P&S Processing-in-Memory

Real-World Processing-in-Memory Architectures:

Samsung HBM-PIM Architecture

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Spring 2022

31 March 2022

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

C P U UPMEM UPMEM UPMEM UPMEN UPMEM LIPMEN UPMEM UPMEM
PIM PiNA PiM P PIM PIM PIM PI
(x86, ARM, RV...) chip aip chip ehip ehip e chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem 2
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/

Recall: UPMEM PIM System Organization

* AUPMEM DIMM contains 8 or 16 chips
- Thus, 1 or 2 ranks of 8 chips each
* Inside each PIM chip there are:

- 8 64MB banks per chip: Main RAM (MRAM) banks

- 8 DRAM Processing Units (DPUs) in each chip, 64 DPUs per
rank

Main Memory PIM Chip

= ye ~\
/ Control/Status Interface <—>[DDR4 Interface]
——[EEeEesEE)
Chij Chij Chij Chij Chij Chij Chij Chij /
ﬁ ip ip ip ip ip ip ip ip , A ‘
/
/
/
xM-
/
/

DRAM|[DRAM|[DRAM|[DRAM||DRAM|[DRAM||DRAM||DRAM A i \\\
Chip || Chip || Chip || Chip || Chip || Chip || Chip || Chip)#l# * \\\
\
Host ((DISPATCH)
FETCH1
/ -
CPU yZ y Fercy)lap 23KB o
f T FETCH3 IRAM v
| <[READOPL
5| Frzaoonz > D eubis| St
hi hi hi hi hi hi hi hi
ﬁ Chip || Chip || Chip || Chip)| Chip || Chip || Chip Clp/ %‘; READOP3 IE DRAM
- <+>
chip || chip || chip || chip || chip || chip)| chip || chip
i ALU2 64-KB = (MRAM)
xN £ ALU3__) [P <+» Q
N =
PIM-enabled Memory S] ALUA WRAM))
~ S [MERGE1 _537
o MERGE2
\\\ - — % X8)

SAFARI 3

Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of
a Real Processing-in-Memory Architecture

JUAN GOMEZ-LUNA, ETH Ziirich, Switzerland

1ZZAT EL HAJJ, American University of Beirut, Lebanon

IVAN FERNANDEZ, ETH Ziirich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOUVLA, ETH Ziirich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Ziirich, Switzerland

ONUR MUTLU, ETH Ziirich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally
memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a
significant overhead in terms of both latency and energy. A major reason is that this communication happens
through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound
workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data
movement bottleneck requires a paradigm where the memory system assumes an active role in computing by
integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-
stacked memory technologies that integrate memory with a logic layer where processing elements can be
easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware
prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available
real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with
general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architec-
ture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based
PIM system using microbenchmarks to assess various architecture limits such as compute throughput and
memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks),
a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra,
databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we
identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks
on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-
of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM
systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM
system, programming recommendations for software designers, and suggestions and hints for hardware and

architecture designers of future PIM systems.
https://arxiv.org/pdf/2105.03814.pdf *

https://arxiv.org/pdf/2105.03814.pdf

Understanding a Modern PIM Architecture

Understanding a Modern ,
Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gémez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://arxiv.org/pdf/2105.03814.pdf
https://github.com/CMU-SAFARI/prim-benchmarks

urich

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture

2,579 views * Streamed live on Jul 12, 2021 e 93 GP 0) SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED Q
18.7K subscribers =

) 4

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL502s0XY2Zi tOTAYm--dYByNPL7JhwR9

https://www.youtube.com/watch?v=D8Hjy2iU9l4&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9

Samsung HBM-PIM,
a.k.a. FIMDRAM

Samsung Function-in-Memory DRAM (2021)

Samsung
Newsroom CORPORATE | PRODUCTS | PRESSRESOURCES | VIEws | aBoutus (Q

Samsung Develops Industry’s First High
Bandwidth Memory with Al Processing Power

Korea on February 17, 2021 Audio Share

The new architecture will deliver over twice the system performance
and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the
industry’s first High Bandwidth Memory (HBM) integ
HBM-PIMJ The new processing-in-memory (PIM) architecture brings powerful Al computing capabilities inside high-

rated with artificial intelligence (Al) processing power — the

performance memory, to accelerate large-scale processing In data centers, nigh perrormance computing

systems and Al-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our
groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse Al-driven workloads
such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al
solution providers for even more advanced PIM-powered applications.”

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power 7

https://news.samsung.com/global/samsung-develops-industrys-first-high-bandwidth-memory-with-ai-processing-power

Function-in-Memory DRAM (ISSCC 2021)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee’, Jaechoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0", Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin’, Jin Kim', BengSeng Phuah', HyoungMin Kim',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro? Seungwoo Seo®, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea

2Samsung Electronics, San Jose, CA
$Samsung Electronics, Suwon, Korea

https://doi.org/10.1109/1SSCC42613.2021.9365862

https://doi.org/10.1109/ISSCC42613.2021.9365862

PIM based on Commercial DRAM (ISCA 2021)

Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology

Industrial Product

Sukhan Lee®!, Shin-haeng Kang®!, Jachoon Lee!, Hyeonsu Kim?, Eojin Lee', Seungwoo Seo?,
Hosang Yoon?, Seungwon Lee?, Kyounghwan Lim!, Hyunsung Shin!, Jinhyun Kim!,
Seongil O', Anand Iyer®, David Wang®, Kyomin Sohn' and Nam Sung Kim®!

