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• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	
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Executive	Summary	

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV
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Data	Movement	Bottlenecks	(1/2)
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Data Movement

Data	movement	bottlenecks	happen	because	of:
- Not	enough	data	locality	→	ineffective	use	of	the	cache	hierarchy
- Not	enough	memory	bandwidth
- High	average	memory	access	time	
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Off-Chip Link



Data	Movement	Bottlenecks	(2/2)
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Compute-Centric Architecture
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Memory-Centric Architecture

Near-Data Processing (NDP)

- Abundant DRAM bandwidth

- Shorter average memory 
access time   
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Off-Chip Link

Memory-Centric Architecture

Near-Data Processing (NDP)

- Abundant DRAM bandwidth

- Shorter average memory 
access time   

…

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	



Near-Data	Processing	(2/2)	
Samsung	FIMDRAM	(2021)

The	goal	of	Near-Data	Processing	(NDP)	is
to	mitigate	data	movement	

UPMEM	(2019)

Near-DRAM-banks	processing	
for	neural	networks	

1.2	TFLOPS	compute	throughput2

Near-DRAM-banks	processing	
for	general-purpose	computing

0.9	TOPS	compute	throughput1

7[1]	Devaux,	"The	True	Processing	In	Memory	Accelerator,”	HCS,	2019
[2]	Kwon+,	“A	20nm	6GB	Function-In-Memory	DRAM,	Based	on	HBM2	with	a	1.2TFLOPS	Programmable	Computing	Unit	Using	
Bank-Level	Parallelism,	for	Machine	Learning	Applications,"	ISSCC,	2021



When	to	Employ	Near-Data	Processing?	

Near-Data	
Processing

Mobile	consumer	workloads
(GoogleWL2)

Neural	networks
(GoogleWL2)

Graph	processing
(Tesseract1)

Time	series	analysis
(NATSA6)

DNA	
sequence	mapping
(GenASM3; GRIM-Filter4)...

[1]	Ahn+,	“A	Scalable	Processing-in-Memory	Accelerator	for	Parallel	Graph	Processing,"	ISCA,	2015
[2]	Boroumand+,	"Google	Workloads	for	Consumer	Devices:	Mitigating	Data	Movement	Bottlenecks,”	ASPLOS,	2018
[3]	Cali+,	"GenASM:	A	High-Performance,	Low-Power	Approximate	String	Matching	Acceleration	Framework	for	Genome	Sequence	Analysis,”	MICRO,	2020	
[4]	Kim+,	"GRIM-Filter:	Fast	Seed	Location	Filtering	in	DNA	Read	Mapping	Using	Processing-in-Memory	Technologies,”	BMC	Genomics, 2018
[5]	Boroumand+,	"Polynesia:	Enabling	Effective	Hybrid	Transactional/Analytical	Databases	with	Specialized	Hardware/Software	Co-Design,”	
arXiv:2103.00798	[cs.AR],	2021
[6]	Fernandez+,	“NATSA:	A	Near-Data	Processing	Accelerator	for	Time	Series	Analysis,”	ICCD,	2020
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Databases
(Polynesia5)



Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Compute	Roof	
y	=	Peak	System	Throughput

Memory	Roof	
y	=	BW	x	AI

Compute Bound →
Not suitable for NDPMemory 

Bound →
Suitable for 

NDP
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Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	
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Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
bounded by	compute or	memory units	

Memory	Bound	
applications	are
faster	on	NDP

Compute	Bound	
applications	

are faster	on	CPU

Memory	Bound	
applications	
are	faster	on	

CPU,	
or	performance	
depends❌

Compute	Bound	applications	
have	similar	performance	

on	CPU/NDP	or
performance depends❌
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Limitations	of	Prior	Approaches	(1/2)	
• Roofline	model	→	identifies	when	an	application	is	
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✓

✓Roofline model	does	not	accurately	account	
for	the	NDP	suitability	of	memory-bound	applications



Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		
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Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

