurrent memory accesses to the local DRAM bank, and
integrate multiple DRAM banks per PIM core to increase execution
L parallelism.

24

Load-Balance within a PIM Core

16 threads, 32-bit integer Load-balancing #NNZs
performs best in most matrices

CSR CQo
@row| Onnz 1.4

Bmrow 0Onnz-lb-cg| Mnnz-If

Load-balancing #NNZ typically provides high computation
balance across threads of a compute-limited PIM core

Load-Balance within a PIM Core

16 threads, 32-bit integer Load-balancing #NNZs
causes high row imbalance

CSR CQo
@row |0Onnz 1.4

Bmrow | Onnz-lb-cg Mnnz-Ilf

Load-balancing #NNZs: one single thread performs a much higher
#memory accesses and #synchronization operations than the rest

Load-Balance within a PIM Core

16 threads, 32-bit integer
Key Takeaway 2

High operation imbalance in computation, synchronization, or
memory instructions executed by multiple threads of a PIM core
| can cause high performance overhead.

Recommendation 2

Design algorithms that provide high load balance across threads of
PIM core in terms of computations, synchronization points and

Mmemory accesses.
\. J

27

Scalability within a PIM Core

32-bit integer

.30
2 25
2 20
£ 15
~ 10
5
0

Execution T

S 50

Executio

delaunay_n13

CSR.nnz
CO0.nnz-lb-cg

=0=C0O0.nnz-lf
\&
00.nnz
.

L

°-

16

#threads

-0

24

Execution Time
o

wing_nodal

CSR.nnz
CO0.nnz-lb-cg

-=C0O00.nnz-lf
=e=BCSR.nnz

CO0O.nnz

[Scalability increases up to 16 threads]

raefsky4

CSR.nnz

o=C00.nnz-lb-cg
==C0O0.nnz-f

=e=BCSR.nnz
-=BC0O0.nnz

4 8

—
——

16

#threads

®
~

24

__ 700
v 600
£ 500
© 400
£ 300
200
S 100
0

1

Execut

— -9 o
8 16 24
#threads
pkustk08
CSR.nnz
o=C00.nnz-lb-cg
-=CO0.nnz-lf
=e=BCSR.Nnz
=9=BC0O0.nnz
—)
~
8 16 24
#threads 28

Kernel Execution on Multiple PIM Cores

(- @)

3 4

Load the Execute the| Retrieve the Merge the

input vector . kernel) partial results partial results

‘Main Memory\

" PIM-Enabled Memory\

@ " Host CPU

29

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

8 1D
v 6.86x Scale-free: COO, BCOO >
, OCSR mCcoo 4 13.e0x 10.26x CSR, BCSR
55 @BCSR mBCOO CSR COO
0 4 (row-granularity)
&3 Core 1
) Core 1
F-E_:I
1 Core 2 Core 2
= . mm ore 1
regular matrices scale-free
matrices

In scale-free matrices, COO + BCOO provide higher non-zero

element balance across PIM cores than CSR + BCSR, respectively.

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer 2D Equally-Sized Tiles

(N
Core 1 Core 3 Scale-free: 1.4 OCSR mCOO

1.23X
COO, BCOO - 1.2 @BCSR mBCOO
CLPANLE! | 1.39xCSR,BCSR) |

AR\ S

I v\ ~~~~~~~~ o 0.8
I R]

; L AU L0.6

Thread I=-=_=I1 Thread 1 v 0.4

Thread 2 . Thread 2 T 0.2

CSR COO 0

(row-granularity) regular matrices scale-free

matrices

In scale-free matrices, COO + BCOO provide higher non-zero

element balance across threads than CSR + BCSR, respectively.

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer [coo, BCOO - 32.38x CSR, BCSR]

2D Equally-Wide Tiles 2D Variable-Sized Tiles
50 46X 45 42x 40
g OCR mC00 40 (Pt e COR WCOO
40 35 @BCSR mBCOO
@BCSR mBCOO
S 30 g 30
5 22x 2% I %(5) 20x 21X
.20) 8 % t
) 15
10 10
5
O — [e | — — O — [s | — —
regular matrices scale-free regular matrices scale-free
matrices matrices

COO + BCOO formats provide higher non-zero element balance

across PIM cores + threads than CSR + BCSR, respectively.