lMemory Business Division, Samsung Electronics
2Samsung Advanced Institute of Technology, Samsung Electronics
3Device Solutions America, Samsung Electronics

https://doi.org/10.1109/1ISCA52012.2021.00013)

https://doi.org/10.1109/ISCA52012.2021.00013

Aquabolt-XIL.: Samsung HBM2-PIM (HCS 2021)

Aquabolt-XL: Samsung HBM2-PIM
with in-memory processing
for ML accelerators and beyond

Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woongjae Song, Yuhwan Ro, Seungwon Lee, David Wang, Hyunsung Shin, Bengseng Phuah,

Jihyun Choi, Jinin So, YeonGon Cho, JoonHo Song, Jangseok Choi, Jeonghyeon Cho, Kyomin Sohn, Youngsoo Sohn, Kwangil Park, and
Nam Sung Kim

Samsung Electronics

https://doi.org/10.1109/HCS52781.2021.9567191 10

https://doi.org/10.1109/HCS52781.2021.9567191

Background: High Bandwidth Memory (HBM)

HBM stacks DRAM layers and a buffer layer
o The buffer layer contains I/O circuitry, self-test, test/debug

DRAM layers and buffer layer communicate using Through Silicon
Vias (TSVs)

System in Package (SiP)

——

The buffer layer is
connected to a host
processor via a silicon
interposer

1 HBM2 die comprises 4

ASIC1 ASIC2

[U ——

Bank Group /0

pseudo channels (pCHs) ooP e

each with 4 bank groups e

o An access transfers a 256- LR S—
bit data block over 4 64-bit |5 = D
bursts over one pCH Pseudo Ghanrel

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021 11

NVIDIA A100 GPU

= NVIDIA-speak:
0 6912 stream processors
o “SIMT execution”

NVIDIA.

= Generic speak:
o 108 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning
= Support for sparsity
= New floating point data type (TF32)

12

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

NVIDIA A100 Block Diagram

PCI Express 4.0 Host Interface

1

Memory Ct

Memory C

Memory Controller

13jj03u0Q AlowRp

Memory C

J13)j0u09 Alowsapy

Memory C

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

108 cores on the A100

(Up to 128 cores in the full-blown chip)
40MB L2 cache

NVIDIA H100 GPU

NVIDIA-speak:
o 14592 stream processors
o “SIMT execution”

Generic speak:
o 144 cores
o 64 SIMD functional units per core

o Tensor cores for Machine Learning
New 8-bit floating point formats

14

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Block Diagram

PCl Express 5.0 Host Interface

Memory Controller
9ll01U0) Alowaly

Memory Controller
1ag0nu0) Aoway

Memory Controller
sl0nu0) Alowaw

=
s
2
9
2
o
-]
=
g
3

Ja)jonuo) Kiowaw

Memory C

Jal0U0D Alowal

Memory C

23 1 1+ 32
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

Lt nsuction e 48 TFLOPS Single Precision*
erpLsot:::::'I:‘(’:zc!::':dlclk) erpL:cI:::::?‘(’:z‘:ha::lclk) 24 TF LO PS DO u b I e P rec i S i O n *

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 800 TF LO PS (F P 1 6, Ten SO r CO reS)
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP64
TENSOR CORE FP32 FP32 FP64 TENSOR CORE
4™ GENERATION FP32 FP32 FP64 4" GENERATION
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP64
FP32 FP64
FP32 FP64
FP32 FP64 Ve \
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST SFU FP8 FPs
. matrix matrix
< Range Precision
LO Instruction Cache LO Instruction Cache k=] ¢ .
- = — R ——— » exponen mantissa
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk) e8 m23 multiply
FP32 [T
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP16 @—D:?f[] m10 accumulate into
INT32 FP32 FP64 INT32 FP32 FPe4 FP32 or FP16
INT32 FP32 FP64 INT32 FP32 e8 m7
INT32 FP32 FP64 INT32 FP32
INT32 FP32 FP64 INT32 FP32 BF16 ST bias/act/...
INT32 FP32 FP64 INT32 7]) e5 | m2
INT32 FP64 INT32
INT32 FP64 INT32 convert
INT32 FP64 TENSOR CORE INT32 TENSOR CORE
INT32 4™ GENERATION INT32 4™ GENERATION
INT32 INT32 FP32|FP16|BF16 |FP8
INT32 INT32

INT32 INT32 matrix SM
INT32 INT32 -)
INT32 INT32

INT32 INT32

INT32 INT32 Allocate 1 bit to either Support for multiple accumulator
g s s S S SS s s S range or precision and output types

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 1 6
* Preliminary performance estimates

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Heterogeneous System: CPU+FPGA

i NN il i

A

Source: IBM Source: AlphaData

POWER9 AC922 |HBM-based AD9H?7 board

We evaluate two POWERS+FPGA systems:
1. HBM-based board AD9H7 2. DDR4-based board AD9V3
Xilinx Virtex Ultrascale+™ XCVU37P-2 Xilinx Virtex Ultrascale+™ XCVU3P-2

Singh et al., NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling, FPL 2020

