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UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module
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System Organization

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each

* Inside each PIM chip there are:
- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank
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PIM Chip
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DPU Pipeline

* In-order pipeline

- Up to 425 MHz *
* Fine-grain multithreaded

- 24 hardware threads
* 14 pipeline stages

: Thread selection
: Instruction fetch
- READOP: Register file
: Operand formatting

- ALU: Operation and WRAM
- MERGE: Result formatting

27 1
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* 350 MHz in the UPMEM-based PIM system used for the experimental results shown in this lecture
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DPU Instruction Set Architecture

° S p e C ifi C 3 2 _ b it I SA U instruction Set Architecture — UPMEM DPU SDK 2021.2.0 Documentation

- Aiming at scalar, in-

O r d e r’ a n d # » Instruction Set Architecture View page source
multithreaded

L] [ ]
implementation
. . . This section covers the architecture concepts required to understand and use UPMEM DPU
- Al l OW' n g C O m p I I a tl O n processor as a software developer. It is also providing an exhaustive list of the available processor

instructions.
of 64-bit C code o
Software developers should use this section as a reference manual to develop or debug assembly
- LLVM/Clang compiler ~ =*

Resources overview

UPMEM development tools documentation

Instruction Set Architecture

Thread registers

The system is composed of 24 hardware threads. Each of them owns a set of private resources:

e 24 general purpose 32-bits registers named re through r23
o A 16-bits wide program counter, named PC. Notice that the PC value does not address an
instruction in memory, but the index of such an instruction directly. For example, a PC
equal to 1 represents the second instruction in the DPU’s program memory.
e Two persistent flags, keeping information about the previous result of an arithmetic or
logical instruction:
o ZF: last result is equal to zero

Nienlav a manii —— . .

https://sdk.upmem.com/2021.2.0/201_IS.html#
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Microbenchmarking the
UPMEM PIM Architecture




DPU: Arithmetic Throughput
PIM Chip
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Arithmetic Throughput: Microbenchmark

e Goal

- Measure the maximum arithmetic throughput for different
datatypes and operations

e Microbenchmark

- We stream over an array in WRAM and perform read-modify-write
operations

Experiments on one DPU

We vary the number of tasklets from 1 to 24
Arithmetic operations: add, subtract, multiply, divide
Datatypes: int32, int64, float, double

* We measure cycles with an accurate cycle counter that the
SDK provides

- We include WRAM accesses (including address calculation) and
arithmetic operation
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Microbenchmark for INT32 ADD Throughput

1 #define SIZE 256
v 2 1int* bufferA = mem alloc(SIZE * sizeof(int));
S 3 for(int i = 0; i < SIZE; i++){
5 4 int temp = bufferA[i];
.§ 5 temp += scalar;
V) 6 bufferA[i] = temp;
7}
1 move r2, O
o5 2 .LBBO 1:
lg > 3 1lsl add r3, r0, r2, 2
5 5 4 1w r4, r3, 0
5= 5 add r4, r4, rl
L
g = 6 sw r3, 0, rd
05 7 add r2, r2, 1
~— 8 jneq r2, 256, .LBBO 1
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Arithmetic Throughput: 11 Tasklets
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KEY OBSERVATION 1

The arithmetic
throughput of a DRAM
Processing Unit
saturates at 11 or more
tasklets.
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consistent for different
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UINT32, UINT64, FLOAT,
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Arithmetic Throughput: ADD/SUB

(a) INT32 (1 DPU) " (b) INT64 (1 DPU)
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Arithmetic Throughput: #Instructions

