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Genome Sequence Analysis
• Genome sequence analysis is critical for many applications
- Personalized medicine
- Outbreak tracing
- Evolutionary studies

• Genome sequencing machines extract smaller fragments of the original 
DNA sequence, known as reads

AAGCTTCCATGG
AAATGGGCTTTC

GCCCAAATGGTT
GCTTCCAGAATG
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Genome Sequence Analysis
• Read mapping: first key step in genome sequence analysis

…GCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTCCACAATG…

- Aligns reads to potential matching locations in the reference genome

Reference Genome

Differences Differences

- For each matching location, the alignment step finds the degree of 
similarity (alignment score)

AAGCTTCCATGG
GCCCAAATGGTT

GCTTCCAGAATG

AAATGGGCTTTC
• Calculating the alignment score requires computationally-expensive

approximate string matching (ASM) to account for differences between 
reads and the reference genome due to:

- Sequencing errors
- Genetic variation
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Genome Sequence Analysis

Computation overhead

Data movement overhead 

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Alignment

Data Movement from Storage

Storage
System
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Heuristics Accelerators Filters

Computation overhead
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Unit
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Main 

Memory
Storage
System

Data movement overhead 

✓

Accelerating Genome Sequence Analysis
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Storage
System

Key Idea

Non-matching reads
Do not have potential matching locations and can skip alignment

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

Exactly-matching reads
Do not need expensive approximate string matching during alignment
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Challenges

Read mapping workloads can exhibit different behavior

There are limited hardware resources 
in the storage system

Filter reads that do not require alignment
inside the storage system

AAGCTTCCATGG

AAAATTCCATGG

TTTTTTCCAAAA
GCTTCCAGAATG

GGGCCAGAATG

GAATGGGGCCA
TCCCCGGGGCCA

CCTTTGGGTCCA

CGTTCCTTGGCA

Filtered Reads

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory
Storage
System
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GenStore

Computation overhead

Data movement overhead 

GenStore provides significant speedup (1.4x - 33.6x) and  
energy reduction (3.9x – 29.2x) at low cost

Filter reads that do not require alignment
inside the storage system

Computation 
Unit

(CPU or 
Accelerator)

Cache
Main 

Memory

GenStore-Enabled
Storage
System

✓
✓
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Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline
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GCC 7
CCC 8
CAA 1
AAA 31 101
CCA 25 230 400

… … … …

Read Mapping Process
…CAATTTGCCCATATGGTTAAGCTTCCATGGAAATGGGCTTTCGCTTTG…Reference

> 3 billion characters

Index

K-mer Locations
GCCCAAATGGTTRead
GCC

CCC
…

K-mers

Determine potential matching locations (seeds) in the 
reference genome 

Prune some seeds in the reference genome

Determine the exact differences between the read 
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment

Seeds

…
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Motivation
• Case study on a real-world genomic read dataset 
- Various read mapping systems
- Various state-of-the-art SSD configurations

The ideal in-storage filter significantly improves performance by

1) reducing the computation overhead

2) reducing the data movement overhead
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Motivation
• Case study on a real-world genomic read dataset 
- Various read mapping systems
- Various state-of-the-art SSD configurations

Filtering outside SSD provides lower performance benefit since it 

1) does not reduce the data movement overhead

2) must compete with read mapping for system resources

A HW accelerator reduces the computation bottleneck,

which makes I/O a larger bottleneck in the system
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Our Goal

Design Objectives:

Design an in-storage filter for genome sequence analysis 
in a cost-effective manner

Provide high in-storage filtering performance to overlap the 
filtering with the read mapping of unfiltered data

Performance

Support reads with 1) different properties and 2) different 
degrees of genetic variation in the compared genomes

Applicability

Do not require significant hardware overhead
Low-cost
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GenStore

SSD	Controller

CoreCoreCore

In-SSD	DRAM
L2P

Mappings

Flash
Ctrl.#1

Flash
Ctrl.#N

⋯

NAND
Die#4

NAND
Die#1 ⋯

NAND
Die#4

NAND
Die#1 ⋯

Host	System

FTL

ACC

ACC

ACC GenStore
Metadata		

GenStore
FTL

Reads	that	need	
substantial	processing

• Key idea: Filter reads that do not require alignment inside the 
storage system

• Challenges
- Different behavior across read mapping workloads
- Limited hardware resources in the SSD



