

Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Christina Giannoula

Ivan Fernandez, Juan Gomez-Luna, Nectarios Koziris, Georgios Goumas, Onur Mutlu

Our Work

Efficient Algorithmic Designs

The first open-source Sparse Matrix Vector Multiplication (SpMV) software package, SparseP, for real Processing-In-Memory (PIM) systems

SparseP is Open-Source

SparseP: https://github.com/CMU-SAFARI/SparseP

Extensive Characterization

The first comprehensive analysis of SpMV on the first real commercial PIM architecture

Recommendations for Architects and Programmers

Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Sparse Matrix Vector Multiplication

Sparse Matrix Vector Multiplication (SpMV):

- Widely-used kernel in graph processing, machine learning, scientific computing ...
- A highly memory-bound kernel

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:

- High levels of parallelism
- Low memory access latency
- Large aggregate memory bandwidth

Real Processing-In-Memory Systems

Real Near-Bank Processing-In-Memory (PIM) Systems:

- High levels of parallelism
- Low memory access latency
- Large aggregate memory bandwidth

SparseP: SpMV Library for Real PIMs

Our Contributions:

- Design efficient SpMV kernels for current and future PIM systems
 - 25 SpMV kernels
 - 4 compressed matrix formats (CSR, COO, BCSR, BCOO)
 - 6 data types
 - 4 data partitioning techniques
 - Various load balancing schemes among PIM cores/threads
 - 3 synchronization approaches
- 2. Provide a comprehensive analysis of SpMV on the first commercially-available real PIM system **Up**
 - 26 sparse matrices
 - Comparisons to state-of-the-art CPU and GPU systems
 - Recommendations for software, system and hardware designers

mem

Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

Conclusion

SpMV Execution on a PIM System

SparseP supports two types of data partitioning techniques:

1D Partitioning

perform the complete SpMV computation only on PIM cores 2D Partitioning

computation vs data transfer costs

Load-Balancing Approaches:

- CSR, COO:
 - Balance Rows
 - Balance NNZs *
- BCSR, BCOO:
 - Balance Blocks ^
 - Balance NNZs ^

- * row-granularity for CSR
- ^ block-row-granularity for BCSR

Load-Balancing of #NNZs:

• CSR (row-granularity), COO

Load-Balancing of #NNZs:

- CSR (row-granularity), COO
- BCSR (block-row-granularity), BCOO

block-row-order

block-order

Load-Balance across Threads

Multithreaded PIM Cores:

Various load-balance schemes across threads

Load-Balance across Threads

Multithreaded PIM Cores:

Various load-balance schemes across threads

Load-Balance across Threads

Multithreaded PIM Cores:

- Various load-balance schemes across threads
- Various synchronization approaches among threads

Synchronization Approaches

Multithreaded PIM Core DRAM Bank

Multithreaded PIM Core:

SparseP Software Package

25 SpMV kernels for PIM Systems →

https://github.com/CMU-SAFARI/SparseP

Partitioning	Matrix Format	Load-Balancing
9x 1D Kernels	CSR	rows, nnzs *
	COO •	rows, nnzs *, nnzs
	BCSR	blocks ^, nnzs ^
	BCOO A	blocks, nnzs
4x 2D Equally-Sized Tiles	CSR	
	COO •	
	BCSR	
	BCOO A	
6x 2D Equally-Wide Tiles	CSR	nnzs *
	COO •	nnzs
	BCSR	blocks ^, nnzs ^
	BCOO A	blocks, nnzs
6x 2D Variable-Sized Tiles	CSR	nnzs *
	COO •	nnzs
	BCSR	blocks ^, nnzs ^
	BCOO 4	blocks, nnz

Load-balance across PIM cores/threads:

- * row-granularity (CSR)
- block-row-granularity (BCSR)

Synchronization among threads of a PIM core:

△ lb-cg, lb-fb, lf (COO, BCOO)

Data Types:

- 8-bit integer
- 16-bit integer
- 32-bit integer
- 64-bit integer
- 32-bit float
- 64-bit float

Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

Conclusion

UPMEM-based PIM System

- 20 UPMEM PIM DIMMs with 2560 PIM cores in total
- Each multithreaded PIM core supports 24 threads

Sparse Matrix Data Set

26 sparse matrices*:

- Diverse sparsity patterns
- Variability on irregular patterns
- Variability on block patterns

Regular Matrix

Scale-Free Matrix

^{*} Suite Sparse Matrix Collection: https://sparse.tamu.edu/

Kernel Execution on One PIM Core

Lock-Based Synchronization

16 threads, COO, 32-bit integer

UPMEM DRAM bank

Fine-grained locking (lb-fg)
does not improve performance
over coarse-grained locking (lb-cg)

<u>Fine-Grained Locking</u>: memory <u>accesses</u> to the <u>local DRAM</u> bank <u>are serialized</u> in the DMA engine of the UPEM PIM hardware.