* Compiler explorer: https://dpu.dev

S SISHAIS BECCE BiRR SLEA TEETT A OM010 O.Jaout B.AX0: Btext @/ O\
2 .....
: 1 Benchmark 32bits:
3 typedef int T; , — .
4 void Benchmark 32bits(T *cache_ A, T scalar) { . — move rzZ,
5 for (int i = 0; i < BLOCK_SIZE / sizeof(T); i++){ . SEES _(-l — —
6 ////// WRAM READ ////// . 1s _: §3,0r o o
7 T temp = cache_A[i]; 6 a:;’drr; rr; =
8 4 ’
9 temp += scalar; // ADD ; s:dr3; 0,2r41
a 2, ‘T2,
10
11 ////// WRAM WRITE ////// 12 \?neq r; 256, .LBBO_1
i jump r
12 cache_A = temp;
13 } . o 11 Benchmark  64bits:
14 } 12 move rl, 0
15 1% JERBT. 15
16 typedef long T long; 12 (izlgzddrz4,or0, s2il, & \
17 void Benchmark 64bits(T_long *cache A, T long scalar) ({ o ; ’,1 .
18 for (int i = 0; i < BLOCK_SIZE / sizeof(T long); i++){ 1: add L ; = é 5 -
19 ////// WRAM READ ////// e ad C4r (,) rdé r
20 T long temp = cache A[i]; = der ; ,1 ;
a il G2l
21
22 temp += scalar; // ADD 2(1) \J'neq r;: 128, .LBBl 1 /
23 jump r23
24 \
- 6 instructions in the 32-bit ADD/SUB microbenchmark
27 H . . . .
7 instructions in the 64-bit ADD/SUB microbenchmark
J
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Arithmetic Throughput: ADD/SUB
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o R o 0,
s, A - R = INT32 ADD/SUB are
E £ E o
£ 40 | - —&—ADD || £ 40 | a 17% faster than
3 v= suB 3 o
£ 30 | § £ 30 | a —A—ADD
A Y Do) 2o 4 Ao INT64 ADD/SUB
24 ia 2 50 - S =O-muL
£ £ 4 =O—DIV
<1 <10 147

#Tasklets #Tasklets

| Peak throughput at 11 tasklets. I
One instruction retires every cycle when the pipeline is full

frequencyppy

#instructions

Arithmetic Throughput (in OPS) =
L 64-bit ADD/SUB: 7 instructions — 50.00 MOPS J

at frequencyppy = 350 MHz
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Arithmetic Throughput: MUL/DIV
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Arithmetic Throughput: Native Support

Arithmetic Throughput (MQP

Arithmetic Throughput (MQ
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30 A

(b) INT64 (1 DPU)

#Tasklets

(d) DOUBLE (1 DPU)

KEY OBSERVATION 2

* DPUs provide native
hardware support for 32-
and 64-bit integer
addition and subtraction,
leading to high throughput
for these operations.

* DPUs do not natively

support 32- and 64-bit
multiplication and
division, and floating
point operations. These
operations are emulated by
the UPMEM runtime
library, leading to much
lower throughput.




Microbenchmark: Arithmetic Throughput

* Arithmetic throughput for different operations and datatypes

H CMU-SAFARI/ prim-benchmarks ® Unwatch ~ 2 ¥¢ star 2 % Fork 1

<> Code (*) Issues {0 Pull requests (») Actions Projects [ wiki () Security |~ Insights 51 Settings

¥ main v prim-benchmarks / Microbenchmarks / Arithmetic-Throughput / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3desbs9 9 daysago & History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago

SAFARI
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DPU: WRAM Bandwidth
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WRAM Bandwidth: Microbenchmark

e Goal
- Measure the WRAM bandwidth for the STREAM benchmark

e Microbenchmark

- We implement the four versions of STREAM: COPY, ADD,
SCALE, and TRIAD

- The operations performed in ADD, SCALE, and TRIAD are
addition, multiplication, and addition+multiplication,
respectively

- We vary the number of tasklets from 1to 16
- We show results for 1 DPU

 We do not include accesses to MRAM
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STREAM Benchmark in WRAM

, _ _ . 8 bytes read, 8 bytes written,
for(int 1 = 0; 1 < SIZE; 1i++){ no arithmetic operations

bufferB[i] = bufferA[i];