17

Filtering Opportunities

• Sequencing machines produce one of two kinds of reads 
- Short reads: highly accurate and short

- Long reads: less accurate and long

• High sequencing error rates (long reads) or
• High genetic variation (short or long reads)

Non-matching reads
Do not have potential matching locations, so they skip alignment

• Low sequencing error rates (short reads) combined with
• Low genetic variation

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Reads that do not require the expensive alignment step:
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore-EM 
• Efficient in-storage filter for reads with at least one exact 

match in the reference genome

•Uses simple operations, without requiring alignment

• Challenge: large number of random accesses per read to 
the reference genome and its index

Expensive random accesses to flash chips

Limited DRAM capacity inside the SSD
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GenStore-EM: Data Structures

GCCCAAATGGTTRead
GCC

CCC
…

K-mers

K-mer

•Read-sized k-mers: to reduce the number of accesses per 
each read

Only one index lookup per read

• Sorted read-sized k-mers: to avoid random accesses to 
the index

Sequential scan of the read set and the index✓

✓
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GenStore-EM: Data Structures

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Sorted
Read-sized

K-mers

Read
AAAAAAAAAA



23

GenStore-EM: Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read = K-mer

Next

Exact match à Filter the read

Next
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GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

NextComparator

Read > K-mer
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper
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Next

GenStore-EM: Not Finding a Match

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted Read Table

ID Read
873 AAAAAAAAAA
232 AAAAAAAAAG
17 AAAAAAAACT
… …

Sorted K-mer Index

Comparator

Read < K-mer

Not an exact match à Send to read mapper

Avoids random accesses

Simple low-cost logic✓
✓



27

GenStore-EM: Optimization
•Read-sized k-mer index takes up a large amount of space 

(126 GB for human index) due to the larger number of 
unique k-mers

K-mer Loc.
AAAAAAAAAA1,	8,	…
AAAAAAAAAC 51
AAAAAAAAAT 23,	37

… …

Sorted K-mer Index

Strong Hash Value

1
4
7
16

Using strong hash values instead of read-sized k-mers
reduces the size of the index by 3.9x 
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GenStore-EM: Design

GenStore-Enabled SSD

Host System

Die#1
Plane#1 Plane#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯

Die#1
P#1 P#2

Die#4
P#1 P#2

⋯⋯

Channel#1 Channel#2 Channel#N

❷ Exact-match filtering

SSD ControllerNAND Flash Array

SRTable

SKIndex
❶ Sequential Reads

DRAM

Batch#i-1
Batch#i

Batch#j-1
Batch#j

Comparator SRTable Buffer

SKIndex Buffer

Data is evenly distributed between channels, dies, and planes 
to leverage the full internal bandwidth of the SSD

Steps 1 and 2 are pipelined. 
During filtering, GenStore-EM sends the unfiltered reads 

to the host system.
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GenStore

GenStore-EM for Exactly-Matching Reads

GenStore-NM for Non-Matching Reads
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GenStore-NM
• Efficient chaining-based in-storage filter to prune most of the non-

matching reads

• Challenge: how to perform chaining inside the SSD
- For a read with Seeds 𝑆! to 𝑆", the chaining score for 𝑆!… 𝑆# can be calculated as

𝐦𝐚𝐱{𝐦𝐚𝐱 𝑺𝒄𝒐𝒓𝒆 𝑺𝒋 +𝑴𝒂𝒕𝒄𝒉_𝑺𝒄𝒐𝒓𝒆 𝑺𝒊 , 𝑺𝒋 − 𝑮𝒂𝒑_𝑷𝒆𝒏𝒂𝒍𝒕𝒚(𝑺𝒊 , 𝑺𝒋) , 𝒘}
i > j > 1

Costly dynamic programming on many seeds in each read

Particularly challenging for long reads with many seeds

Determine potential matching locations (seeds) in the 
reference genome 

Prune some seeds in the reference genome

Determine the exact differences between the read 
and the reference genome

Seeding

Seed Filtering
(e.g., Chaining)

Alignment
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GenStore-NM: Mechanism

Filters many non-aligning reads without 
costly hardware resources in the SSD

Pr
ob
ab
ili
ty

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number	of	seeds	per	read

High	Alignment
Probability	

Al
ig
nm

en
t

Reads with a sufficiently large number of seeds
are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