Accelerating Climate Modeling

= Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan
Gomez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,
"NERO: A Near High-Bandwidth Memory Stencil Accelerator for
Weather Prediction Modeling"
Proceedings of the 30th International Conference on Field-Programmable Logic
and Applications (FPL), Gothenburg, Sweden, September 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator
for Weather Prediction Modeling
Gagandeep Singh®?¢ Dionysios Diamantopoulos® Christoph Hagleitner® Juan Gémez-Luna®

Sander Stuijk? Onur Mutlu® Henk Corporaal®
9Eindhoven University of Technology PETH Ziirich ‘IBM Research Europe, Zurich

18

https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20.pdf
https://www.fpl2020.org/
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NERO-near-memory-stencil-acceleration-for-weather_fpl20-lightning-talk.pdf
https://www.youtube.com/watch?v=xMiuqUyjkk0

NERO Application Framework

. i COSMO APl | libCXL
NERO communicates to Host COSMO WEATHER| Host POWER R

over CAPI2 (Coherent i System Processor Proxy (CAPP)
Accelerator Processor Interface) rpca =cAP =

——

PCled CAPI2 POWER Service Layer (PSL)
AXI Full Bus AXI Lite Bus
SNAP

1
1
1
1
1
1
1
:
1
: t A A ~ !
! L
1
1
1
1
1
1
1
1
1
1

« COSMO API handles offloading
jobs to NERO

\/ S
- SNAP (Storage, Network, and 0D || oream | | AxiDMA [P | o [P]
g ! 4 Manager | (Scheduler Partitioned On-chip Memory
i - EEEEE=EmmEmEm
Analytics Programming) allows

HBM Memory Controller

for seamless integration of the ... ’3 BT = I lgmxﬂ ______
H

COSMO API HBM2 Stack 1 BM2 Stack 2

https://github.com/open-power/snap

https://github.com/open-power/snap

FPGA-based Processing Near Memory

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios
Diamantopoulos, Juan Gémez-Luna, Henk Corporaal, and Onur Mutlu,
"FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications”

IEEE Micro (IEEE MICRO), 2021.

FPGA-based Near-Memory Acceleration
of Modern Data-Intensive Applications

Gagandeep Singh® Mohammed Alser® Damla Senol Cali”
Dionysios Diamantopoulos¥ Juan Gémez-Luna®
Henk Corporaal* Onur Mutlu®™

®°ETH Ziirich ™ Carnegie Mellon University
*Eindhoven University of Technology =~ VIBM Research Europe

20

https://arxiv.org/pdf/2106.06433.pdf
http://www.computer.org/micro/

FIMDRAM: Exploiting Bank Parallelism

= HBM bandwidth is not enough for many ML workloads
o BLAS-1 and BLAS-2 are typically memory bound

Execution Unit

Noises
i Channel 0

Rank 0

Bank Group 0
Bank Group 1
Bank 4 Bank 5 Bank 6 Bank 7

more bank groups...

Bank O

a0

Rank 1

Bank 4

A5

more channels... 7 Loads

[Data movement with conventional DRAM]

Execution Unit

Memory
Subsystem

Channel 0

Execution Unit

Rank 0

Bank Group 0

Bank Group 1

Bank 4 Bank & Bank € Bank T
more bank groups...

Rank 1

v
’
%

| more channels...

[Data movement with FIMDRAM]

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for

Machine Learning Applications, ISSCC 2021

21

FIMDRAM: Chip Structure

B FIMDRAM based on HBM2

Chip Specification

. i 128DQ / 8CH / 16 banks / BL4
?ﬁgeh;ldzi? . 32 PCU blocks (1 FIM block/2 banks)
. 1.2 TFLOPS (4H)
SIDO. FP16 ADD /
Core-die Multiply (MUL) /
(FIMDRAM) Multiply-Accumulate (MAC) /

Multiply-and- Add (MAD)

Buffer-die —»

[3D Chip Structure of HBM with FIMDRAM]

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 27
Machine Learning Applications, ISSCC 2021

FIMDRAM: Chip Implementation

Chip Implementation

B Mixed design [l ey o | e]

L

ifﬁff L — T

| PCUblock | PCUblock | PCUblock | PCUblock |
"IethOdOIOQY to | for bank0 & 1 |.for bankd & 5 |, for bank0 & 1 |, for bank4 &5 |

\ |
: g

Cellarray | - Cellarray | - Cellarray | ' Cell array

i m p Ie me nt F I M D RAM | forbanki for bankS for bank1 for banks

{

for bank2 | " for bank6 ’ for bank2 | for bank6

() F u I I_Cu StOm + DI Ital RTL PCUBlock | PCUblock | PCUblock | PCUblock |

g | for bank2 & 3 | for bank6 & 7 | for bank2 & 3 | for bank6 & 7 |
‘ Cell array i Cell array {-:::Cell array [~:cell array
{ - for bank3 | for bank7 for bank7

TSV & Peri Control Block

Cell array [Cell array Cell array Cell array
for bank11 for bank15 = | - for bank11 for bank15 |

PCU block
for bank10 & 11

Cell array. Cell array Cell array Cell array |
for bank10 for bank14 for bank10 for bank14

Cellarray | Cell array Cell array Cell array

[Dig|ta| RTL design for PCU blOCk] | for bank9 | ' forbank13 | ' forbankd | ' for bank13

|
|' PCU block PCU block PCU block PCU block

ffor bank8 & 9 (for bank12 & 13| for bank8 & 9 |for bank12 & 13
!