}

16 bytes read, 8 bytes written,
for(int 1 = 0; i < SIZE; i++){ ADD

bufferC[i] = bufferA[i] + bufferB[i];

}

8 bytes read, 8 bytes written,
for(int 1 = 0; i < SIZE; i++){ MUL

bufferB[i] = scalar * bufferA[i];

}

) ) _ 16 bytes read, 8 bytes written,
for(int 1 = 0; 1 < SIZE; i++){ MUL, ADD

bufferC[1i] bufferA[i] + scalar * bufferB[i];

}
SAFARI



WRAM Bandwidth: STREAM

3000
STREAM (WRAM, INT64, 1DPU) O—O—O—O0— 00—
S % 2500 - O 2'818.98
pre >y -0-COPY O
g S 2000 - | -A-ADD O 1'682.46
— +-SCALE < AN—"—"—"+—/+—"
e
@ + 1500 - TRIAD A < A1
< = /
& 2 1000 - O A1
5 S O /\
A @ 500 O AN
oSN 42.03
0 | r r r r Y L L T el el el el V)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

How can we estimate the bandwidth?

Assuming that the pipeline is full, and Bytes is the number of
bytes read and written:

B) ~ Bytes X frequencyppy

WRAM Bandwidth (ing

#Hinstructions
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WRAM Bandwidth: COPY

STREAM (WRAM, INT64, 1DPU)
Z o -0—-COPY
& S 2000 4 | -A-ADD 1'682.46
s = O-SCALE
ks E= 1500 A
£ 3
® 5 1000 -
3§
Y o 500 -
42.03
0 2 T 2 D 2o I 2. IR 2. IR o I o R 2o RN o IR o RN (o RN () N G RN G RN )
T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HTasklets

COPY executes 2 instructions (WRAM load and store).
With 11 tasklets, 11 x 16 bytes in 22 cycles:

B MB
WRAM Bandwidth (in E) = Z,SOOTat 350 MHz

SAFARI
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WRAM Bandwidth: ADD

STREAM (WRAM, INT64, 1DPU)
Z o -0-COPY
€ S 2000 4 | -A-ADD
s = O-SCALE
ks E= 1500
£ 3
& -5 1000
2 5
“ o 500
0 2 T 2 D 2o I 2. IR 2. IR o I o R 2o RN o IR o RN (o RN () N G RN G RN )
T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

B Bytes X frequenc
WRAM Bandwidth (in —) _ Bytes X frequencyppy
S #instructions

ADD executes 5 instructions (2 1d, add, addc, sd).
With 11 tasklets, 11 x 24 bytes in 55 cycles:

B MB
WRAM Bandwidth (m§> = 1,680Tat 350 MHz
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WRAM Bandwidth: Access Patterns

* All 8-byte WRAM loads and stores take one cycle when
the DPU pipeline is full

KEY OBSERVATION 3

The sustained bandwidth provided by the DPU’s internal Working
memory (WRAM) is independent of the memory access pattern
(either streaming, strided, or random access pattern).

All 8-byte WRAM loads and stores take one cycle, when the DPU’s
pipeline is full (i.e.,, with 11 or more tasklets).

* Microbenchmark: c[a[i]]=b[a[i]];
- Unit-stride: a[i]=a[i-1]+1;
- Strided: a[i]=a[i-1]+stride;
- Random: af[i]=rand();

SAFARI 24



Microbenchmark: STREAM and WRAM

* STREAM benchmark and WRAM access patterns

@ CMU-SAFARI / prim-benchmarks & Unwatch v 2 vy Star | 2 % Fork 1
<> Code () Issues 11 Pull requests (*) Actions ("] Projects (1) wWiki ) Security |~ Insights 51 Settings
¥ main v  prim-benchmarks / Microbenchmarks / STREAM / Go to file Add file ~
¥ main v  prim-benchmarks / Microbenchmarks / WRAM / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago O History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
(9 Makefile PrIM -- first commit 9 days ago
Y run.sh PrIM -- first commit 9 days ago
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DPU: MRAM Latency and Bandwidth