✓
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GenStore-NM: Mechanism

Can filter many non-aligning reads without 
costly hardware resources in the SSD

Pr
ob
ab
ili
ty

0

0.5

1

0 16 32 48 64 80 96 112 128 144

Number	of	seeds	per	read

High	Alignment
Probability	

Al
ig
nm

en
t

Reads with a sufficiently large number of seeds
are very likely to align to the reference genome

• GenStore-NM uses a light-weight chaining filter

- Selectively performs chaining only on reads with a small number of seeds

- Directly sends reads that require more complex chaining to the host system

Details on GenStore-NM’s design are in the paper



33

Conclusions

Background

Motivation and Goal

GenStore

Evaluation

Outline



34

Evaluation Methodology
Read Mappers
• Base: state-of-the-art software or hardware read mappers
- Minimap2 [Bioinformatics’18]: software mapper for short and long reads

- GenCache [MICRO’19]: hardware mapper for short reads

- Darwin [ASPLOS’18]: hardware mapper for long reads

• GS: Base integrated with GenStore

SSD Configurations
• SSD-L: with SATA3 interface (0.5 GB/s sequential read bandwidth)

• SSD-M: with PCIe Gen3 interface (3.5 GB/s sequential read bandwidth)

• SSD-H: with PCIe Gen4 interface (7 GB/s sequential read bandwidth)
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For a read set with 80% exactly-matching reads

Performance – GenStore-EM
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For a read set with 99.7% non-matching reads

Performance – GenStore-NM
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Area and Power
• Based on Synthesis of GenStore accelerators using the Synopsys 

Design Compiler @ 65nm technology node

Logic unit # of instances Area [mm2] Power [mW]

Comparator 1 per SSD 0.0007 0.14

K -mer Window 2 per channel 0.0018 0.27

Hash Accelerator 2 per SSD 0.008 1.8

Location Buffer 1 per channel 0.00725 0.37375

Chaining Buffer 1 per channel 0.008 0.95

Chaining PE 1 per channel 0.004 0.98

Control 1 per SSD 0.0002 0.11

Total for an 8-channel SSD - 0.2 26.6

Only 0.006% of a 14nm Intel Processor, less than 9.5% of the three 
ARM processors in a SATA SSD controller
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Other Results in the Paper
• Effect of read set features on performance

- Data size (up to 440 GB)

- Filter ratio

• Performance benefit of an implementation of GenStore 
outside the SSD

- In some cases, it provides performance benefits due more 
efficient streaming accesses 

- Provides significantly lower benefit compared to GenStore

•More detailed characterization of non-matching reads 
across different read mapping use cases and species
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Conclusion
• There has been significant effort into improving read mapping performance 

through efficient heuristics, hardware acceleration, accurate filters 

• Problem: while these approaches address the computation overhead, none of 
them alleviate the data movement overhead from storage

• Goal: improve the performance of genome sequence analysis by effectively 
reducing unnecessary data movement from the storage system

• Idea: filter reads that do not require the expensive alignment computation in 
the storage system to fundamentally reduce the data movement overhead

• Challenges: 
- Read mapping workloads can exhibit different behavior
- There are limited available hardware resources in the storage system
• GenStore: the first in-storage processing system designed for genome sequence 

analysis to reduce both the computation and data movement overhead

• Key Results: GenStore provides significant speedup (1.4x - 33.6x) and energy 
reduction (3.9x – 29.2x) at low cost
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Backup Slides
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End-to-End Workflow of Genome Sequence Analysis

• There are three key initial steps in a standard genome sequencing and analysis workflow

- Collection, preparation, and sequencing of a DNA sample in the laboratory

- Basecalling

- Read mapping

• Genomic read sets can be obtained by

- Sequencing a DNA sample and storing the generated read set into the SSD of a sequencing machine

- Downloading read sets from publicly available repositories and storing them into an SSD

• We focus on optimizing the performance of read mapping because sequencing and basecalling are 
performed only once per read set, whereas read mapping can be performed many times 

- Analyzing the differences between a reads from an individual and many reference genomes of other individuals

- Repeating the read mapping step many times to improve the outcome of read mapping

• Improving read mapping performance is critical in almost all genomic analyses that use sequencing

- 45% of the execution time when discovering sequence variants in cancer genomics studies

- 60% of the execution time when profiling the species composition of a multi-species (i.e., metagenomic) read
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Motivation
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State-of-the-art software 
read mapper, Minimap2