Cellarray { Cell array , Cell array Cell array
for bank8 for bank12 | - forbank8 | ' for bank12

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 23
Machine Learning Applications, ISSCC 2021

FIMDRAM: System Organization (I)

= HBM2 vs.

FIMDRAM

//" Y 4 'y Y
/O Ceontrol 1/0 Cqgntrol 1/0 Cpntrol 1/0 Cqntrol
(2] (2] w n
= o = =
— - - -
(L} () L] ()
o m m om
X 25 A 2% A 25 X 25%
/O Ceontrol 1/0 Cqntrol 1/0 Cpntrol /O Cdntrol
y
GBUS
TSV Area
(DWORD and AWORD)
[) [) o

[’HBMZ]

PCU block

(bank0 & 1)

IOSA

1/0 C)ntrol /O Ci,ntrol /O Control /0 Control

i 256 256 * 25 3 256
PCU for PCU for PCU for PCU for
BANKO0&1 BANK48&5 BANKO&1 BANK4&5

ezss 256 256 256
1/0 Cntrol /O Control /O Control /O Ccntrol
/ [alOControl | [al[0 Control a0 Control | [al/O Control

* 256 256 ¥ 2% ¥ 2%
/ PCU for PCU for PCU for PCU for
BANK2&3 BANK6&7 BANK2&3 BANK6&7

A 256 A 256 A 256 A 256
%)ntrol YI/O Control |Ww1/O Control WYI/O Control

Local data bus for

bank parallelism
(data bus between cell
array and PCU block)

TSV Area with internal
FIM controller
(DWORD and AWORD)

[FIMDRAM]

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 24
Machine Learning Applications, ISSCC 2021

FIMDRAM: System Organization (II)

= Design goals:
o 1. Support DRAM and PIM-DRAM mode for versatility

o 2. Minimize the engineering cost of redesigning DRAM banks
and sub-arrays

= Thus, PIM unit at I/O boundary of bank
a 1 PIM unit for each 2 banks
a 16 16-bit SIMD floating-point units (FPUs) per PIM unit

From
HBM DRAM Die . Bank / i
el / From \LReglsters
BANK BANK | BANK / 10SA
/' (Cell)

PIM PIM PIM
UNIT UNIT UNIT

Column Decoder

Write Drivers
I/O Sense Amps

BANK BANK BANK \ ! /
\ Registers / To
TSVs & Periphery " PIM Unit To Write
\ SIMD FPUs Registers Dri
BANK BANK BANK river
“““““““ (Cell)

AN e N T AW a e Wa W W W W W W e b W W W i W W e e W T e V)

(@) (b) (c)

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021 25

Result Bus

SIMD Processing and GPUs

Flynn’s Taxonomy of Computers

Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

SISD: Single instruction operates on single data element
SIMD: Single instruction operates on multiple data elements

o Array processor

o Vector processor

MISD: Multiple instructions operate on single data element
o Closest form: systolic array processor, streaming processor

MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

o Multiprocessor
o Multithreaded processor

27

Data Parallelism

Concurrency arises from performing the same operation on
different pieces of data

o Single instruction multiple data (SIMD)

o E.g., dot product of two vectors

Contrast with data flow

o Concurrency arises from executing different operations in parallel (in
a data driven manner)

Contrast with thread (“control™) parallelism

o Concurrency arises from executing different threads of control in
parallel

SIMD exploits operation-level parallelism on different data
o Same operation concurrently applied to different pieces of data

o A form of ILP where instruction happens to be the same across data
28

SIMD Processing

Single instruction operates on multiple data elements
o In time or in space

Multiple processing elements (PEs), i.e., execution units

Time-space duality

o Array processor: Instruction operates on multiple data
elements at the same time using different spaces (PESs)

a Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space (PE)

29

Array vs. Vector Processors

ARRAY PROCESSOR VECTOR PROCESSOR
Instruction Stream Same op @ same time
Different ti
LD VR € A[3:0] Lpo| D1 [LD2 D3 Lpp Drerenters@tme
ADD VR ¢ VR, 1
’ ADO| AD1 |AD2
MUL VR € VR 2 0 AD3 LD1 | ADO
ST A[3:0] € VR MUO| MU1 IMU2 MU3 LD2 | AD1 [MUO
STO | ST1 |ST2 ST3 [LD3 AD2 |MU1 STO]
—
Different ops @ same space AD3 |MU2 ST1
v MU3 ST2
Time Same op @ space ST3

€<—Space—™> <«<——Space———>

30

Lecture on SIMD Processing

CRAY X-MP-28 @ ETH (CAB, E Floor)

<

Onur Ml;tlu

> 5 1:00:55 / 1:56:55 > @ O ~

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Digital Design & Comp. Arch. - Lecture 20: SIMD Processing (Vector and Array Processors) (Spring'21)

2,677 views * Streamed live on May 14, 2021 |ﬁ7 69 9] 1 A} SHARE =+ SAVE
@ Onur Mutlu_Lectures SUBSCRIBED Q
&> 19.2K subscribers M

https://youtu.be/fP4kz2Zx_84 31

A GPU 1s a SIMD (SIMT) Machine

Except it is not programmed using SIMD instructions

It is programmed using threads (SPMD programming model)

o Each thread executes the same code but operates a different
piece of data

o Each thread has its own context (i.e., can be
treated/restarted/executed independently)

A set of threads executing the same instruction are
dynamically grouped into a warp (wavefront) by the
hardware

o A warp is essentially a SIMD operation formed by hardware!