PIM Chip
-
)
c
= 64-MB
Q) | 64 bits
- P DRAM
S (I\E;RII:I)
64-KB =
wraM €% ©
./
\_

SAFARI
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MRAM Bandwidth

e Goal

- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

* mram read();
e mram write();

- Latency of a single DMA transfer for different transfer sizes

]

AVl benchmark
« COPY, COPY-DMA
e ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI
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MRAM Read and Write Latency (1)

1000
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[EEN
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MRAM Read -

- 128

T T T

0 O N & 0 O N <
i o LN i N
o
i

2048

Data transfer size (bytes)

B
MRAM Bandwidth (in E)

2048

512

32

Latency (cycles)

1000

633.22

100

10 +

Bandwidth (MB/s)

1

MRAM Write -

2048

512

- 128

Latency (cycles)

32

00

Ssize

16
32
64
8
6
2

<
N 1N I
I AN "N O

i

2048

Data transfer size (bytes)

X frequencyppy

MRAM Latency

We can model the MRAM latency with a linear expression

MRAM Latency (in cycles) = a + BXsize

In our measurements, f equals 0.5 cycles/byte.
Theoretical maximum MRAM bandwidth = 700 MB/s at 350 MHz

SAFARI
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MRAM Read and Write Latency (lI)

___ 1000 628.23 1000 : 633.22
§ MRAM Read - 2048 5 § MRAM Write - 2048 %\
= 100 1, S 2 100 - 1y S
L O B (®]
E> P~ pe
— (@] — (@)
3 0 128 g 2 10 L 128 5
4= c 4
g S g g
1 T T T T T T T T 32 1 T T T | | | | | 32
c0 (o) (] < o0 O o < o0 0 (o] AN < 0 O o < o0
— o (o) (g} LN — o << — on (\o} (@] LN — o <
Data transfer size (bytes) Data transfer size (bytes)

KEY OBSERVATION 4

* The DPU’s Main memory (MRAM) bank access latency increases

linearly with the transfer size.
* The maximum theoretical MRAM bandwidth is 2 bytes per cycle.

SAFARI 29



MRAM Read and Write Latency (lII)
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PROGRAMMING RECOMMENDATION 1
For data movement between the DPU’s MRAM bank and the WRAM, use

large DMA transfer sizes when all the accessed data is going to be

used.

633.22

=
o
|

MRAM Write -

00

16
32
64
8
6
2

<
N 1N «H
- N 1" O

i

2048
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Read and write accesses to MRAM are symmetric

The sustained MRAM bandwidth increases
with data transfer size
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MRAM Read and Write Latency (IV)

628.23 1000 633.22

1000

g MRAM Read - 2048 5 g MRAM Write - 2048 %\
= 100 1 0y S = 100 - S
L O B (®]
E> P~ pe
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3 0 128 g 2 10 L 128 5
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1 T T T T T T T T 32 1 T T T | | | | | 32
c0 (o) (] < o0 O o < o0 0 (o] AN < 0 O o < o0
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MRAM latency changes slowly between 8 and 128 bytes

For small transfers, the fixed cost (@) dominates the variable cost (5 Xxsize)

PROGRAMMING RECOMMENDATION 2

For small transfers between the MRAM bank and the WRAM, fetch more bytes
than necessary within a 128-byte limit. Doing so increases the likelihood of

finding data in WRAM for later accesses (i.e., the program can check whether the
desired data is in WRAM before issuing a new MRAM access).
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MRAM Read and Write Latency (V)
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2,048-byte transfers are only 4% faster than 1,024-byte transfers

Larger transfers require more WRAM, which may limit the number of tasklets

PROGRAMMING RECOMMENDATION 3

Choose the data transfer size between the MRAM bank and the WRAM based
on the program’s WRAM usage, as it imposes a tradeoff between the sustained
MRAM bandwidth and the number of tasklets that can run in the DPU (which is
dictated by the limited WRAM capacity).
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

e Microbenchmarks

- Latency of a single DMA transfer for different transfer sizes
* mram read();
* mram write();