Comparison of Compressed Formats
2048 PIM Cores, 32-bit integer

Key Takeaway 3

The compressed matrix format used to store the input matrix
determines the data partitioning across DRAM banks of PIM-enabled
memory. As a result, it affects the load-balance across PIM cores (and
Kthreads of a PIM core) with corresponding performance implications.

Design compressed data structures that can be effectively
partitioned across DRAM banks, with the goal of providing high
computation balance across PIM cores (and threads of a PIM core).

\

J

End-to-End Performance
" @ (2] © o

Load the Execute the Retrieve the Merge the

Q’nput vector kernel partial results partial resultj

4 N
(1 2 Host CPU
‘Main Memory @ PIM-Enabled Memory @

34

Scala b'l l]ty [The scalability is limited]

o by the load time
COO format, 32-bit integer

1D 2D 2D 2D
Equally-Sized Equally-Wide Variable-Sized

2.5 Olodd jmkernel Oretrieve W@merge !
5 _ ! ! ;
c ! : :
3 1.5 ! l |
3 ’ ' '
3 | : : i
Y1 0.5 : : :
0

o X D
> %06\',@"‘ AP %06”@“ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

1D: #bytes to load the input vector grows linearly to #PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 4

The 1D-partitioned kernels are severely bottlenecked by the high
data transfer costs to broadcast the whole input vector into DRAM
| banks of all PIM cores, through the narrow off-chip memory bus.

J

Recommendation 4

Optimize the broadcast collective collective in data transfers to
PIM-enabled memory to efficiently copy the input data into DRAM
banks in the PIM system.

\ S

36

Scala b'l l]ty [The scalability is limited]

o by the kernel time
COO format, 32-bit integer

1D 2D 2D 2D

| Equally-Sized | Equally-Wide Variable-Sized
2.5 l:lload |lkerne ||:|retr1eve @ merge |
2 M | |
S | | |
3 1.5 =] | | |
O 1 1 I

3 1 ' —
© | | |
£0.5 ﬂ | | |
0 i i i

o X D
> %06\',@"‘ AP %06”%0"‘ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

2D Equally-Sized: kernel time is limited by only
a few PIM cores assigned to the 2D tiles with the largest #NNZs

Scala b'l l]ty [The scalability is limited)

o by the retrieve time
COO format, 32-bit integer

J

1D 2D 2D 2D
Equally-Sized | Equally-Wide |Variable-Sized
2.5 Olodd mkernel [Oretrieve| @mmerge
_ 2 = : B
% s = i i > 88% of data! is zeros
O 1 1 I
3 1 ' —
9 : : :
2 0.5 ﬂ | H | |
0 i i i

o X D
> %06\',@"‘ AP %06”@“ ‘AP %06”(@"‘ AP %06”,@"‘
#PIM Cores #PIM Cores #PIM Cores #PIM Cores

2D Equally-Wide + 2D Variable-Sized:
high amount of zero padding to gather the output vector >

parallel transfers supported at rank granularity = 64 PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 5

The 2D equally-wide and variable-sized kernels need fine-grained
parallel data transfers at DRAM bank granularity (zero padding) to

X be supported by the PIM system to achieve high performance.
J

Recommendation 5

Optimize the gather collective operation at DRAM bank granularity
in data transfers from PIM-enabled memory to efficiently retrieve
the output results to the host CPU.