32

NVIDIA H100 Block Diagram

PCl Express 5.0 Host Interface

Memory Controller
9ll01U0) Alowaly

Memory Controller
1ag0nu0) Aoway

Memory Controller
sl0nu0) Alowaw

=
s
2
9
2
o
-]
=
g
3

Ja)jonuo) Kiowaw

Memory C

Jal0U0D Alowal

Memory C

23 1 1+ 32
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

144 cores on the full GH100
60MB L2 cache

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

NVIDIA H100 Core

Lt nsuction e 48 TFLOPS Single Precision*
erpLsot:::::'I:‘(’:zc!::':dlclk) erpL:cI:::::?‘(’:z‘:ha::lclk) 24 TF LO PS DO u b I e P rec i S i O n *

Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit) 800 TF LO PS (F P 1 6, Ten SO r CO reS)
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP32 FP64
FP32 FP32 FP64
TENSOR CORE FP32 FP32 FP64 TENSOR CORE
4™ GENERATION FP32 FP32 FP64 4" GENERATION
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP64
FP32 FP64
FP32 FP64
FP32 FP64 Ve \
LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST ST ST SFU FP8 FPs
. matrix matrix
< Range Precision
LO Instruction Cache LO Instruction Cache k=] ¢ .
- = — R ——— » exponen mantissa
Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk) e8 m23 multiply
FP32 [T
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
FP16 @—D:?f[] m10 accumulate into
INT32 FP32 FP64 INT32 FP32 FPe4 FP32 or FP16
INT32 FP32 FP64 INT32 FP32 e8 m7
INT32 FP32 FP64 INT32 FP32
INT32 FP32 FP64 INT32 FP32 BF16 ST bias/act/...
INT32 FP32 FP64 INT32 7]) e5 | m2
INT32 FP64 INT32
INT32 FP64 INT32 convert
INT32 FP64 TENSOR CORE INT32 TENSOR CORE
INT32 4™ GENERATION INT32 4™ GENERATION
INT32 INT32 FP32|FP16|BF16 |FP8
INT32 INT32

INT32 INT32 matrix SM
INT32 INT32 -)
INT32 INT32

INT32 INT32

INT32 INT32 Allocate 1 bit to either Support for multiple accumulator
g s s S S SS s s S range or precision and output types

Tensor Memory Accelerator
256 KB L1 Data Cache / Shared Memory

Tex Tex

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/ 34
* Preliminary performance estimates

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

Lecture on Graphics Processing Units

Dynamic Warp Formation Example % @

Juan GomezL...

x/1111
A y/1111

Legend
|_‘ﬂI Execution of Warp x |—"1I Execution of Warp y
| >, at Basic Block A | > at Basic Block A

[l =

D

A new warp created from scalar
—>| threads of both Warp x and y
—»| executing at Basic Block D

x/1110
y/0011

¥

A A B Blc clo ple. elF Fle G A A
T T T TR e TR TS et s

. PR < | > > > >]| e 0o
Baseline |"|"’||"||"|| ||"||" | ||" |"|| | ||" |"||"||"|
el Tl 1k -l Tl >l 4 2] =l >l]

Dynamic A_A B BIC D E E|F G
W |—>"|->" == —> > = I_;l

arp ...1I1|1_>_’1_-:_’_,|1| cee
Formation !_-:I [_-»_I > =l= ->| =>!

© DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Digital Design & Comp. Arch. - Lecture 21: Graphics Processing Units (GPUs) (ETH Ziirich, Spring '21)

3,536 views ¢ Streamed live on May 20, 2021 [@ 97 91 3 A} SHARE =+ SAVE
@ Onur Mutlu Lectures SUBSCRIBED Q
&> 19.5K subscribers =

Digital Design and Computer Architecture, ETH Zirich, Spring 2021 (
https://safari.ethz.ch/digitaltechnik...)

https://youtu.be/eaxGCvOwRrU

35

Lecture on SIMD Processing and GPUs

Tensor Core Microarchitecture (Volta)

Each warp utilizes two tensor cores

Each tensor core contains two “octets”

a 16 SIMD units per tensor core (8 per octet)

o 4x4 matrix-multiply and accumulate each cycle per tensor core

[x| FP16 Muttiplier

0,
s
+/ £P32 Adder 1 e SIMD unit
= / op
| Accumulator Buffer "4, (Dot Product)
Unit

- Operand Bus 1
Operand Bus 2
Operand Bus I

Larfe 8-11
and 24-27 |

Unlike conventional SIMD,
register contents are not
private to each thread, but
shared inside the warp

HetSys Course: Lecture 2: SIMD Processing and GPUs (Spring 2022)

380 views * Premiered Mar 22, 2022 5 9 GPDISLIKE > SHARE §¢ CLIP =+ SAVE

@ Onur Mutlu Lectures SUBSCRIBED al
&> 23.6K subscribers =

Project & Seminar, ETH Zirich, Spring 2022
Hands-on Acceleration on Heterogeneous Computing Systems (
https://safari.ethz.ch/projects_and_s...)

https://youtu.be/hEgk6UMQTOU

https://youtu.be/hEqk6UMQT0U

FIMDRAM: System Organization (I1I)

= PIM units respond to standard DRAM column commands
(RD or WR)

o Compliant with unmodified JEDEC controllers

= They execute one wide-SIMD operation commanded by a
PIM instruction with deterministic latency in a lock-step
manner