- COPY, COPY-DMA

- STREAM benchmark
« ADD, SCALE, TRIAD

- Strided access pattern
* Coarse-grain strided access
* Fine-grain strided access

- Random access pattern (GUPS)

* We do include accesses to MRAM

SAFARI
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STREAM Benchmark in MRAM

// COPY
// Load current MRAM block to WRAM

for(int i = 0; i < SIZE; i++){

// Write WRAM block to MRAM

// COPY-DMA
// Load current MRAM block to WRAM

// Write WRAM block to MRAM

SAFARI
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STREAM Benchmark: COPY-DMA

1STREAM (MRAM, INT64, 1DPU)

~
o
o

o
o

-0-COPY-DMA
-0—-COPY
-A~ADD
-{3-SCALE
TRIAD

N W B U1 O
o O
o O
1

Sustained MRAM
Bandwidth (MB/s)

42.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

The sustained bandwidth of COPY-DMA is close to

the theoretical maximum (700 MB/s): ~1.6 TB/s for 2,556 DPUs

( COPY-DMA saturates with two tasklets, even though )
L the DMA engine can perform only one transfer at a time )
f Using two or more tasklets guarantees that there is always )
L a DMA request enqueued to keep the DMA engine busy )
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STREAM Benchmark: Bandwidth Saturation (1)

~
o
o

1STREAM (MRAM, INT64, 1DPU)

o
o

-0-COPY-DMA
-0—-COPY
-A~ADD
-{3-SCALE
TRIAD

N W B U1 O
o O
o O

Sustained MRAM
Bandwidth (MB/s)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

COPY and ADD saturate at 4 and 6 tasklets, respectively

SCALE and TRIAD saturate at 11 tasklets

The latency of MRAM accesses becomes longer than the pipeline IatencyN
after 4 and 6 tasklets for COPY and ADD, respectively

. J

The pipeline latency of SCALE and TRIAD is longer than the MRAM
latency for any number of tasklets (both use costly MUL)

.
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STREAM Benchmark: Bandwidth Saturation (1)

700 1 STREAM (MRAM, INT64, 1DPU)

S 600 -

< o

<3S 500 - ~0-COPY-DMA
2 =400 - ~0—-COPY

S 5 ~A-ADD

E = 300 - -C-SCALE

5 2 200 - TRIAD

%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
HTasklets

KEY OBSERVATION 5

 When the access latency to an MRAM banKk for a streaming benchmark (COPY-
DMA, COPY, ADD) is larger than the pipeline latency (i.e., execution latency of
arithmetic operations and WRAM accesses), the performance of the DPU saturates at a

number of tasklets smaller than 11. This is a memory-bound workload.

* When the pipeline latency for a streaming benchmark (SCALE, TRIAD) is larger
than the MRAM access latency, the performance of a DPU saturates at 11 tasklets.
This is a compute-bound workload.
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MRAM Bandwidth

* Goal
- Measure MRAM bandwidth for different access patterns

* Microbenchmarks
- Latency of a single DMA transfer for different transfer sizes
* mram read();
e mram write();
- STREAM benchmark
 COPY, COPY-DMA
* ADD, SCALE, TRIAD

(- Strided access pattern )
* Coarse-grain strided access
* Fine-grain strided access
.- Random access pattern (GUPS) D
* We do include accesses to MRAM
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Strided and Random Access to MRAM

mram read((__mram ptr void const*)mram address A, bufferA,
SIZE * sizeof(uint64 t));
mram read((__mram ptr void const*)mram address B, bufferB,