\

39

Comparison of Sparse Matrices

5 1D Oretrieve B merge
c 4 hugetric-00202 ldoor
2
O 3
S —
22
21
)
. =] | H \
64 | 128 256 512 1024 2048 64 | 128 | 256 512 1024 2048

#PIM Cores #PIM Cores

[Best-performing = 64 PIM cores] [Best-performing =128 PIM cores]

1D: #PIM cores that provides the best performance
depends on the sparsity pattern of the input matrix

Comparison of Sparse Matrices

2048 PIM cores, COO format, 32-bit integer
. 0O load B kernel
2D Equally-Sized

1.2 Oretrieve @merge
1 [r— . [] .
§ 0.8 hugetric-00202 memchip
(@)
_g 0.6 e =
9 0.4
n
ﬁﬁmﬂ ﬁ ;
0
1 2 4 8 16 | 32 1 2 4 16 32
#Vertical Partitions #Vertical Partitions

[Best-performing = 16 vertical part.] [Best-performing = 8 vertical part.]

2D: #vertical partitions that provides the best performance

depends on the sparsity pattern of the input matrix

Comparison of PIM Systems

COO format, 32-bit integer
2D Equally-Sized

Oload Okernel

1.2 Bretrieve @Bmerge
1 e — P —
§ 0.8 PIM System A PIM System B
3 0'6 hugetric-00202 hugetric-00202
; .]
2 0.4 [—
wn (o
O = =
16 32

1 2 4 8 1 2 4 8 16
S

#Vertical Partitions #Vertical Partitions

32

[Best-performing = 8 vertical part.] [Best-performing = 16 vertical part.]

PIM Cores PIM Band. Host CPU

PIMA 2048 @350 MHz 1.43 TB/s Intel Xeon Silver 4110 ®@2.1 GHz 23.1 GB/s

PIMB 2048 @425 MHz 1.78 TB/s Intel Xeon Silver 4215 ®@2.5 GHz 21.8 GB/s
4)

Comparison of PIM Systems

COO format, 32-bit integer

1.2
1 p—
§ 0.8 PIM System A
o hugetric-00202
'g 0.6 —

904

A, p— !
0
16 32

1 2 4 8
S

#Vertical Partitions

2D Equally-Sized

Oload Okernel

Bretrieve Bmerge

PIM System B
hugetric-00202

[e

1

2 4 8 16 | 32

#Vertical Partitions

[Best-performing = 8 vertical part.] [Best-performing = 16 vertical part.]

2D: #vertical partitions that provides the best performance

depends on the underlying hardware characteristics

Various Matrices and PIM Systems

COO format, 32-bit integer Oload B kernel

Key Takeaway 6

There is no one-size-fits-all parallelization approach for SpMV, since
the performance of each scheme depends on the characteristics of

L the input matrix and the underlying PIM hardware.)

Recommendation 6

Design adaptive algorithm that tune their configuration to the
particular patterns of each input given and the characteristics of
the PIM hardware.

\

444

1D vs 2D

Up to 2528 PIM Cores, 32-bit float

1.8 O1D ®m2D (equally-sized) A
Y >1100 Idle Cores | 2200 Idle Cores |1.31x
g1.2 1.45x
D 1
8_0'8
&0.6
0.4
0.2
O X N on x
Y N cC 2 c 3 e “ o vulwvw © v A - — ~
PREETREIFEEFRAEETLEE RS S
O

regular scale-free

Best-performing SpMV execution:
trades off computation with lower data transfer costs

1D vs 2D

Expensive data transfers to/from PIM-enabled memory performed
via the narrow memory bus impose significant performance
overhead to end-to-end SpMV execution. Thus, it is hard to fully
9 exploit all available PIM cores of the system.

Recommendation 7

Design high-speed communication channels and optimized libraries
in data transfers to/from PIM-enabled memory, provide hardware
support to effectively overlap computation with data transfers in
the PIM system, and/or integrate PIM-enabled memory as the main
memory of the system.)

.