Applications	with
high	MPKI	are
faster	on	NDP

Applications	with	
low	MPKI	are	
faster	on	CPU

Applications	with	low	
MPKI can	be
faster	on	NDP;	
have	similar	

performance	on	
CPU/NDP	or;
performance	
can depends

❌
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Limitations	of	Prior	Approaches	(2/2)	
• Application	with	a	last-level	cache	MPKI	>	10	
→	memory	intensive	and	benefits	from	NDP		

Applications	with
high	MPKI	are
faster	on	NDP

Applications	with	
low	MPKI	are	
faster	on	CPU

Applications	with	low	
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Identifying	Memory	Bottlenecks
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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The	Problem
• Multiple	approaches to	identify applications	that:

- suffer	from	data	movement	bottlenecks	
- take	advantage	of	NDP

• Existing	approaches	are	not	comprehensive	enough
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No	available	methodology	can	comprehensively:

−		identify data	movement	bottlenecks

− correlate	them	with	the	most	suitable	
data	movement	mitigation	mechanism



Our	Goal
• Our	Goal:	develop	a	methodology	to:

− methodically	identify	sources	of	data	movement	
bottlenecks

− comprehensively	compare	compute- and	memory-
centric	data	movement	mitigation	techniques
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Key	Approach
• New	workload	characterization	methodology	to	analyze:

- data	movement	bottlenecks
- suitability	of	different	data	movement	mitigation	mechanisms

• Two	main	profiling	strategies:	

Architecture-independent	profiling:

characterizes	the	memory	behavior	independently
of	the	underlying	hardware

Architecture-dependent	profiling:

evaluates	the	impact	of	the	system	configuration	
on	the	memory	behavior
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DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

22



DAMOV-SIM	Simulator

Methodology	Overview

#	Cores

Scalability	Analysis

ld 0xFF
st 0xAF
ld 0xFF
st 0xAF
ld 0xFF

Memory	Traces

Temp.	
Locality

LFMR

LFMR Low

High

High

Low

…

roi_begin

roi_end

Profiler

Step	1
Application	ProfilingTarget	Application

So
ur
ce
	C
od
e

User	Input

Temporal	Locality

Spatial	Locality

Step	2
Locality-based	Clustering

DRAM	Bandwidth

DRAM	Latency

L1/L2	Cache	Capacity

L3	Cache	Contention

L1	Cache	Capacity

Compute-Bound

M
em

or
y	
Bo
tt
le
ne
ck
	C
la
ss
es

Methodology	Output

LLC	MPKI

Last-to-First	
Miss	Ratio	(LFMR)

Arithmetic	Intensity

Step	3
Memory	Bottleneck	Class.

23



Step	1:	Application	Profiling
Goal:	Identify	application functions that	suffer	from	data	
movement	bottlenecks

24
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Hardware	Profiling Tool:	
Intel	VTune

MemoryBound:	
CPU	is	stalled	due	to	load/store



DAMOV-SIM	Simulator
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Low	spatial	locality	

Step	2:	Locality-Based	Clustering	
• Goal:	analyze	application’s	memory	characteristics
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[7]	Weinberg+,	“Quantifying	Locality	in	the	Memory	Access	Patterns	of	HPC	Applications,”	SC,	2005 26



Low	spatial	locality	
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Step	3:	Memory	Bottleneck	Classification	(1/2)

Arithmetic	Intensity	(AI)
- floating-point/arithmetic	operations	per	L1	cache	lines	accessed

→	shows	computational	intensity	per	memory	request

LLC	Misses-per-Kilo-Instructions	(MPKI)
- LLC	misses	per	one	thousand	instructions

→	shows	memory	intensity

Last-to-First	Miss	Ratio	(LFMR)
- LLC	misses	per	L1	misses

→	shows	if	an	application	benefits	from	L2/L3	caches
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Step	3:	Memory	Bottleneck	Classification	(2/2)