SIZE * sizeof(uint64 t));

for(int i = 0; i < SIZE;|i += stride)({
bufferB[i] = bufferA[i];
}

mram write(bufferB, (_mram ptr void*)mram address B,
SIZE * sizeof(uint64 t));

for(int i = 0; i < SIZE; i += stride)({
int index = 1 * sizeof(uint64 t);

mram read((_mram ptr void const*)(mram address A ¥ indeX), buffera,
sizeof (uint64 t));

mram write(bufferA, ( mram ptr void*)(mram address B # index),
sizeof (uint64 t));

}
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Strided and Random Accesses (1)
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Large difference in maximum sustained bandwidth between
coarse-grained and fine-grained DMA

Coarse-grained DMA uses 1,024-byte transfers,
while fine-grained DMA uses 8-byte transfers

Random access achieves very similar maximum sustained

bandwidth to fine-grained strided approach
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Strided and Random Accesses (Il)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
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(b) Fine-grained Strided & Random (MRAM, 1 DPU)
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The sustained MRAM bandwidth of coarse-grained DMA

decreases as the stride increases

r

\_

The effective utilization of the transferred data decreases
as the stride becomes larger (e.g., a stride 4 means that only one
fourth of the transferred data is used)

J
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Strided and Random Accesses (lll)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU)
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For a stride of 16 or larger, the fine-grained DMA approach

achieves higher bandwidth

" With stride 16, only one sixteenth of the maximum sustained A
bandwidth (622.36 MB/s) of coarse-grained DMA
is effectively used, which is lower than
\ the bandwidth of fine-grained DMA (72.58 MB/s) )
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Strided and Random Accesses (IV)

700 90
(a) Coarse-grained Strided (MRAM, 1 DPU) (b) Fine-grained Strided & Random (MRAM, 1 DPU)
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PROGRAMMING RECOMMENDATION 4

* For strided access patterns with a stride smaller than 16 8-byte
elements, fetch a large contiguous chunk (e.g., 1,024 bytes) from a

DPU’s MRAM bank.
* For strided access patterns with larger strides and random access
patterns, fetch only the data elements that are needed from an

MRAM bank.
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Microbenchmark: Strided and Random

e Strided and random accesses to MRAM

H CMU-SAFARI / prim-benchmarks ®Unwatch ~ 2 % Star 2 % Fork 1

<> Code () Issues 1 Pull requests (») Actions (1] Projects [ wiki ) Security |~ Insights 53 Settings

¥ main + prim-benchmarks / Microbenchmarks / STRIDED / Go to file Add file ~

¥ main + prim-benchmarks / Microbenchmarks / Random-GUPS / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago YY) History
dpu PriM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago
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DPU: Arithmetic Throughput vs. Operational Intensity
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Arithmetic Throughput vs. Operational Intensity (1)

e Goal

- Characterize memory-bound regions and compute-bound regions for
different datatypes and operations

 Microbenchmark

- We load one chunk of an MRAM array into WRAM
- Perform a variable number of operations on the data
- Write back to MRAM

* The experiment is inspired by the Roofline model*

* We define operational intensity (Ol) as the number of
arithmetic ogerations performed per byte accessed from
MRAM (OP/B)

* The pipeline latency changes with the operational intensity,
but the MRAM access latency is fixed

SA FA Rl *S. Williams et al., “Roofline: An Insightful Visual Performance Model for Multi-core Architectures,” CACM, 2009



Arithmetic Throughput vs. Operational Intensity (II)

int)input repeat : 1;

int repetitions = [input repeat >= 1.0 (
1.0 1 : (int) (1 / input repeat);

?
int stride = input repeat >= ?

mram read(( mram ptr void const*)mram address A, bufferA, SIZE * sizeof(T));

ﬂnput_repeat greater or equzh
to 1indicates the (integer)
number of repetitions per input

for(int r = 0; r < repetitions; r++){
for(int i = 0; i < SIZE; i+=stride){
#ifdef ADD

bufferA[i] += scalar; element
#elif SUiufferA[i] - scalar; .i?put_repeaténmﬂerﬂmn1
#elif MUL indicates the fraction of elements
i that are updated
bufferA[i1] *= scalar;
#elif DIV
bufferA[i] /= scalar;
#endif
}
}

mram write(bufferA, ( mram ptr void*)mram address B, SIZE * sizeof(T));
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Arithmetic Throughput vs. Operational Intensity (111)
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64.00 64.00