Lock-Based Synchronization

16 threads, COO, 32-bit integer

Key Takeaway 1

Fine-grained locking approaches cannot improve performance over coarse-grained locking, when the PIM hardware does not support concurrent accesses to the local DRAM bank.

Recommendation 1

Provide low-cost synchronization support and hardware support to enable concurrent memory accesses to the local DRAM bank, and integrate multiple DRAM banks per PIM core to increase execution parallelism.

Load-Balance within a PIM Core

16 threads, 32-bit integer

Load-balancing #NNZs performs best in most matrices

Load-balancing #NNZ typically provides high computation balance across threads of a compute-limited PIM core

Load-Balance within a PIM Core

16 threads, 32-bit integer

Load-balancing #NNZs causes high row imbalance

Load-balancing #NNZs: one single thread performs a much higher #memory accesses and #synchronization operations than the rest

Load-Balance within a PIM Core

16 threads, 32-bit integer

Key Takeaway 2

High operation imbalance in computation, synchronization, or memory instructions executed by multiple threads of a PIM core can cause high performance overhead.

Recommendation 2

Design algorithms that provide high load balance across threads of PIM core in terms of computations, synchronization points and memory accesses.

Scalability within a PIM Core

32-bit integer

Scalability increases up to 16 threads

Kernel Execution on Multiple PIM Cores

2048 PIM Cores, 32-bit integer

In scale-free matrices, COO + BCOO provide higher non-zero element balance across PIM cores than CSR + BCSR, respectively.

In scale-free matrices, COO + BCOO provide higher non-zero element balance across threads than CSR + BCSR, respectively.

COO + BCOO formats provide higher non-zero element balance across PIM cores + threads than CSR + BCSR, respectively.

2048 PIM Cores, 32-bit integer

1D

2D Equally-Sized

Key Takeaway 3

The compressed matrix format used to store the input matrix determines the data partitioning across DRAM banks of PIM-enabled memory. As a result, it affects the load-balance across PIM cores (and threads of a PIM core) with corresponding performance implications.

regular matrices

scale-free matrices

regular matrices

scale-free matrices

2D Equally-Wide

2D Variable-Sized

Recommendation 3

Design compressed data structures that can be effectively partitioned across DRAM banks, with the goal of providing high computation balance across PIM cores (and threads of a PIM core).

regular matrices

scale-free matrices

regular matrices

scale-free matrices

End-to-End Performance

<u>1D</u>: #bytes to load the input vector grows linearly to #PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 4

The 1D-partitioned kernels are severely bottlenecked by the high data transfer costs to broadcast the whole input vector into DRAM banks of all PIM cores, through the narrow off-chip memory bus.

Recommendation 4

Optimize the broadcast collective collective in data transfers to PIM-enabled memory to efficiently copy the input data into DRAM banks in the PIM system.

<u>2D Equally-Sized:</u> kernel time is limited by only a few PIM cores assigned to the 2D tiles with the largest #NNZs

Scalability

COO format, 32-bit integer

The scalability is limited by the retrieve time

2D Equally-Wide + 2D Variable-Sized:

high amount of zero padding to gather the output vector > parallel transfers supported at rank granularity = 64 PIM cores

Scalability

COO format, 32-bit integer

Key Takeaway 5

The 2D equally-wide and variable-sized kernels need fine-grained parallel data transfers at DRAM bank granularity (zero padding) to be supported by the PIM system to achieve high performance.

Recommendation 5

Optimize the gather collective operation at DRAM bank granularity in data transfers from PIM-enabled memory to efficiently retrieve the output results to the host CPU.

Comparison of Sparse Matrices

<u>1D</u>: #PIM cores that provides the best performance depends on the sparsity pattern of the input matrix

Comparison of Sparse Matrices

<u>2D</u>: #vertical partitions that provides the best performance depends on the sparsity pattern of the input matrix

Comparison of PIM Systems

Best-performing = 8 vertical part.

Best-performing = 16 vertical part.