= A PIM unit can get 16 16-bit operands from I0SAs, a
reqgister, and/or the result bus

From
HBM DRAM Die B Bank / ;
LS / From \LReglsters
) /’ IOSA
/’ (Cell)

BANK BANK

PIM PIM
UNIT UNIT

Column Decoder
Write Drivers
I/O Sense Amps

Result Bus

BANK BANK

\ Registers 3 | To
TSVs & Periphery % PIM Unit To Write

SIMD FPUs Registers

BANK BANK Driver

d

(b) (c)

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021 37

FIMDRAM: Bank-level Parallelism

= Unlike standard DRAM devices, all banks can be accessed
concurrently for 8x higher bandwidth (with 16 pCHSs)

= In AB-PIM mode, a memory command triggers a PIM
instruction in the CRF

Single Bank ,
PIM control
MODE (SB)
PIM CRF area

PIM CONF |

All Bank
MODE (AB) AB-PIM Mode

| PIM GRF area |
Reserved \ Reserved Reserved
Ve | ABenter sequence JVEIY AB-PIM enter g Memory

Space for
PIM

Space for

Space for

ACT/PRE row 0x27ff PIM

of bank 0,1,8,9

PIM PIM_OP_MODE=1

AB-PIM exit
<

PIM_OP_MODE=0

AB exit sequence

<

ACT/PRE row 0x2fff
of bank 0,1

Access a single row Access multiple rows Memory CMD triggers a CRF
of all banks to perform a target instruction

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021

38

FIMDRAM: Internal FIM Controller

= The internal FIM controller controls FIM mode without any
modification of the host processor hardware

Command Address PCU block
Decoder Decoder
~[¢ RA[0:13] | Al .
Q| O >
< | Q)
» Mode Controller gy gyep Execution
for even bank Mode FIM_mode .
. FIM_Odd | Generator %
Mode Controller =
= for odd bank 8
S, £
< I [T}
@ BA (All toggle @ normal mode, t
Bank Address | BAO only toggle @ FIM mode) | | BA[0:3] = || Register
Decoder . File
¥
Main Clock Clock Divider PCU Clock R
(X 1/4)
Internal FIM controller

[Block diagram of control circuit for FIM operation]

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 39
Machine Learning Applications, ISSCC 2021

FIMDRAM: Programmable Computing Unit (I)

= Control: Instruction sequence manager
= Pipeline of 5 stages

o 1. Fetch/decode
o 2. Load 256-bit data from even or odd bank (optional)
o 3. MUL

o 4. ADD
a 5 WritebaCk Local Bus to Even Bank
Even Bank Interface
to GRF

GRF _A

CRF
Control SRF FP16 MULT FP16 ADD

GRF B

Internal
Comnrands

Address

Odd Bank Interface
Local Bus to Odd Bank

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021 40

FIMDRAM: Programmable Computing Unit (1I)

Interface unit to
control data flow

Execution unit

Programmable Computing Unit Block

Register group

Execution Unit Register Group

. DATA_IN| 256 DQ for
Q C RF (COm Ma nd) . RA[0:13] Pipeline (oo orml 5 [leeto”l GRF_A even bank
I N Stl‘u Ctl on b u ff er CA[1:5] Decoder B S ——{—(256b x 8entries)
DQ[0:63] OT/1T/2T/3T 7 ‘E
Te——— < ADD_PATH‘ MULT_PATH 8 e (16§R§_:V|I)
. WR control master EP16 Mult o x 8entries
a G RF (g e n e ra I) . ACT control master g s sﬁrll;'aly' " et i T 256 DQ for
- RSTB P ultiplierx - > GRF_B Oddbank‘
We I g hts a n d g : éMAC_MAD_PATH ‘% S (256b x 8entries) "
. z D
accumulation PRSI pesacre o /R SRF_A
FIM_mode (FP16 adder x16) (16b x 8entries)
0 S RF (SO u rce) . FIM_INSTRUCTION pr—
" RA/CA <
CRF Sequencer INSTR_IO | |(32b x 32entries)
Constants for

MAC

[Block diagram of PCU in FIMDRAM]

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 4]
Machine Learning Applications, ISSCC 2021

FIMDRAM: Instruction Set Architecture (I)

= 9 RISC-style 32-bit instructions

[Available instruction list for FIM operation]

Type CMD Description
ADD FP16 addition
Floating MUL FP16 multiplication
Point MAC FP16 multiply-accumulate
MAD FP16 multiply and add
Data Path MOVE Load or store data
FILL Copy data from bank to GRFs
NOP Do nothing
Control Path JUMP Jump instruction
EXIT Exit instruction

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 42
Machine Learning Applications, ISSCC 2021

FIMDRAM: Instruction Set Architecture (II)

= Combinations depend on operand sources

Op. Type Operand Operand Result #. of '
(SRCO) (SRCI) (DST) | Combinations
MUL GRF, BANK GRgRIE_AI\T K, GRF 32
app | GREBANK.| GREBANK. | gop | g
MAC GRF, BANK GRgRIE_AI\T K, GRF_B 14
MAD GRF, BANK GgFE?N(fI; Sslligaivl GRF 28
(Ilz/le gYJ) GRF, BANK GRF 24