46

SpMV Execution on Various Systems

GPU System
CPU System @) Execute the kernel

O Execu(te Fhe kernel\ @ Load the [[GPUCores | @ Retrieve
Main Memory input vector bus tIZIIZI the final vector

(s " GPU Global
papenen] | Chemoy’ [| oo
BP"k B“‘“lk DRﬁM DRAM g CPU
o | % BIVell 5% | 9% B

Host |/
CPU buls

Real PIM Load the Execute Retrieve the Merge the
System input vector the kernel p\artial results partial results

‘Main Memory\

DRAM | DRAM
B BN Ryedk

(N J

il [Host CPU

bus a+a

Y 47

CPU/GPU Comparisons

Peak Performance | Bandwidth -

Intel Xeon
CPU 660 GFlops 23.1 GB/s 2x85 W
Silver 4110 P Processor-
NVIDIA > Centric
GPU 14.13 TFlops 897 GB/s 300 W
Tesla V100 Y,
PIM UPMEM 4.66 GFlops ‘ 1.77 TB/s | 379 w Memory-
1st Gen. Centric

48

CPU/GPU Comparisons

" Kernel-Only (COO, 32-bit float):
 CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops ~ 23.1 GB/s
Silver 4110
GPU NVIDIA 14.13 TFlops 897 GB/s
Tesla V100
PIM UPMEM 4.66 GFlops ~ 1.77 TB/s
1st Gen.

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric

49

CPU/GPU Comparisons

* Kernel-Only (COQ, 32-bit float):

* CPU = 0.51% of Peak Perf.
* GPU = 0.21% of Peak Perf.
* PIM (1D) =50.7% of Peak Perf.

* CPU = 4.08 GFlop/s
* GPU = 1.92 GFlop/s
* PIM (1D) = 0.11 GFlop/s

'» End-to-End (COO, 32-bit float):|

J

Peak Performance | Bandwidth -

CPU Intel Xeon 660 GFlops
Silver 4110
GPU NVIDIA 14.13 TFlops
Tesla V100
PIM UPMEM 4.66 GFlops
1st Gen.

23.1 GB/s

897 GB/s

1.77 TB/s

2x85 W Processor-

> Centric
300 W

J

379 w Memory-
Centric

50

CPU/GPU Comparisons

* Kernel-Energy (COO, 32-bit float):
* CPU =0.247 J
* GPU = 0.051 J
e PIM (1D) 40.179 J

[PIM: 1.38x higher energy efficiency over CPU]

Peak Performance | Bandwidth -

Intel Xeon
CPU 660 GFlops 23.1 GB/s 2x85 W
Silver 4110 P > Processor-
NVIDIA Centric
GPU 14.13 TFlops 897 GB/s 300 W
Tesla V100 Y,
PIM UPMEM 4.66 GFlops ~ 1.77 TB/s 379 w Memory-
1st Gen. Centric

51

CPU/GPU Comparisons

* Kernel-Energy (COO, 32-bit float):
* CPU =0.247 J
* GPU =0.051J
e PIM (1D) =0.179 J

Peak Performance | Bandwidth

Many more results in the full paper:
https://arxiv.org/pdf/2201.05072.pdf

https://arxiv.org/pdf/2201.05072.pdf

QOutline

{SpMV Kernels for Real PIM Systems}

{Key Takeaways from Our Study J

Conclusion

53

Conclusion

* SpMV is a fundamental linear algebra kernel for important
applications (HPC, machine learning, graph analytics...)

* SpMV is a highly memory-bound kernel in processor-centric
systems (e.g., CPU and GPU systems)

* Real near-bank PIM systems can tackle the data movement
pottleneck (high parallelism, large aggregate memory bandwidth)

* Key Contributions:

* SparseP . first open-source SpMV library for real PIM systems

* Comprehensive characterization and analysis of SPMV on the first
real PIM system

* Recommendations to improve multiple aspects of future PIM
hardware and software

SparseP: https://github.com/CMU-SAFARI/SparseP
Full Paper: https://arxiv.org/pdf/2201.05072.pdf 54

https://github.com/CMU-SAFARI/SparseP
https://arxiv.org/pdf/2201.05072.pdf

o~ A
SparseP

Towards Efficient Sparse Matrix Vector Multiplication
on Real Processing-In-Memory Architectures

Christina Giannoula
lvan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu

N

i }é; UNIVERSIDAD
P DE MALAGA

b3
0,
S

© O Q Q National Technical University of Athens

SAFARI ETH:zirich $€SLab