System	PIM Cores	PIM Band.	Host CPU	Bus Band.
PIM A	2048 @350 MHz	1.43 TB/s	Intel Xeon Silver 4110 @2.1 GHz	23.1 GB/s
PIM B	2048 @425 MHz	1.78 TB/s	Intel Xeon Silver 4215 @2.5 GHz	21.8 GB/s

42

Comparison of PIM Systems

<u>2D</u>: #vertical partitions that provides the best performance depends on the underlying hardware characteristics

Various Matrices and PIM Systems

COO format, 32-bit integer

□load

■ kernel

□ retrieve

merge

Key Takeaway 6

There is no one-size-fits-all parallelization approach for SpMV, since the performance of each scheme depends on the characteristics of the input matrix and the underlying PIM hardware.

#PIM Cores

#PIM Cores

2D Equally-Sized

□load ■kernel □retrieve ■merge

PIM System A

2D Equally-Sized □load ■kernel □rétrieve ■merge

PIM System B

Recommendation 6

Design adaptive algorithm that tune their configuration to the particular patterns of each input given and the characteristics of the PIM hardware.

4 8 16 37

1 2 4 8 16 32

hugetric-0020 memchip

#Vertical Partitions

4 8 16 37

hugetric-0020

memchip

#Vertical Partitions

lowdown

1D vs 2D

Up to 2528 PIM Cores, 32-bit float

Best-performing SpMV execution: trades off computation with lower data transfer costs

1D vs 2D

Key Takeaway 7

Expensive data transfers to/from PIM-enabled memory performed via the narrow memory bus impose significant performance overhead to end-to-end SpMV execution. Thus, it is hard to fully exploit all available PIM cores of the system.

Recommendation 7

Design high-speed communication channels and optimized libraries in data transfers to/from PIM-enabled memory, provide hardware support to effectively overlap computation with data transfers in the PIM system, and/or integrate PIM-enabled memory as the main memory of the system.

SpMV Execution on Various Systems

S	ystem	Peak Performance	Bandwidth	TDP	
CPU	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor-
GPU	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
PIM	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

- Kernel-Only (COO, 32-bit float):
 - CPU = 0.51% of Peak Perf.
 - GPU = 0.21% of Peak Perf.
 - PIM (1D) = **50.7**% of Peak Perf.

	System	Peak Performance	Bandwidth	TDP	
CPU	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor-
GPU	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
PIM	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

- Kernel-Only (COO, 32-bit float):
 - CPU = 0.51% of Peak Perf.
 - GPU = 0.21% of Peak Perf.
 - PIM (1D) = **50.7**% of Peak Perf.
- End-to-End (COO, 32-bit float):
 - CPU = 4.08 GFlop/s
 - GPU = 1.92 GFlop/s
 - PIM (1D) = 0.11 GFlop/s

S	ystem	Peak Performance	Bandwidth	TDP	
CPU	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor
GPU	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
PIM	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

- Kernel-Energy (COO, 32-bit float):
 - CPU = 0.247 J
 - GPU = 0.051 J
 - PIM (1D) = 0.179 J

PIM: 1.38x higher energy efficiency over CPU

Sy	ystem	Peak Performance	Bandwidth	TDP	
CPU	Intel Xeon Silver 4110	660 GFlops	23.1 GB/s	2x85 W	Processor-
GPU	NVIDIA Tesla V100	14.13 TFlops	897 GB/s	300 W	Centric
PIM	UPMEM 1st Gen.	4.66 GFlops	1.77 TB/s	379 W	Memory- Centric

Kernel-Energy (COO, 32-bit float):

```
    CPU = 0.247 J
    GPU = 0.051 J
    PIM (1D) = 0.179 J
```

System	Peak Performance	Bandwidth	TDP
Intal Vaan			

Many more results in the full paper: https://arxiv.org/pdf/2201.05072.pdf

1st Gen. Centric

Outline

SpMV Kernels for Real PIM Systems

Key Takeaways from Our Study

Conclusion

Conclusion

- SpMV is a fundamental linear algebra kernel for important applications (HPC, machine learning, graph analytics...)
- SpMV is a highly memory-bound kernel in processor-centric systems (e.g., CPU and GPU systems)
- Real near-bank PIM systems can tackle the data movement bottleneck (high parallelism, large aggregate memory bandwidth)
- Key Contributions:
 - SparseP: first open-source SpMV library for real PIM systems
 - Comprehensive characterization and analysis of SPMV on the first real PIM system
 - Recommendations to improve multiple aspects of future PIM hardware and software

Our Work

SparseP: https://github.com/CMU-SAFARI/SparseP
Full Paper: https://arxiv.org/pdf/2201.05072.pdf

Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Christina Giannoula

Ivan Fernandez, Juan Gomez-Luna, Nectarios Koziris, Georgios Goumas, Onur Mutlu