• Goal:	identify the	specific	sources	of	data	movement	
bottlenecks

DAMOV-SIM Simulator

#	Cores
Scalability	Analysis

Integrated	ZSim and	Ramulator

• Scalability	Analysis:	
− 1,	4,	16,	64,	and	256	out-of-order/in-order	host	and	NDP	CPU	cores
− 3D-stacked	memory	as	main	memory

Configuration	2:	NDP	System

Off-chip	link

DRAMCPUCPUCPU

L
2

L
1 L3

L
2

L
1 L

2
L
1 L2L1CPU

Configuration	1:	Host	CPU	System	

Off-chip	link

30DAMOV-SIM:	https://github.com/CMU-SAFARI/DAMOV

…

Logic	Layer

CPUCPUCPU

L
1L1L1L1CPU

DRAMDRAMDRAMDRAM

DRAMDRAMDRAM

https://github.com/CMU-SAFARI/DAMOV
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Step	1:	Application	Profiling	
• We	analyze	345	applications from	distinct	domains:
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- Graph	Processing
- Deep	Neural	Networks
- Physics
- High-Performance	Computing
- Genomics	
- Machine	Learning	
- Databases	
- Data	Reorganization
- Image	Processing
- Map-Reduce
- Benchmarking	
- Linear	Algebra		
…
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Graph	
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Data	
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Image	
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Memory	Bound	Functions
• We	analyze	345	applications from	distinct	domains
• Selection	criteria:		clock	cycles	>	3%	and	Memory	Bound	>	30%

• We	find	144	functions	from	a	total	of	77K	functions	and	select:
- 44	functions	→	apply	steps	2	and	3
- 100	functions	→	validation

33

Memory Bound (%)
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Step	2:	Locality-Based	Clustering	
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We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	



Step	2:	Locality-Based	Clustering	
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We	use	K-means	to	cluster	
the	applications	across	both	
spatial	and	temporal	
locality,	forming	two	
groups
1. Low	locality	

applications	(in	orange)
2. High	locality	

applications	(in	blue)	

The	closer	a	function	is	to	the	bottom-left	corner
→	less	likely	it	is	to	take	advantage of

a	deep	cache	hierarchy
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Step	3:	Memory	Bottleneck	Analysis
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Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

LFMR

MPKI
AI

AI

MPKI AI

LFMR

MPKI

MPKI

AI

AI

Decreasing

High

Increasing

Low

Low

High

High

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Memory	Bottleneck	Class

39



Step	3:	Memory	Bottleneck	Analysis
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Six	classes	of	
data	movement	bottlenecks:

each	class	↔ data	movement
mitigation	mechanism	
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Step	3:	Memory	Bottleneck	Analysis
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− High	MPKI	→ high	memory	pressure

− Host	scales	well	until	bandwidth	saturates

− NDP scales	without	saturating alongside attained	bandwidth		

DRAM	bandwidth	bound	applications:
NDP does	better	because	of	the	higher	internal	DRAM	bandwidth

Class	1a:	DRAM	Bandwidth	Bound	(1/2)	
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− High	LFMR	→ L2	and	L3	caches	are	inefficient	

− Host’s	energy consumption	is	dominated	by	
cache	look-ups	and	off-chip	data	transfers

− NDP provides	large	system	energy	reduction	since	it	does	not	
access	L2,	L3,	and	off-chip	links	

DRAM	bandwidth	bound	applications:
NDP does	better	because	it	eliminates	off-chip	I/O	traffic

Class	1a:	DRAM	Bandwidth	Bound	(2/2)	
Temp.	Loc:	low
LFMR:	high
MPKI:	high
AI:	low
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- High	LFMR	→	L2	and	L3	caches	are	inefficient	

- Host	scales	well	but	NDP	performance	is	always	
higher

- NDP	performs	better	than	host	because of	its	lower	memory	
access	latency

DRAM	latency	bound	applications:
host performance	is	hurt	by	the	cache	hierarchy	and	off-chip	link