Motivation
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Motivation
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Benefits of Ideal In-Storage Filter
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Overheads of Software Mappers
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Overheads of Software Mappers

0

20

40

60

80

100

Base SW-filter Ideal-ISF

SSD-L SSD-H DRAM

Ex
ec

ut
io

n 
ti

m
e 

[s
ec

]

SW-filter provides limited benefits compared to Base

N
/A

The filtering process outside the SSD must compete 
with the read mapping process for the resources in the system
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Overheads of Hardware Mappers
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Ideal-OSF

• Execution time of an ideal in-storage filter:

• Execution time of an ideal outside-storage filter:
• 60% slower than Ideal-ISF in our analysis
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Comparison to PIM
• Even though read mapping applications could also benefit from other near-data, 

in-storage processing can fundamentally address the data movement problem 
by filtering large, low-reuse data where the data initially resides. 

• Even if an ideal accelerator achieved a zero execution time, there would still exist 
the need to bring the data from storage to the accelerator. 
- 2.15x slower than the execution time that Ideal-ISF+ACC provides  in our 

motivational analysis

In-storage filter can be integrated with any read mapping accelerator, 

including PIM accelerators, to alleviate their data movement overhead.
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Long Read Use Cases
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FTL

GenStore-Enabled	SSD

GenStore	SSD	Controller
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⋯ ⋯
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Host	System

❷ ❸
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FTL: Metadata
•GenStore metadata includes the mapping information of 

the data structures necessary for read mapping 
acceleration

• In accelerator mode, GenStore also keeps in internal 
DRAM other metadata structures of the regular FTL
- Examples include the page status table and block read counts 

which need to be updated during the filtering process

•We carefully design GenStore to only sequentially access 
the underlying NAND flash chips while operating as an 
accelerator
- Requires only a small amount of metadata to access the stored 

data
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FTL: Data Placement
•GenStore needs to properly place its data structures to 

enable the full utilization of the internal SSD bandwidth

•When each data structure is initially written to the SSD, 
GenStore sequentially and evenly distributes it across 
NAND flash chips

•GenStore can specify the physical location of a 30-GB 
data structure by maintaining only the list of 1,250 (30 
GB/24 MB) physical block addresses

• It significantly reduces the size of the necessary mapping 
information from 300 MB (with conventional 4-KiB page 
mapping) to only 5 KB (1,250 4 bytes)
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FTL: SSD Management Tasks
• In accelerator mode, GenStore only reads data structures to 

perform filtering, and does not write any new data
- GenStore does not require any write-related SSD-management 

tasks such as garbage collection and wear-leveling

• The other tasks necessary for ensuring data reliability can be done 
before or after the filtering process
- GenStore significantly limits the amount of data whose retention 

age would exceed the manufacturer-specified threshold since 
GenStore’s filtering process takes a short time.
- GenStore-FTL can easily avoid read disturbance errors for data 

with high read counts since GenStore sequentially reads NAND 
flash blocks only once during filtering
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Data Sizes
• Conventional k-mer index in Minimap2 + reference genome: 7 GB 

(k = 15)

• Read-sized k-mer index before optimization: 126 GB (k= 150)

• Read-sized k-mer index after optimization: 32 GB (k = 150)
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SSD Specs
• SSD-L: SATA3 interface (0.5 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 8 channels

• SSD-L: PCIe Gen3 M.2 interface (3.5 GB/s sequential 
read)
- 1.2 GB/s per channel bandwidth
- 16 channels

• SSD-L: PCIe Gen4 interface (7 GB/s sequential read)
- 1.2 GB/s per channel bandwidth
- 16 channels
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Evaluation Methodology
•Performance modeling
- Ramulator for DRAM timing
- MQSim for SSD timing
- We model the end-to-end throughput of GenStore based on the 

throughput of each GenStore pipeline stage
• Accessing NAND flash chips
• Accessing internal DRAM
• Accelerator computation
• Transferring unfiltered data to the host

•Real system results
- AMD EPYC 7742CPU
- 1TB DDR4 DRAM
- AMD μProf
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GenStore-NM

GenStore-Enabled	SSD
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Chaining Processing Element
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GenStore-EM
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GenStore-NM
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GS-Ext performs significantly slower than Base (2.28x - 1.91x) 

on all systems.
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Effect of Inputs on GenStore-NM 
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