32.00 [ () FLOAT, ADD (1 DPU) 32.00 [ (d) FLOAT, MUL (1 DPU)

16.00 - 16.00

8.00 - 8.00 -

4.00 - 4.00 -

(1)

2.00 -
1.00
0.50 A
0.25 A
0.13 ~
0.06 -
0.03

2.00 A
1.00 -
0.50 -
0.25 A
0.13 A
0.06 -
0.03

Arithmetic Throughput (MOPS, log scale)
Arithmetic Throughput (MOPS, log scale)

We show results of arithmetic throughput vs. operational intensity for
(a) 32-bit integer ADD, (b) 32-bit integer MUL,

(c) 32-bit floating-point ADD, and (d) 32-bit floating-point MUL
(results for other datatypes and operations show similar trends)
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Arithmetic Throughput vs. Operational Intensity (IV)

__64.00

cale

Arithmetic Throughput (MOPS, log s

0.03

(

32.00 -
16.00 -
8.00 ~
4.00 ~
2.00 ~
1.00 4
0.50 ~
0.25 ~
0.13 ~
0.06 ~

In the memory-bound R
region, the arithmetic
throughput increases with
. the operational intensity )

(a) INT32, ADD (1 DPU)

Compute-bound
region region [

In the compute-bound R
region, the arithmetic
throughput is flat at its
Operational Intensity (OP/B) K maXimum )

Y o> o D © *x P
VN <y Vo v ) ) v N Vv
Q" O ¢ N > N

\the memory-bound region and the compute-bound region happens

The throughput saturation point is the operational intensity
where the transition between

v

The throughput saturation point is as low as ¥ OP/B,

i.e., 1integer addition per every 32-bit element fetched
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Arithmetic Throughput vs. Operational Intensity (V)
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0.13 4

The arithmetic throughput of a DRAM Processing Unit (DPU) saturates at
low or very low operational intensity (e.g., 1 integer addition per 32-bit

element). Thus, the DPU is fundamentally a compute-bound processor.
We expect most real-world workloads be compute-bound in the UPMEM PIM
architecture.

SAFARI 50



Microbenchmark: Arithmetic Throughput vs. Operational Intensity

* Arithmetic Throughput versus Operational Intensity

H CMU-SAFARI/ prim-benchmarks @ Unwatch ~ 2 % Star 2 % Fork 1

<> Code (©) Issues 10 Pull requests (») Actions ["1] Projects 1] wiki ) Security |~ Insights 51 Settings

¥ main ~  prim-benchmarks / Microbenchmarks / Operational-Intensity / Go to file Add file ~
Juan Gomez Luna PrIM -- first commit 3de4bs9 9 days ago & History
dpu PrIM -- first commit 9 days ago
host PrIM -- first commit 9 days ago
support PrIM -- first commit 9 days ago
Makefile PrIM -- first commit 9 days ago
run.sh PrIM -- first commit 9 days ago
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Key Takeaway 1
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The throughput
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as ¥a OP/B,

i.e., 1integer addition per
every 32-bit element
fetched

The UPMEM PIM architecture is fundamentally compute bound.
As aresult, the most suitable workloads are memory-bound.

SAFARI
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https://arxiv.org/pdf/2105.03814.pdf

Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.org/pdf/2105.03814.pdf >3
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Understanding a Modern PIM Architecture

Understanding a Modern ,
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gémez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

urich

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0 ) SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED Q
18.7K subscribers =

) 4

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL502s0XY2Zi tOTAYm--dYByNPL7JhwR9 54
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Upcoming Lectures

Introduction to Samsung’s and SK Hynix’'s PIM devices
Programming an UPMEM-based PIM system

Workload characterization for PIM suitability
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