Class	1b:	DRAM	Latency	Bound	
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- Decreasing	LFMR	→	L2/L3	caches	turn	efficient
- NDP	scales	better	than	the	host	at	low	core	counts
- Host	scales	better	than	NDP	at	high	core	counts
- Host	performs	better	than	NDP	at	high	core	counts	since	it	
reduces memory	access	latency	via	data	caching

L1/L2	cache	capacity	bottlenecked	applications:
NDP	is	higher	performance	when	the	aggregated	cache	size	is	small

Class	1c:	L1/L2	Cache	Capacity
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− Increasing	LFMR	→ L2/L3	caches	turn	inefficient
− Host	scales	better	than	the	NDP	at	low	core	counts
− NDP	scales	better	than	host	at	high	core	counts	
- NDP	performs	better	than	host	at	high	core	counts	since	it
reduces	memory	access	latency

L3	cache	contention	bottlenecked	applications:
at	high	core	counts,	applications	turn	into	DRAM	latency-bound

Class	2a:	L3	Cache	Contention	
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- Low	LFMR,	MPKI;	high	temporal	locality	
→	efficient	L2/L3	caches,	low	memory	intensity	

- Low	AI	→	few	operations	per	byte	
- Host	and	NDP	performance	are	similar	

L1	cache	capacity	bottlenecked	applications:	
NDP	can	be	used	to	reduce the	host	overall	SRAM	area

Class	2b:	L1	Cache	Capacity	
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Compute-bound	applications:
benefit highly from	cache	hierarchy;	NDP	is	not a	good	fit

Class	2c:	Compute-Bound	
- Low	LFMR,	MPKI;	high	temporal	locality	
→	efficient	L2/L3	caches,	low	memory	intensity	

- High	AI	→	many	operations	per	byte	

- Host	performs	better	than	NDP	because	computation dominates	
execution	time	

0

2

4

6

8

1 4 16 64 256

N
or
m
al
iz
ed
	P
er
fo
rm
an
ce

Number	of	Cores

Host NDP

Temp.	Loc:	high
LFMR:	low
MPKI:	low
AI:	high



Step	3:	Memory	Bottleneck	Analysis

Temporal	
Locality

Low

High

LFMR

Decreasing

High
MPKI

High
AI

AI

MPKI AI

1a:	DRAM	
Bandwidth

1b:	DRAM	Latency

1c:	L1/L2	
Cache	Capacity

2a:	L3	Cache	
Contention

LFMR

MPKI

MPKI
Low

Increasing
AI

AI

2c:	Compute-Bound

2b:	L1	Cache	
Capacity

Low

Low

Low

Low

High

Low

Low

Low

Low

Low

Memory	Bottleneck	Class

54



Step	3:	Memory	Bottleneck	Analysis
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Methodology	Validation	
• Goal:	evaluate	the	accuracy	of	our	workload	
characterization	methodically	on	a	large	set	of	functions

• Two-phase	validation:

Classify Accuracy
100

functions

Phase	2:	
calculate	accuracy

High accuracy:	
our	methodology	accurately classifies	97%	of	functions	

into	one	of	the	six	memory	bottleneck	classes	

Phase	1:	
calculate	thresholds	(T)

Temporal
Locality

LLC	MPKI
Last-to-
First	

Miss	Ratio

Arithmetic	
Intensity

TTemporal
Locality

TLLC	MPKI
TLast-to-

First	
Miss	Ratio

TArithmetic
Intensity

Calculate
44

functions
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More	in	the	Paper	
• Effect	of	the	last-level	cache	size

- Large	L3	cache	size	(e.g.,	512	MB)	can	mitigate some	cache	
contention	issues	

• Summary	of	our	workload	characterization	methodology
- Including	workload	characterization	using	in-order	host/NDP	
cores

• Limitations	of	our	methodology

• Benchmark	diversity
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Outline
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1.	Data	Movement	Bottlenecks

2.	Methodology	Overview

4.	Locality-Based	Clustering

5.	Memory	Bottleneck Analysis

3.	Application	Profiling

6.	Case	Studies



Case	Studies	
• Many	open	questions	related	to	NDP	system	designs8:

- Interconnects
- Data	mapping	and	allocation
- NDP	core	design	(accelerators,	general-purpose	cores)
- Offloading	granularity		
- Programmability	
- Coherence	
- System	integration	
- …	

• Goal:	demonstrate	how	DAMOV	is	useful	to	study	NDP	
system	designs	

[8]	Mutlu+,	“A	Modern	Primer	on	Processing	in	Memory,"	Emerging	Computing:	From	Devices	to	Systems	- Looking	Beyond	Moore	and	
Von	Neumann,	2021
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Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(1/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(2/4)
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(3/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	(4/4)	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	
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Case	Studies
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→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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NDP	Accelerators	and	Our	Methodology
• Goal: evaluate	compute-centric	versus	NDP	accelerators

Compute-Centric	Accelerator

Off-chip	linkCustom	
Accelerator9 DRAMDRAMDRAMDRAM

NDP	Accelerator

Logic	Layer

Custom	
Accelerator9 DRAMDRAMDRAMDRAMOff-chip	link

[9]	Shao+,	“Aladdin:	A	Pre-RTL,	Power-Performance	Accelerator	Simulator	Enabling	Large	Design	Space	Exploration	of	Customized	
Architectures,”	in	ISCA,	2014
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NDP	Accelerators	and	Our	Methodology
• Goal: evaluate	compute-centric	versus	NDP	accelerators
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The	performance	of	NDP	accelerators	
are	in	line	with	the	characteristics	of	the

memory	bottleneck	classes:	

our	memory	bottleneck	classification	can	be	applied	to	
study	other	types	of	system	configurations
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Case	Studies	
Load	Balance	and	Inter-Vault	Communication	on	NDP
portion	of	the	memory	requests	an	NDP	core	issues	go	to	remote	vaults

→	increases	the	memory	access	latency	for	the	NDP	core

NDP	Accelerators	and	Our	Methodology	
NDP	accelerator	is	faster	than	compute-centric	accelerator	for	Class	1a	and	1b	

applications;	slower	for	Class	2c
\→	key	observations	hold	for	other	NDP	architectures

Different	Core	Models	on	NDP	Architectures
using	in-order	cores	limits	performance	of	some	applications

→	static	instruction	scheduling	cannot	exploit	memory	parallelism

Fine-Grained	NDP	Offloading	
few	basic	blocks	are	responsible	for	most	of	LLC	misses

→	offloading	such	basic	blocks	to	NDP	are	enough	to	improve	performance
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Case	Studies	
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DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark
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DAMOV	is	Open-Source
• We	open-source	our	benchmark	suite	and	our	toolchain

DAMOV-SIM

DAMOV	
Benchmark
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Get	DAMOV	at:
https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV


• Problem:	Data	movement	is	a	major bottleneck	is	modern	systems.	
However,	it	is	unclear how	to	identify:	
−		different	sources	of	data	movement	bottlenecks	
−		themost	suitable	mitigation	technique	(e.g.,	caching,	prefetching,	near-data	processing)	
for	a	given	data	movement	bottleneck

• Goals:	
1.	Design	a	methodology	to	identify sources	of	data	movement bottlenecks
2.	Compare compute- and	memory-centric	data	movement	mitigation	techniques

• Key	Approach:	Perform	a	large-scale	application	characterization to	identify	
key	metrics that	reveal	the	sources	to	data	movement	bottlenecks

• Key	Contributions:
−		Experimental	characterization	of	77K	functions	across	345	applications
−		A	methodology	to	characterize	applications	based	on	data	movement	bottlenecks and			
their	relation	with	different	data	movement	mitigation	techniques

−		DAMOV:	a	benchmark	suite	with	144	functions	for	data	movement	studies
−		Four	case-studies	to	highlight	DAMOV’s	applicability	to	open	research	problems	
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Conclusion

DAMOV:	https://github.com/CMU-SAFARI/DAMOV

https://github.com/CMU-SAFARI/DAMOV
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