= Instruction formats

313029 28 [27 2625|2423 (222120191817 [16]15] 1413 [12[11][10]9[8]7[6]5][4[3[2][1]0
Control | OPCODE U IMMO IMM1
Data OPCODE DST SRCO U [R|U | DST# [U]SRCO#|U]|SRCI #
ALU OPCODE DST SRCO SRCI | SRC2 [A] U U | DST# |U|SRCO# | U | SRCI #

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021

43

FIMDRAM: Operation Flow

= Operation sequence for matrix vector computing

o Input and output data are accessible to the host in conventional
DRAM operation

C START D)
v

PWRUP & Initialization| Esrsntisnal BRI

- eed computi No operation
FIMDRA
Yes

Storing data into cells
(input data of matrix-vector) v

Mode Cﬁanﬂfﬁ" Writing data into cells

(Normal — F

or
Program r; ister file | Reading data from cells
(Instructions and weight data)
Enable and Execute I
FIM Operation C END B
¥
[Exit FIM operation | Control method of FIM execution sequence
X -p'ﬁﬁﬁﬂ')\”’;- . No io support user friendly environment
Yes : External CMD (ACT)RD RD YWR JWR) - - -
Mode Change2 &% &
(FIM Porm%) Internal CRF order (CRFOICRF1CRF2CRF3|
 Data transferring to 10s <CRF program counter
(Calculated Results) . .
Computin operation in |ncrement meChan|sm>
FIMDRAM

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 44
Machine Learning Applications, ISSCC 2021

FIMDRAM: Instruction Ordering

= One challenge is that DRAM commands may be re-ordered,
and using fences is costly performance-wise

= Solution: Address Aligned Mode (AAM)
o 8 MAC operations with 2 PIM instructions

Address-Aligned Mode (AAM)

RA CA
GRF A index=5
o o oftJofJofolrfofs GRF Bindex =0
; rogrammers infentio ! | 0.ACT BAOX0, RA 0x2 GRF B index | GRF A index
! 1. GRF_B[0] += BANK [RA 0x2,CA 0x5] X GRF_A[4] [e—] MAC GRF_B[0], BANK [RA 0x2.CA 0x4]; GRF_AM] fe—{ 1.RD BAOX0, CA0x5 1. GRF _B[0] += BANK [RA 0x2.CA 0x5] x GRF_A[5]
! 2. GRF_B[0] += BANK [RA 0x2,CA 0x6] X GRF_A[5] [+— MAC GRF_B[0], BANKI[RA 0x 2.RD BAOx0, CAOx6 2. GRF_B[0] += BANK [RA 0x2,CA 0x6] x GRF_A[6]
| B. GRF_BI0] +=BANK [RA 0x2,CA 0xB] X GRF_A[6] ~[+— MAC GRF B[0], BANK[RA Ox 3.RD BAOx0, CAOxB 3. GRF_B[1] += BANK [RA 0x2,CA 0xB] x GRF_A[3]
| #. GRF_B[0] += BANK [RA 0x2,CA 0x8] x GRF_A[7] [+—{ MAC GRF BJ[0], BANKI[RA 0x 4.RD BAOX0, CA0x8 MAC(AAM) GRF B, BANK, GRF_A 4. GRF_B[1] += BANK [RA 0x2,CA 0x8] x GRF_A[0]
! 5. GRF_B[1] += BANK [RA 0x2,CA 0x7] x GRF_A[0] [+— MAC GRF_B[1], BANKI[RA 0x 5.RD BAOx0, CAOx7 JUMP -1,7 5. GRF_B[0] += BANK [RA 0x2,CA 0x7] x GRF_A[7]
| 6. GRF_B[1] += BANK [RA 0x2,CA 0x4] X GRF_A[1] [+— MAC GRF B[1], BANK [RA 0 6.RD BAOx0, CAOx4 6. GRF_B[0] += BANK [RA 0x2,CA 0x4] x GRF_A[4]
| J. GRF_B[1] += BANK [RA 0x2,CA 0x9] X GRF_A[2] [+ MAC GRF B[1], BANKI[RA 0x 7.RD BAOx0, CAOx9 7. GRF_B[1] += BANK [RA 0x2,CA 0x9] x GRF_A[1]
! 8. GRF_B[1] += BANK [RA 0x2,CA 0xA] x GRF_A[3].... [*—{ MAC GRF_B[1], BANKIRA 0x 8.RD BAOx0, CAOxA 8. GRF_B[1] += BANK [RA 0x2,CA OxA] x GRF_A[2]
(c) Actual PIM execution (a) CRF instructions (b) Memory commands (d) CRF instructions w/ AAM (e) Actual PIM execution w/ AAM

Lee et al., Hardware Architecture and Software Stack for PIM Based on Commercial DRAM Technology, ISCA 2021 45

FIMDRAM: Data Flow

= Data flow controlled by operation mode and bit RA13

Index | Mode CMD |RA13 Data Movement
@ WR L Data write to cell array
@) WR H Not available
Normal

® RD L Data read to cell array
@ RD H Not available

Data movement from PCU
® e - block to cell array
® WR H Data write to PCU register

FIM
@ RD L Data movement from cell
array to PCU block

RD H Not available

1/0 Control 1/0 Control 1/0 C%ntrol 1/0 C%trol
PCU for BANKO&1 PCU for BANK4&5 PCU for BANKO&1 PCU for BANK4&5
©A ©4 AD
1/0 Control 1/0 Control 14O Control 1/Q Cohtrol
(7)
= =
o o
% A®
1/0 Control 1/0 Control 110 C ntrol 1/ C%trol
PCU for BANK2&3 PCU for BANK6&7 PCU for BANK2&3 PCU for BANK6&7
®A ®aA
1/0 Control 1/0 Control 110 C ntrol 1/1Q C trol
®
A
) 2 1®
256
® 4 ‘

<Normal mode for PC0>

<FIM mode for PC1>

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 46
Machine Learning Applications, ISSCC 2021

FIMDRAM: Key Feature Summary

= Comparison table

[3] (7 UPMEM PIM [8] (this work)
Type of DRAM HBM2 LPDDR4 DDR4 HBM2
Process 20 nm 20 nm 2X nm 20 nm
oGB/cube
i 8GB/cube 8GB/chi .
Memory densi Buffer-die + ERe 8GB/DIMM (Buffer-die +
ry Y | g die) (8H 8Gb mono die) 4H 4Gb core-die with PCU +
Data rate 2.4Gbps 3.2Gbps 2.4Gbps 2.4Gbps
Bandwidth 307GB/s per cube | 25.6GB/s per chip 19.2GB/s per DIMM 307GB/s per cube
of CH 8 per cube 1 per chip 16 per DIMM 8 per cube
#of No 2048 per chip 128 per DIMM 128 per cube
processing unit (256 per die) (8 per chip) (32 per core-die)
Processing i 250Mhz z z
operation speed @simulation @ Measurement @ Measurement
. 0.5 TOPS per chi 0.5 TOPS per DIMM 1.2 TFLOPS per cube
Poak thr°'f9hp“t (250MHz x 256 x byte) | (500MHzx 128 x 8byte) | (300MHzx 128 x 32byte)
gp:c'?s‘;g,’,‘ - INTS INTS FP16

TFLOPS : Tera Floating Point Operations Per Second

[3] K. Sohn, et al., ISSCC 2016, [7] H. Shin, et al., IEEE TCADICS 2018, [8] F. Devaux, IEEE Hot Chips Symp. 2019

Kwon et al., A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for 47
Machine Learning Applications, ISSCC 2021

Function-in-Memory DRAM (ISSCC 2021)

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon', Suk Han Lee’, Jaechoon Lee', Sang-Hyuk Kwon',

Je Min Ryu', Jong-Pil Son', Seongil 0", Hak-Soo Yu', Haesuk Lee',

Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi',

Hyun-Sung Shin’, Jin Kim', BengSeng Phuah', HyoungMin Kim',

Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim',
David Wang?, Shinhaeng Kang', Yuhwan Ro? Seungwoo Seo®, JoonHo Song?,
Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim'

'Samsung Electronics, Hwaseong, Korea

2Samsung Electronics, San Jose, CA
$Samsung Electronics, Suwon, Korea

https://doi.org/10.1109/1SSCC42613.2021.9365862

48

https://doi.org/10.1109/ISSCC42613.2021.9365862

PIM based on Commercial DRAM (ISCA 2021)

Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology

Industrial Product

Sukhan Lee®!, Shin-haeng Kang®!, Jachoon Lee!, Hyeonsu Kim?, Eojin Lee', Seungwoo Seo?,
Hosang Yoon?, Seungwon Lee?, Kyounghwan Lim!, Hyunsung Shin!, Jinhyun Kim!,
Seongil O', Anand Iyer®, David Wang®, Kyomin Sohn' and Nam Sung Kim®!

lMemory Business Division, Samsung Electronics
2Samsung Advanced Institute of Technology, Samsung Electronics
3Device Solutions America, Samsung Electronics

https://doi.org/10.1109/1ISCA52012.2021.00013 49

https://doi.org/10.1109/ISCA52012.2021.00013

Aquabolt-XIL.: Samsung HBM2-PIM (HCS 2021)

Aquabolt-XL: Samsung HBM2-PIM
with in-memory processing
for ML accelerators and beyond

Jin Hyun Kim, Shin-haeng Kang, Sukhan Lee, Hyeonsu Kim, Woongjae Song, Yuhwan Ro, Seungwon Lee, David Wang, Hyunsung Shin, Bengseng Phuah,

Jihyun Choi, Jinin So, YeonGon Cho, JoonHo Song, Jangseok Choi, Jeonghyeon Cho, Kyomin Sohn, Youngsoo Sohn, Kwangil Park, and
Nam Sung Kim

Samsung Electronics

https://doi.org/10.1109/HCS52781.2021.9567191 50

https://doi.org/10.1109/HCS52781.2021.9567191

Samsung AXDIMM (2021)

m DIMM-based PIM o Baseline Systm
o DLRM recommendation system

CHo! CH1! CH3!
1 1

CH2!
1
OS/FC/Others SLS Offload OS/FC/Others

AxDIMM System

_ AxDIMM

CHO! CH2!
1 1

OS/FC/Others SLS Offload OS/FC/Others

Ke et al. "Near-Memory Processing in Action: Accelerating Personalized Recommendation with AxDIMM", IEEE Micro (2021) 51

Upcoming Lectures

More real-world PIM architectures
Programming PIM systems

Workload characterization for PIM suitability

52

P&S Processing-in-Memory

Real-World Processing-in-Memory Architectures:

Samsung HBM-PIM Architecture

Dr. Juan Gomez Luna

Prof. Onur Mutlu
ETH Zurich
Spring 2022

31 March 2022

